

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	I ² C, IrDA, LINbus, SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f401rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	6.3.6	Supply current characteristics	63
	6.3.7	Wakeup time from low-power modes	73
	6.3.8	External clock source characteristics	74
	6.3.9	Internal clock source characteristics	78
	6.3.10	PLL characteristics	80
	6.3.11	PLL spread spectrum clock generation (SSCG) characteristics	82
	6.3.12	Memory characteristics	83
	6.3.13	EMC characteristics	85
	6.3.14	Absolute maximum ratings (electrical sensitivity)	87
	6.3.15	I/O current injection characteristics	88
	6.3.16	I/O port characteristics	89
	6.3.17	NRST pin characteristics	94
	6.3.18	TIM timer characteristics	95
	6.3.19	Communications interfaces	96
	6.3.20	12-bit ADC characteristics1	04
	6.3.21	Temperature sensor characteristics 1	10
	6.3.22	V _{BAT} monitoring characteristics	111
	6.3.23	Embedded reference voltage 1	111
	6.3.24	SD/SDIO MMC card host interface (SDIO) characteristics	111
	6.3.25	RTC characteristics 1	13
Pack	kage info	ormation	14
7.1	WLCSI	P49 2.965x2.965 mm package information	14
7.2	UFQFF	PN48 package information1	17
7.3	LQFP6	4 package information	20
7.4	LQFP1	00 package information 1	23
7.5	UFBGA	A100 package information 1	26
7.6	Therma	al characteristics 1	29
	7.6.1	Reference document 1	29
Dort	number	ing d	2 0
art	numper	mg	30
Revi	sion his	story	31
		-	

7

8

9

Table 42.	PLLI2S (audio PLL) characteristics
Table 43.	SSCG parameters constraint
Table 44.	Flash memory characteristics
Table 45.	Flash memory programming
Table 46.	Flash memory programming with V _{PP} voltage
Table 47.	Flash memory endurance and data retention
Table 48.	EMS characteristics for LQFP100 package
Table 49.	EMI characteristics for WLCSP49
Table 50.	EMI characteristics for LQFP100
Table 51.	ESD absolute maximum ratings
Table 52.	Electrical sensitivities
Table 53.	I/O current injection susceptibility
Table 54.	I/O static characteristics
Table 55.	Output voltage characteristics
Table 56.	I/O AC characteristics
Table 57.	NRST pin characteristics
Table 58.	TIMx characteristics
Table 59.	I ² C characteristics
Table 60.	SCL frequency ($f_{PCL K1} = 42 \text{ MHz}$, $V_{PP} = V_{PP L2C} = 3.3 \text{ V}$). 97
Table 61.	SPI dynamic characteristics
Table 62	l^2 S dynamic characteristics 101
Table 63	USB OTG FS startup time 103
Table 64	USB OTG FS DC electrical characteristics
Table 65	USB OTG FS electrical characteristics
Table 66	ADC characteristics
Table 67	ADC accuracy at $f_{ADC} = 18 \text{ MHz}$ 106
Table 68	$\Delta DC \text{ accuracy at } f_{ADC} = 30 \text{ MHz}$
Table 60	ADC accuracy at $f_{ADC} = 36 \text{ MHz}$ 106
Table 70	ADC dynamic accuracy at $f_{DC} = 18 \text{ MHz}$ - limited test conditions 107
Table 70.	ADC dynamic accuracy at $f_{ADC} = 36 \text{ MHz}$ - limited test conditions
Table 72	Temperature sensor characteristics
Table 72.	Temperature sensor calibration values 110
Table 73.	$V_{-} = \text{monitoring characteristics}$
Table 74.	VBAT monitoring characteristics
Table 75.	Internal reference voltage calibration values
Table 70.	Dynamia abaracteristica: SD / MMC abaracteristica
Table 77.	Dynamic characteristics. SD / MiNic characteristics
Table 70.	NI CEDIO 40 holl 2.065 x 2.065 mm 0.4 mm nitch wefer level ohin coole
Table 79.	WLCSP49 - 49-Dall, 2.905 X 2.905 Mill, 0.4 Mill pitch water level chip scale
Table 00	package mechanical data
	WLCSP49 recommended PCB design rules (0.4 mm pilch)
Table 81.	UFQFPN48 - 48-lead, 7 X 7 mm, U.5 mm pitch, uitra thin fine pitch
	quad flat package mechanical data
Table 82.	LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data 121
Table 83.	LQPF100-100-pin, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data 124
Table 84.	UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
T-1-1-05	
Table 85.	UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)
Table 87.	Urdering information scheme
i able 88.	Document revision history

Figure 47. Figure 48	WLCSP49 0.4 mm pitch wafer level chip scale recommended footprint	115 116
Figure 49.	UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch	
	quad flat package outline 1	117
Figure 50.	UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch	
	quad flat recommended footprint 1	118
Figure 51.	UFQFPN48 marking example (top view) 1	119
Figure 52.	LQFP64 - 64-pin, 10 x 10 mm, 64-pin low-profile quad flat package outline 1	120
Figure 53.	LQFP64 recommended footprint 1	121
Figure 54.	LQFP64 marking example (top view)1	122
Figure 55.	LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat	
U	package outline	123
Figure 56.	LQFP100 recommended footprint	124
Figure 57.	LQPF100 marking example (top view)	125
Figure 58.	UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch	
-	ball grid array package outline	126
Figure 59.	UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array	
-	package recommended footprint1	127
Figure 60.	UFBGA100 marking example (top view) 1	128

3.14 Power supply supervisor

3.14.1 Internal reset ON

This feature is available for V_{DD} operating voltage range 1.8 V to 3.6 V.

The internal power supply supervisor is enabled by holding PDR_ON high.

The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes.

The devices remain in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The devices also feature an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.14.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low.

An external power supply supervisor should monitor V_{DD} and should maintain the device in reset mode as long as V_{DD} is below a specified threshold. PDR_ON should be connected to this external power supply supervisor. Refer to *Figure 5: Power supply supervisor interconnection with internal reset OFF*.

Figure 5. Power supply supervisor interconnection with internal reset OFF⁽¹⁾

1. The PRD_ON pin is only available on the WLCSP49 and UFBGA100 packages.

DocID024738 Rev 6

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4 or TIM5 timer.

3.29 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. Refer to the reference manual for additional information.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.30 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.31 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F401xB/STM32F401xC through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using any high-speed channel available. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

Figure 11. STM32F401xB/STM32F401xC UFQFPN48 pinout

1. The above figure shows the package top view.

Figure 12. STM32F401xB/STM32F401xC LQFP64 pinout

1. The above figure shows the package top view.

Figure 13. STM32F401xB/STM32F401xC LQFP100 pinout

1. The above figure shows the package top view.

	Pir	n Nur	nber				e			
UQFN48	WLCSP49	LQFP64	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structu	Notes	Alternate functions	Additional functions
-	-	-	45	M11	PE14	I/O	FT	-	SPI4_MOSI, TIM1_CH4, EVENTOUT	-
-	-	-	46	M12	PE15	I/O	FT	-	TIM1_BKIN, EVENTOUT	-
21	E3	29	47	L10	PB10	I/O	FT	-	SPI2_SCK/I2S2_CK, I2C2_SCL, TIM2_CH3, EVENTOUT	-
-	-	-	-	K9	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, EVENTOUT	-
22	G2	30	48	L11	VCAP_1	S	-	-	-	-
23	D3	31	49	F12	VSS	S	-	-	-	-
24	F2	32	50	G12	VDD	S	-	-	-	-
25	E2	33	51	L12	PB12	I/O	FT	-	SPI2_NSS/I2S2_WS, I2C2_SMBA, TIM1_BKIN, EVENTOUT	-
26	G1	34	52	K12	PB13	I/O	FT	-	SPI2_SCK/I2S2_CK, TIM1_CH1N, EVENTOUT	-
27	F1	35	53	K11	PB14	I/O	FT	-	SPI2_MISO, I2S2ext_SD, TIM1_CH2N, EVENTOUT	-
28	E1	36	54	K10	PB15	I/O	FT	-	SPI2_MOSI/I2S2_SD, TIM1_CH3N, EVENTOUT	RTC_REFIN
-	-	-	55	-	PD8	I/O	FT	-	EVENTOUT	-
-	-	-	56	K8	PD9	I/O	FT	-	EVENTOUT	-
-	-	-	57	J12	PD10	I/O	FT	-	EVENTOUT	-
-	-	-	58	J11	PD11	I/O	FT	-	EVENTOUT	-
-	-	-	59	J10	PD12	I/O	FT	-	TIM4_CH1, EVENTOUT	-
-	-	-	60	H12	PD13	I/O	FT	-	TIM4_CH2, EVENTOUT	-
-	-	-	61	H11	PD14	I/O	FT	-	TIM4_CH3, EVENTOUT	-
-	-	-	62	H10	PD15	I/O	FT	-	TIM4_CH4, EVENTOUT	-
-	-	37	63	E12	PC6	I/O	FT	-	I2S2_MCK, USART6_TX, TIM3_CH1, SDIO_D6, EVENTOUT	-
-	-	38	64	E11	PC7	I/O	FT	-	I2S3_MCK, USART6_RX, TIM3_CH2, SDIO_D7, EVENTOUT	-

	Table 8. STM32F401xB/STM32F401xC	pin definitions	(continued)
--	----------------------------------	-----------------	-------------

44/135

AF00

SYS_AF

-

-

-

Port

PA0

PA1

PA2

AF01

TIM1/TIM2

TIM2_CH1/ TIM2_ETR

TIM2_CH2

TIM2_CH3

AF02

TIM3/

TIM4/ TIM5

TIM5_CH1

TIM5_CH2

TIM5_CH3

AF03

TIM9/

TIM10/

TIM11

-

-

TIM9_CH1

AF04

I2C1/I2C2/

12C3

-

-

-

AF05

SPI1/SPI2/

I2S2/SPI3/

12S3/SPI4

-

-

-

DocID024738 Rev 6

PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-		-	USART2_ RX	-
PA4	-	-	-	-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	USART2_ CK	-
PA5	-	TIM2_CH1/ TIM2_ETR	-	-	-	SPI1_SCK	-	-	-
PA6	-	TIM1_BKIN	TIM3_CH1	-	-	SPI1_ MISO	-	-	-
PA7	-	TIM1_CH1N	TIM3_CH2	-	-	SPI1_ MOSI	-	-	-
PA8	MCO_1	TIM1_CH1	-	-	I2C3_SCL	-	-	USART1_ CK	-
PA9	-	TIM1_CH2	-	-	I2C3_ SMBA	-	-	USART1_ TX	-
PA10	-	TIM1_CH3	-	-	-	-	-	USART1_ RX	-
PA11	-	TIM1_CH4	-	-	-	-	-	USART1_ CTS	USART6_ TX
PA12	-	TIM1_ETR	-	-	-	-	-	USART1_ RTS	USART6_ RX
PA13	JTMS_ SWDIO	-	-	-	-	-	-	-	-
PA14	JTCK_ SWCLK	-	-	-	-	-	-	-	-
PA15	JTDI	TIM2_CH1/ TIM2_ETR	-	-	-	SPI1_NSS	SPI3_NSS/ I2S3_WS	-	-

Table 9. Alternate function mapping

AF06

SPI2/I2S2/

SPI3/ 12S3

-

-

.

AF07

SPI3/I2S3/

USART1/

USART2

USART2_

CTS

USART2_

RTS

USART2_

ΤХ

AF08

USART6

-

-

-

AF09

I2C2/

12C3

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

AF10

OTG1_FS

-

-

-

-

-

-

-

-

OTG_FS_ SOF

OTG_FS_ VBUS

OTG_FS_I D

OTG_FS_

DM

OTG_FS_ DP

-

-

-

AF11

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

AF12 AF13 AF14

-

-

-

-

-

-

-

_

-

-

-

-

-

-

_

_

-

-

-

-

-

-

-

-

SDIO

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Pinouts and pin description

AF15

EVENT

OUT

EVENT

OUT

EVENT

OUT

OUT

OUT

OUT

OUT EVENT

OUT

EVENT

OUT

EVENT

OUT

EVENT

OUT

EVENT

OUT

EVENT

OUT

OUT EVENT

OUT

EVENT

OUT

STM32F401xB STM32F401xC

Memory mapping 5

The memory map is shown in *Figure 15*.

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 16*.

Figure 16. Pin loading conditions

6.3.4 Operating conditions at power-up / power-down (regulator OFF)

	Table 16. Operating conditions at power up / power down (regulator of)								
	Symbol	Parameter	Conditions	Min	Max	Unit			
	t in a	V _{DD} rise time rate	Power-up	20	8				
٩VDD	V _{DD} fall time rate	Power-down	20	8	ue//				
t _{VCAP}	+	V_{CAP_1} and V_{CAP_2} rise time rate	Power-up	20	8	μον			
	V_{CAP_1} and V_{CAP_2} fall time rate	Power-down	20	8					

Subject to general operating conditions for T_A.

Table 18. Operating conditions at power-up / power-down (regulator OFF)⁽¹⁾

 To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V.

Note: This feature is only available for UFBGA100 package.

6.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 19* are derived from tests performed under ambient temperature and V_{DD} supply voltage @ 3.3V.

Symbol	Parameter Conditions		Min	Тур	Max	Unit	
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19		
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08		
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37		
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25		
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51		
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39		
V _{PVD}		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65		
	Programmable voltage	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V	
	detector level selection	PLS[2:0]=100 (rising edge)	2.70	2.76	2.82		
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71		
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99		
		PLS[2:0]=101 (falling edge)	2.65	2.84	2.92		
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10		
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99		
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21		
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09		
V _{PVDhyst} ⁽²⁾	PVD hysteresis		-	100	-	mV	
VDOD/DDD	Power-on/power-down	Falling edge	1.60 ⁽¹⁾	1.68	.68 1.76		
VPOR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	V	

Table 19. Embedded reset and power control block characteristics

Perip	oheral	I _{DD} (typ)	Unit
	TIM1	5.71	
	TIM9	2.86	
	TIM10	1.79	
	TIM11	2.02	
	ADC1 ⁽²⁾	2.98	
APB2 (up to 84MHz)	SPI1	1.19	µA/MHz
	USART1	3.10	
	USART6	2.86	
	SDIO	5.95	
	SPI4	1.31	
	SYSCFG	0.71	

 Table 33. Peripheral current consumption (continued)

1. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.

2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

6.3.7 Wakeup time from low-power modes

The wakeup times given in *Table 34* are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} =3.3 V.

	Table 34.	Low-power	mode	wakeup	timings ⁽¹⁾
--	-----------	-----------	------	--------	------------------------

Symbol	Parameter	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit	
t _{WUSLEEP} ⁽²⁾	Wakeup from Sleep mode	-	4	6	CPU clock cycle	
twustop ⁽²⁾	Wakeup from Stop mode, usage of main regulator	-	13.5	14.5		
	Wakeup from Stop mode, usage of main regulator, Flash memory in Deep power down mode	-	105	111		
	Wakeup from Stop mode, regulator in low power mode	-	21	33	μs	
	Wakeup from Stop mode, regulator in low power mode, Flash memory in Deep power down mode		113	130		
t _{WUSTDBY} ⁽²⁾⁽³⁾	Wakeup from Standby mode	-	314	407	μs	

1. Guaranteed by characterization.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

3. $t_{WUSTDBY}\,maximum$ value is given at –40 $^{\circ}\text{C}.$

Figure 25. Typical application with a 32.768 kHz crystal

6.3.9 Internal clock source characteristics

The parameters given in *Table 39* and *Table 40* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user trimming step ⁽²⁾	-	-	-	1	%
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = -40$ to 105 °C ⁽³⁾	-8	-	4.5	%
		$T_A = -10$ to 85 °C ⁽³⁾	-4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	-1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

Table 39. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization.

4. Factory calibrated, parts not soldered.

Figure 27. ACC_{LSI} versus temperature

6.3.10 PLL characteristics

The parameters given in *Table 41* and *Table 42* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock ⁽¹⁾			0.95 ⁽²⁾	1	2.10	MHz
f _{PLL_OUT}	PLL multiplier output clock			24	-	84	MHz
f _{PLL48_} OUT	48 MHz PLL multiplier output clock			-	48	75	MHz
f _{VCO_OUT}	PLL VCO output			192	-	432	MHz
t _{LOCK}	PLL lock time	VCO freq = 192 MHz		75	-	200	μs
		VCO freq = 432 MHz		100	-	300	
Jitter ⁽³⁾	Cycle-to-cycle jitter	System clock 84 MHz	RMS	-	25	-	
			peak to peak	-	±150	-	D C
	Period Jitter		RMS	-	15	-	ps
			peak to peak	-	±200	-	

Table 41. Main PLL characteristics	able 41. Main PLL charac	teristics
------------------------------------	--------------------------	-----------

Figure 32. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- 2. The external capacitor must be placed as close as possible to the device.
- The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in 3. Table 57. Otherwise the reset is not taken into account by the device.

6.3.18 TIM timer characteristics

The parameters given in Table 58 are guaranteed by design.

Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Min Max	
	Timer resolution time	AHB/APBx prescaler=1	1	-	t _{TIMxCLK}
t _{res(TIM)}		84 MHz	11.9	-	ns
		AHB/APBx prescaler>4,	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 84 MHz	11.9	-	ns
f _{EXT}	Timer external clock frequency on CH1 to CH4		0	f _{TIMxCLK} /2	MHz
		f _{TIMxCLK} = 84 MHz	0	42	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
t _{COUNTER}	16-bit counter clock period when internal clock is selected	f _{TIMxCLK} = 84 MHz	0.0119	780	μs
t _{MAX COUNT}	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
	with 52-bit counter	f _{TIMxCLK} = 84 MHz	-	51.1	S

Table 58. TIMx characteristics⁽¹⁾⁽²⁾

1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.

Guaranteed by design. 2.

The maximum timer frequency on APB1 is 42 MHz and on APB2 is up to 84 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK >= 4x PCLKx. 3.

Electrical characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
+ (2)	Injection trigger conversion	f _{ADC} = 30 MHz	-	-	0.100	μs
^l lat ^{**}	latency		-	-	3 ⁽⁵⁾	1/f _{ADC}
t. (2)	Regular trigger conversion	f _{ADC} = 30 MHz	-	-	0.067	μs
'latr'	latency		-	-	2 ⁽⁵⁾	1/f _{ADC}
$t_{0}^{(2)}$	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
15			3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time		-	2	3	μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 12-bit resolution	0.50	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
		f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.30	-	16.20	μs
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				
		12-bit resolution Single ADC	-	-	2	Msps
f _S ⁽²⁾	Sampling rate (f _{ADC} = 30 MHz, and t _S = 3 ADC cycles)	12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	Msps
I _{VREF+} ⁽²⁾	ADC V _{REF} DC current consumption in conversion mode		-	300	500	μA
I _{VDDA} ⁽²⁾	ADC V _{DDA} DC current consumption in conversion mode		-	1.6	1.8	mA

Table 66. ADC characteristics (continued)

1. V_{DDA} minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.14.2: Internal reset OFF).

2. Guaranteed by characterization.

3. V_{REF^+} is internally connected to V_{DDA} and V_{REF^-} is internally connected to $V_{\mathsf{SSA}}.$

4. R_{ADC} maximum value is given for V_{DD}=1.7 V, and minimum value for V_{DD}=3.3 V.

5. For external triggers, a delay of $1/f_{PCLK2}$ must be added to the latency specified in *Table 66*.

- 1. See also Table 68.
- 2. Example of an actual transfer curve.
- 3. Ideal transfer curve.
- End point correlation line. 4.

 E_T = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO = Offset Error: deviation between the first actual transition and the first ideal one. EG = Gain Error: deviation between the last ideal transition and the last actual one. 5.

ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.

EL = Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

- Refer to Table 66 for the values of RAIN, RADC and CADC. 1.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{parasitic}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
CMD, D inputs (referenced to CK) in SD default mode							
t _{ISUD}	Input setup time SD	fpp = 24MHz	1.5	-	-		
t _{IHD}	Input hold time SD	fpp = 24MHz	0.5	-	-	115	
CMD, D outputs (referenced to CK) in SD default mode							
t _{OVD}	Output valid default time SD	fpp =24MHz	-	4.5	6.5		
t _{OHD}	Output hold default time SD	fpp =24MHz	3.5	-	-	115	

Table 77. Dynamic characteristics: SD / MMC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by characterization results.

2. V_{DD} = 2.7 to 3.6 V.

6.3.25 RTC characteristics

Table 78. RTC characteristics

Symbol	Parameter	Conditions	Min	Max
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

