

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	I ² C, IrDA, LINbus, SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f401rct7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F401xB/C features and peripheral counts.	. 11
Table 3.	Regulator ON/OFF and internal power supply supervisor availability	
Table 4.	Timer feature comparison.	
Table 5.	Comparison of I2C analog and digital filters	. 28
Table 6.	USART feature comparison	
Table 7.	Legend/abbreviations used in the pinout table	
Table 8.	STM32F401xB/STM32F401xC pin definitions	. 37
Table 9.	Alternate function mapping	. 44
Table 10.	STM32F401xB/STM32F401xC	
	register boundary addresses	. 51
Table 11.	Voltage characteristics	. 57
Table 12.	Current characteristics	. 58
Table 13.	Thermal characteristics.	. 58
Table 14.	General operating conditions	. 59
Table 15.	Features depending on the operating power supply range	. 60
Table 16.	VCAP_1/VCAP_2 operating conditions	. 61
Table 17.	Operating conditions at power-up / power-down (regulator ON)	. 61
Table 18.	Operating conditions at power-up / power-down (regulator OFF).	. 62
Table 19.	Embedded reset and power control block characteristics.	. 62
Table 20.	Typical and maximum current consumption, code with data processing (ART	
	accelerator disabled) running from SRAM - V _{DD} =1.8V	. 64
Table 21.	Typical and maximum current consumption, code with data processing (ART	
	accelerator disabled) running from SRAM	. 65
Table 22.	Typical and maximum current consumption in run mode, code with data processing	
	(ART accelerator enabled except prefetch) running from Flash memory- V_{DD} = 1.8 V	. 65
Table 23.	Typical and maximum current consumption in run mode, code with data processing	
	(ART accelerator enabled except prefetch) running from Flash memory - V_{DD} = 3.3 V .	. 66
Table 24.	Typical and maximum current consumption in run mode, code with data processing	
	(ART accelerator disabled) running from Flash memory	. 66
Table 25.	Typical and maximum current consumption in run mode, code with data processing	
	(ART accelerator enabled with prefetch) running from Flash memory	
Table 26.	Typical and maximum current consumption in Sleep mode	
Table 27.	Typical and maximum current consumptions in Stop mode - V _{DD} =1.8 V	
Table 28.	Typical and maximum current consumption in Stop mode - V _{DD} =3.3 V	
Table 29.	Typical and maximum current consumption in Standby mode - V _{DD} =1.8 V	
Table 30.	Typical and maximum current consumption in Standby mode - V_{DD} =3.3 V	
Table 31.	Typical and maximum current consumptions in V _{BAT} mode	
Table 32.	Switching output I/O current consumption	
Table 33.	Peripheral current consumption	. 72
Table 34.	Low-power mode wakeup timings ⁽¹⁾	
Table 35.	High-speed external user clock characteristics.	
Table 36.	Low-speed external user clock characteristics	
Table 37.	HSE 4-26 MHz oscillator characteristics	. 76
Table 38.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	
Table 39.	HSI oscillator characteristics	. 78
Table 40.	LSI oscillator characteristics	
Table 41.	Main PLL characteristics	. 80

2 Description

The STM32F401xB/STM32F401xC devices are based on the high-performance ARM[®] Cortex[®]-M4 32-bit RISC core operating at a frequency of up to 84 MHz. The Cortex[®]-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F401xB/STM32F401xC incorporate high-speed embedded memories (up to 256 Kbytes of Flash memory, up to 64 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer one 12-bit ADC, a low-power RTC, six general-purpose 16-bit timers including one PWM timer for motor control, two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces.

- Up to three I²Cs
- Up to four SPIs
- Two full duplex I²Ss. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization.
- Three USARTs
- SDIO interface
- USB 2.0 OTG full speed interface

Refer to *Table 2: STM32F401xB/C features and peripheral counts* for the peripherals available for each part number.

The STM32F401xB/STM32F401xC operate in the -40 to +105 °C temperature range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

These features make the STM32F401xB/STM32F401xC microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances
- Mobile phone sensor hub

Figure 3 shows the general block diagram of the devices.

Periphe		2. 01 11 321 4	STM32F401xE	•	STM32F401xC							
Flash memory in	Kbytes	128			256				256			
SRAM in Kbytes	System			6	4							
Timoro	General- purpose			7	,							
Timers	Advanced- control			1								
	SPI/ I ² S	3/2 (full	duplex)	4/2 (full duplex)	3/2 (full	duplex)	4/2 (full duplex)					
Communication	I ² C		3									
interfaces	USART	3										
	SDIO	-	1		-		1					
USB OTG FS				1								
GPIOs		36	50	81	36	50	81					
12-bit ADC				1								
Number of chan	nels	10	1	6	10		16					
Maximum CPU f	requency			84 N	MHz							
Operating voltag	е	1.7 to 3.6 V										
	met une e	Ambient temperatures: -40 to +85 °C/-40 to +105 °C										
Operating tempe	eratures		Junc	tion temperatu	re: -40 to + 12	25 °C						
Package		WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100	WLCSP49 UFQFPN48	LQFP64	UFBGA100 LQFP100					

Table 2. STM32F401xB/C features and peripheral counts

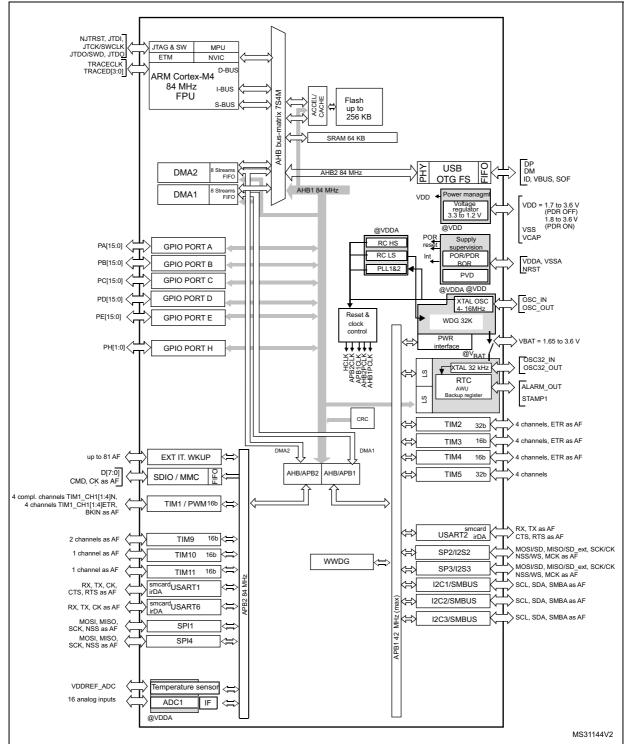


Figure 3. STM32F401xB/STM32F401xC block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 84 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 42 MHz.

3.15.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.

There are three power modes configured by software when the regulator is ON:

- MR is used in the nominal regulation mode (With different voltage scaling in Run)
 In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption.
- LPR is used in the Stop modes
 The LP regulator mode is configured by software when entering Stop mode.
- Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Depending on the package, one or two external ceramic capacitors should be connected on the V_{CAP_1} and V_{CAP_2} pins. The V_{CAP_2} pin is only available for the LQFP100 and UFBGA100 packages.

All packages have the regulator ON feature.

3.15.2 Regulator OFF

The Regulator OFF is available only on the UFBGA100, which features the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through V_{CAP-1} and V_{CAP-2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. Refer to *Table 14: General operating conditions*.

The two 2.2 μ F V_{CAP} ceramic capacitors should be replaced by two 100 nF decoupling capacitors. Refer to *Figure 18: Power supply scheme*.

When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4 or TIM5 timer.

3.29 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. Refer to the reference manual for additional information.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.30 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.31 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F401xB/STM32F401xC through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using any high-speed channel available. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.

5

4
7
3
σ

Table	9. <i>I</i>	Alternate	function	ma	apping	(C	ontinued	I)

_											,						
		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PD0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD2	-	-	TIM3_ETR	-	-	-	-	-	-	-	-	-	SDIO_ CMD	-	-	EVENT OUT
	PD3	-	-	-	-	-	SPI2_SCK/ I2S2_CK	-	USART2_ CTS		-	-	-	-	-	-	EVENT OUT
	PD4	-	-	-	-	-	-	-	USART2_ RTS		-	-	-	-	-	-	EVENT OUT
	PD5	-	-	-	-	-	-	-	USART2_ TX	-	-	-	-	-	-	-	EVENT OUT
	PD6	-	-	-	-	-	SPI3_MOSI /I2S3_SD	-	USART2_ RX	-	-	-	-	-	-	-	EVENT OUT
Q	PD7	-	-	-	-	-	-	-	USART2_ CK	-	-	-	-	-	-	-	EVENT OUT
Port D	PD8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD11	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD12	-	-	TIM4_CH1	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD13	-	-	TIM4_CH2	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

STM32F401xB STM32F401xC

Pinouts and pin description

6.3 Operating conditions

6.3.1 General operating conditions

Table 14	General	operating	conditions
----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
£		Power Scale3: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x01	0	-	60			
f _{HCLK}	Internal AHB clock frequency	Power Scale2: Regulator ON, VOS[1:0] bits in PWR_CR register = 0x10	0	-	84	MHz		
f _{PCLK1}	Internal APB1 clock frequency		0	-	42			
f _{PCLK2}	Internal APB2 clock frequency		0	-	84			
V_{DD}	Standard operating voltage		1.7 ⁽¹⁾	-	3.6			
V _{DDA} (2)(3)	Analog operating voltage (ADC limited to 1.2 M samples)	Must be the same potential as $V_{DD}^{(4)}$	1.7 ⁽¹⁾	-	2.4			
(2)(3)	Analog operating voltage (ADC limited to 2.4 M samples)		2.4	-	3.6			
V _{BAT}	Backup operating voltage		1.65	-	3.6			
	Regulator ON: 1.2 V internal	VOS[1:0] bits in PWR_CR register = 0x01 Max frequency 60 MHz	1.08 ⁽⁵⁾	1.14	1.20 ⁽⁵⁾	V		
V ₁₂	voltage on V_{CAP_1}/V_{CAP_2} pins	VOS[1:0] bits in PWR_CR register = 0x10 Max frequency 84 MHz	1.20 ⁽⁵⁾	1.26	1.32 ⁽⁵⁾			
	Regulator OFF: 1.2 V external	Max. frequency 60 MHz.	1.1	1.14	1.2			
V ₁₂	voltage must be supplied on V_{CAP_1}/V_{CAP_2} pins	Max. frequency 84 MHz.	1.2	1.26	1.32			
	Input voltage on RST and FT	$2 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-0.3	-	5.5			
V_{IN}	pins ⁽⁶⁾	$V_{DD} \leq 2 V$	-0.3	-	5.2			
	Input voltage on BOOT0 pin		0	-	9			
		UFQFPN48	-	-	625			
P _D	Maximum allowed package	WLCSP49	-	-	385	mW		
	power dissipation for suffix 6	LQFP64	-	-	313			
	and 7 ⁽⁷⁾	LQFP100	-	-	465			
		UFBGA100	-	-	323]		

Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory

			f							
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	Тур	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit		
			84	31.8	33	35	36			
			60	21.8	22	23	24			
	External clock, all peripherals enabled ⁽²⁾⁽³		all peripherals enabled ⁽²⁾⁽³⁾	40	16.0	17	18	19		
			30	12.9	14	15	16			
1	Supply current		20	10.4	11	12	13	mA		
I _{DD}	in Run mode		84	21.2	22	23	24			
					60	15.0	16	17	18	
		External clock, all peripherals disabled ⁽³⁾	40	10.9	12	13	14			
			30	8.8	10	11	12			
			20	7.1	8	9	10			

1. Guaranteed by characterization, unless otherwise specified.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the analog part.

			£	Тур						
Symbol Paramete	Parameter	Conditions	f _{HCLK} (MHz)		T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit		
			84	16.2	17	18	19			
			60	10.7	11	12	13			
	External clock, all peripherals enabled ⁽²⁾⁽³⁾	40	8.3	9	10	11				
			30	6.8	7	8	9			
I	Supply current		20	5.9	6	7	8	mA		
I _{DD}	in Sleep mode		84	5.2	6	7	8			
		External clock, all peripherals disabled ⁽³⁾⁽⁴⁾	60	3.6	4	5	6			
			External clock, all peripherals disabled ^{$(3)(4)$}	External clock, all peripherals disabled ⁽³⁾⁽⁴⁾	External clock, all peripherals disabled ^{$(3)(4)$}	40	2.9	3	4	5
			30	2.6	3	4	5			
			20	2.6	3	4	5			

Table 26. Typical and maximum current consumption in Sleep mode

1. Guaranteed by characterization, unless otherwise specified.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

4. Same current consumption for f_{HCLK} at 30 MHz and 20 MHz due to VCO running slower at 30 MHz.

DocID024738 Rev 6

6.3.11 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 49: EMI characteristics for WLCSP49*). It is available only on the main PLL.

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP		-	-	2 ¹⁵ -1	-

Table 43	SSCG	parameters	constraint
	0000	parameters	constraint

1. Guaranteed by design.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

 $MODEPER = round[f_{PLL IN} / (4 \times f_{Mod})]$

f_{PLL IN} and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz, and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round $[10^{6}/(4 \times 10^{3})] = 250$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[(
$$(2^{15} - 1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

f_{VCO OUT} must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

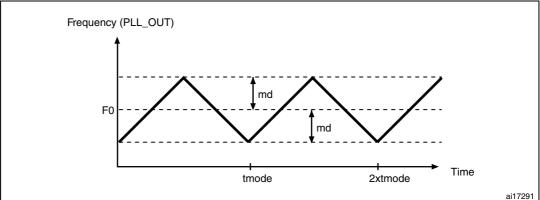
INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

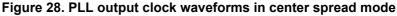
An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER×INCSTEP×100×5)/ ((2¹⁵-1)×PLLN)

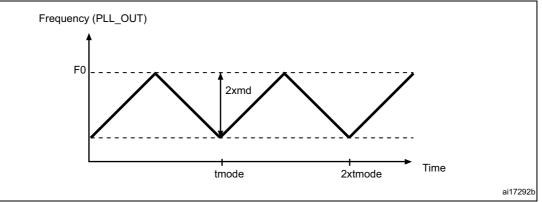
As a result:

$$md_{muantized}$$
% = $(250 \times 126 \times 100 \times 5)/((2^{15} - 1) \times 240) = 2.002\%$ (peak)


DocID024738 Rev 6


Figure 28 and *Figure 29* show the main PLL output clock waveforms in center spread and down spread modes, where:

F0 is f_{PLL_OUT} nominal.


T_{mode} is the modulation period.

md is the modulation depth.

6.3.12 Memory characteristics

Flash memory

The characteristics are given at T_{A} = –40 to 105 $^{\circ}\text{C}$ unless otherwise specified.

The devices are shipped to customers with the Flash memory erased.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Write / Erase 8-bit mode, V_{DD} = 1.7 V	-	5	-	
I _{DD}	Supply current	Write / Erase 16-bit mode, V_{DD} = 2.1 V	-	8	-	mA
		Write / Erase 32-bit mode, V_{DD} = 3.3 V	-	12	-	

DocID024738 Rev 6

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs	
		Program/erase parallelism (PSIZE) = x 8	-	400	800		
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms	
		Program/erase parallelism (PSIZE) = x 32	-	250	500		
		Program/erase parallelism (PSIZE) = x 8	-	1200	2400		
t _{ERASE64KB}	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms	
		Program/erase parallelism (PSIZE) = x 32	-	550	1100		
		Program/erase parallelism (PSIZE) = x 8	-	2	4		
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6	s	
		Program/erase parallelism (PSIZE) = x 32	-	1	2		
		Program/erase parallelism (PSIZE) = x 8	-	4	8		
t _{ME}	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	2.75	5.5	s	
		Program/erase parallelism (PSIZE) = x 32	-	2	4		
		32-bit program operation	2.7	-	3.6	V	
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V	
		8-bit program operation	1.7	-	3.6	V	

Table 45. Flash memory programming

1. Guaranteed by characterization.

2. The maximum programming time is measured after 100K erase operations.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	1.750	-	s

Tuble 40. Thas memory programming with typ voltage (continued)						
Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{prog}	Programming voltage		2.7	-	3.6	V
V _{PP}	V _{PP} voltage range		7	-	9	V
I _{PP}	Minimum current sunk on the V_{PP} pin		10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V _{PP} is applied		-	-	1	hour

Table 46. Flash memory programming with V_{PP} voltage (continued)

1. Guaranteed by design.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value	Unit
Symbol	Farameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	

Table 47. Flash memory endurance and data retention

1. Guaranteed by characterization.

2. Cycling performed over the whole temperature range.

6.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 25/84 MHz	Unit
			0.1 to 30 MHz	-6	
6	MI Peak level	V_{DD} = 3.3 V, T _A = 25 °C, conforming to	30 to 130 MHz	-6	dBµV
S _{EMI}		IEC61967-2	130 MHz to 1 GHz	-10	
			SAE EMI Level	1.5	-

Table 49. EMI characteristics for WLCSP49

Table 50. EMI characteristics for LQFP100

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 25/84 MHz	Unit
			0.1 to 30 MHz	18	
S	Deals lavel	V_{DD} = 3.3 V, T _A = 25 °C, conforming to	30 to 130 MHz	23	dBµV
S _{EMI}	Peak level	IEC61967-2	130 MHz to 1 GHz	12	
			SAE EMI Level	3.5	-

6.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

٦

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 61* for the SPI interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master mode, SPI1/4, 2.7 V < V _{DD} < 3.6 V			42	
		Slave mode, SPI1/4, 2.7 V < V _{DD} < 3.6 V			42	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave transmitter/full-duplex mode, SPI1/4, 2.7 V < V_{DD} < 3.6 V	-	-	38 ⁽²⁾	MHz
		Master mode, SPI1/2/3/4, 1.7 V < V _{DD} < 3.6 V			21	
		Slave mode, SPI1/2/3/4, 1.7 V < V _{DD} < 3.6 V			21	
Duty(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, SPI presc = 2	T _{PCLK} -1.5	T _{PCLK}	T _{PCLK} +1.5	ns
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2T _{PCLK}	-	-	ns
t _{su(MI)}	Data input setup time	Master mode	0	-	-	ns
t _{su(SI)}		Slave mode	2.5	-	-	ns
t _{h(MI)}	Data input hold time	Master mode	6	-	-	ns
t _{h(SI)}	Bata input noid time	Slave mode	2.5	-	-	ns
t _{a(SO})	Data output access time	Slave mode	9	-	20	ns
t _{dis(SO)}	Data output disable time	Slave mode	8	-	13	ns
+	Data autaut valid tima	Slave mode (after enable edge), 2.7 V < V_{DD} < 3.6 V	-	9.5	13	ns
t _{v(SO)}	Data output valid time	Slave mode (after enable edge), 1.7 V < V_{DD} < 3.6 V	-	9.5	17	ns
t (ac)	Data output hold time	Slave mode (after enable edge), 2.7 V < V _{DD} < 3.6 V	5.5	-	-	ns
t _{h(SO)}		Slave mode (after enable edge), 1.7 V < V _{DD} < 3.6 V	3.5	-	-	ns

Table 01. SFT uynannic characteristics	Table 61.	SPI d	ynamic	characteristics ⁽¹⁾
--	-----------	-------	--------	--------------------------------

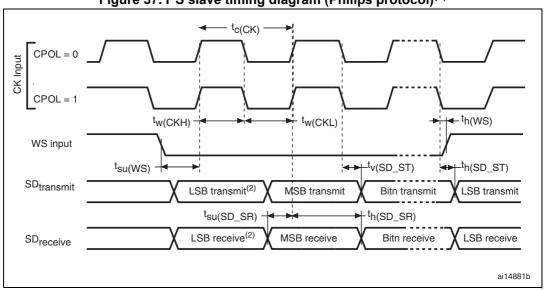
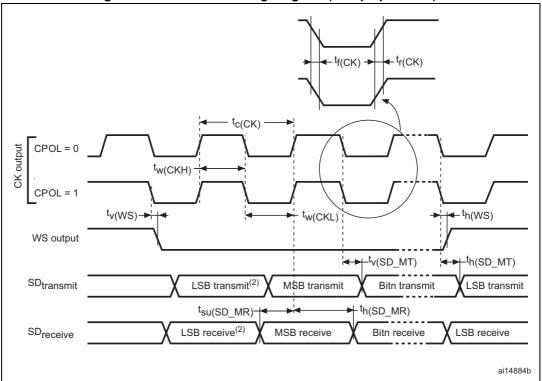



Figure 37. I²S slave timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 38. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

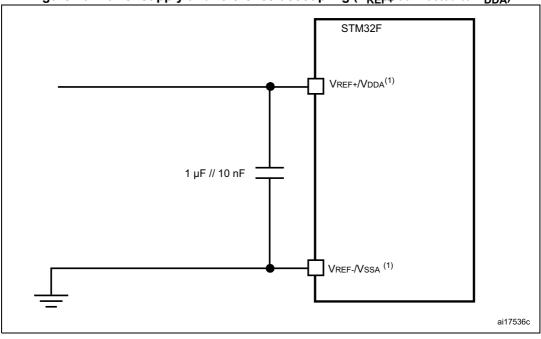


Figure 43. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

 V_{REF+} and V_{REF-} inputs are both available on UFBGA100. V_{REF+} is also available on LQFP100. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} . 1.

6.3.21 **Temperature sensor characteristics**

Table 72.	Temperature	sensor	characteristics
-----------	-------------	--------	-----------------

Symbol	Parameter		Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5	-	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} ⁽²⁾	Startup time	-	6	10	μs
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

1. Guaranteed by characterization.

2. Guaranteed by design.

	Table 73. Temperature sensor calibration values				
ol	Parameter	Memory add			

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V_{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F

······································				
Dimension	Recommended values			
Pitch	0.4 mm			
Dpad	260 μm max. (circular) 220 μm recommended			
Dsm	300 μm min. (for 260 μm diameter pad)			
PCB pad design	Non-solder mask defined via underbump allowed			

 Table 80. WLCSP49 recommended PCB design rules (0.4 mm pitch)

WLCSP49 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

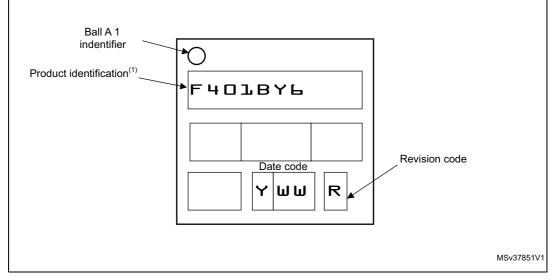
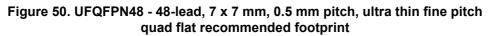
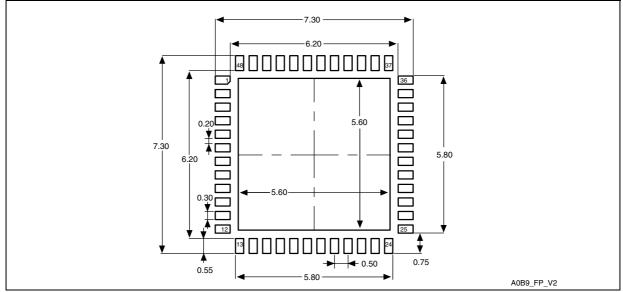


Figure 48. WLCSP49 marking example (package top view)

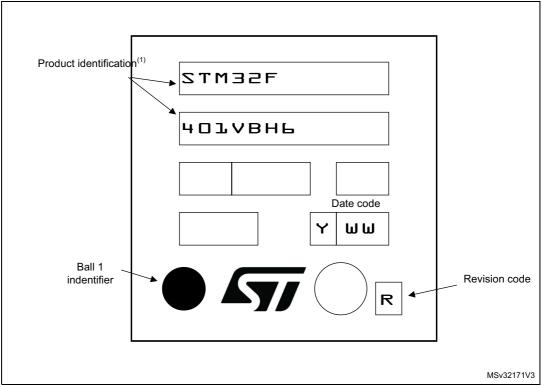

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



quad flat package mechanical data (continued)							
Symbol	millimeters			inches ⁽¹⁾			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
Т	-	0.152	-	-	0.0060	-	
b	0.200	0.250	0.300	0.0079	0.0098	0.0118	
е	-	0.500	-	-	0.0197	-	
ddd	-	-	0.080	-	-	0.0031	

Table 81. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitchquad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.


1. Dimensions are in millimeters.

UFBGA100 device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which depend on supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

