E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	84MHz
Connectivity	I ² C, IrDA, LINbus, SDIO, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f401vct7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

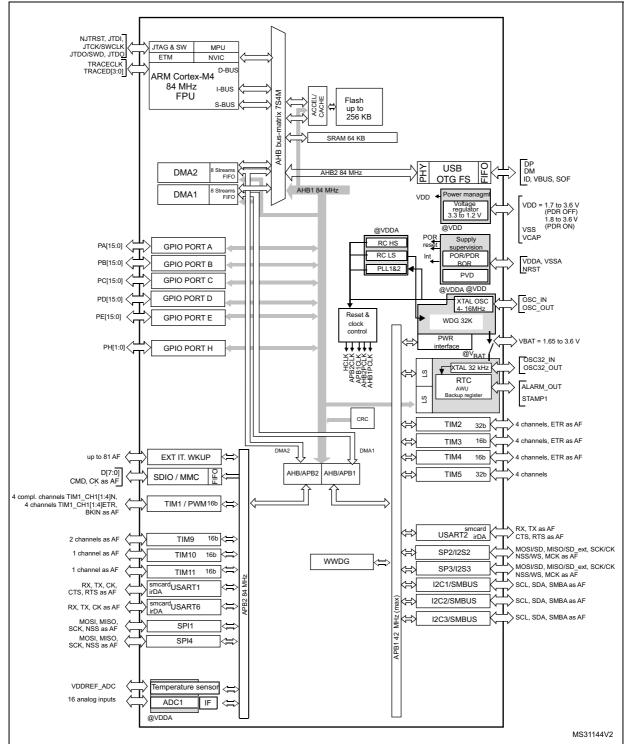


Figure 3. STM32F401xB/STM32F401xC block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 84 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 42 MHz.

3 Functional overview

3.1 ARM[®] Cortex[®]-M4 with FPU core with embedded Flash and SRAM

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F401xB/STM32F401xC devices are compatible with all ARM tools and software.

Figure 3 shows the general block diagram of the STM32F401xB/STM32F401xC.

Note: Cortex[®]-M4 with FPU is binary compatible with Cortex[®]-M3.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 105 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 256-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 84 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.15.3 Regulator ON/OFF and internal power supply supervisor availability

Package	Regulator ON	Regulator OFF	Power supply supervisor ON	Power supply supervisor OFF
UFQFPN48	Yes	No	Yes	No
WLCSP49	Yes	No	Yes PDR_ON set to VDD	Yes PDR_ON external control ⁽¹⁾
LQFP64	Yes	No	Yes	No
LQFP100	Yes	No	Yes	No
UFBGA100	Yes BYPASS_REG set to VSS	Yes BYPASS_REG set to VDD	Yes PDR_ON set to VDD	Yes PDR_ON external control ⁽¹⁾

Table 3. Regulator ON/OFF and internal power supply supervisor availability

1. Refer to Section 3.14: Power supply supervisor

3.16 Real-time clock (RTC) and backup registers

The backup domain includes:

- The real-time clock (RTC)
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC features a reference clock detection, a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The backup registers are 32-bit registers used to store 80 bytes of user application data when V_{DD} power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.17: Low-power modes).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

DocID024738 Rev 6

USART name	Standard features	Modem (RTS/CTS)	LIN	SPI master	irDA	Smartcard (ISO 7816)	Max. baud rate in Mbit/s (oversampling by 16)	Max. baud rate in Mbit/s (oversampling by 8)	APB mapping
USART1	х	х	х	х	х	х	5.25	10.5	APB2 (max. 84 MHz)
USART2	х	х	х	х	х	х	2.62	5.25	APB1 (max. 42 MHz)
USART6	х	N.A	х	х	х	х	5.25	10.5	APB2 (max. 84 MHz)

 Table 6. USART feature comparison

3.22 Serial peripheral interface (SPI)

The devices feature up to four SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1 and SPI4 can communicate at up to 42 Mbit/s, SPI2 and SPI3 can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.

The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.23 Inter-integrated sound (I²S)

Two standard I^2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be operated in master or slave mode, in full duplex and simplex communication modes and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I^2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

All I²Sx can be served by the DMA controller.

3.24 Audio PLL (PLLI2S)

The devices feature an additional dedicated PLL for audio I²S application. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance.

The PLLI2S configuration can be modified to manage an I^2S sample rate change without disabling the main PLL (PLL) used for the CPU.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 kHz to 192 kHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S flow with an external PLL (or Codec output).

DocID024738 Rev 6

Name	Abbreviation	Definition						
Pin name	e Unless otherwise specified in brackets below the pin name, the pin function during and afte reset is the same as the actual pin name							
	S	Supply pin						
Pin type	I	Input only pin						
	I/O	Input/ output pin						
	FT	5 V tolerant I/O						
I/O structure	В	Dedicated BOOT0 pin						
	NRST	Bidirectional reset pin with embedded weak pull-up resistor						
Notes	Unless otherwise	specified by a note, all I/Os are set as floating inputs during and after reset						
Alternate functions	Functions selected	Functions selected through GPIOx_AFR registers						
Additional functions	Eulerions directly selected/enabled through peripheral registers							

Table 7. Legend/abbreviations used in the pinout table

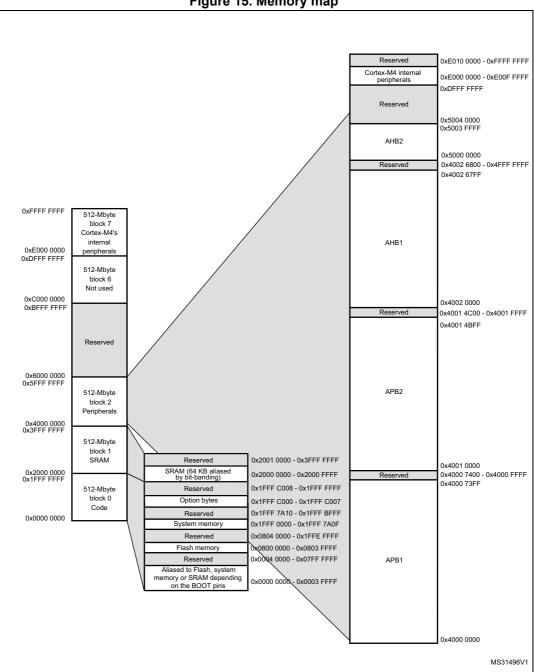
Table 8. STM32F401xB/STM32F401xC pin definitions

	Pin	Nur	nber				e			
UQFN48	WLCSP49	LQFP64	LQFP100	UFBGA100	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure			Additional functions
-	-	-	1	B2	PE2	I/O	FT	-	SPI4_SCK, TRACECLK, EVENTOUT	-
-	-	-	2	A1	PE3	I/O	FT	-	TRACED0, EVENTOUT	-
-	-	-	3	B1	PE4	I/O	FT - SPI4_NSS, TRACED1, EVENTOUT			-
-	-	-	4	C2	PE5	I/O	FT	-	SPI4_MISO, TIM9_CH1, TRACED2, EVENTOUT	-
-	-	-	5	D2	PE6	I/O	FT	-	SPI4_MOSI, TIM9_CH2, TRACED3, EVENTOUT	-
-	-	-	-	D3	VSS	S	-	-	-	-
-	-	-	-	C4	VDD	S	-	-	-	-
1	B7	1	6	E2	VBAT	S	-	-	-	-
2	D5	2	7	C1	PC13	I/O	FT	(2) (3)	EVENTOUT,	RTC_TAMP1, RTC_OUT, RTC_TS

46/135

	Devit	AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
	PC0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC2	-	-	-	-	-	SPI2_ MISO	I2S2ext_SD	-	-	-	-	-	-	-	-	EVENT OUT
	PC3	-	-	-	-	-	SPI2_MOSI /I2S2_SD	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC6	-		TIM3_CH1	-	-	I2S2_MCK	-	-	USART6_ TX	-	-	-	SDIO_ D6	-	-	EVENT OUT
C	PC7	-		TIM3_CH2	-	-	-	I2S3_MCK	-	USART6_ RX	-	-	-	SDIO_ D7	-	-	EVENT OUT
Port C	PC8	-	-	TIM3_CH3	-	-	-	-	-	USART6_ CK	-	-	-	SDIO_ D0	-	-	EVENT OUT
	PC9	MCO_2	-	TIM3_CH4	-	I2C3_SDA	I2S_CKIN	-	-	-	-	-	-	SDIO_ D1	-	-	EVENT OUT
	PC10	-	-	-	-	-	-	SPI3_SCK/ I2S3_CK	-	-	-	-	-	SDIO_ D2	-	-	EVENT OUT
	PC11	-	-	-	-	-	I2S3ext_ SD	SPI3_MISO	-	-	-	-	-	SDIO_ D3	-	-	EVENT OUT
	PC12	-	-	-	-	-	-	SPI3_MOSI/ I2S3_SD	-	-	-	-	-	SDIO_ CK	-	-	EVENT OUT
	PC13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
	PC15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

 Table 9. Alternate function mapping (continued)


Pinouts and pin description

STM32F401xB STM32F401xC

	Table 9. Alternate function mapping (continued)																
		AF00	AF01	AF02	AF03	AF04	AF05	AF06	AF07	AF08	AF09	AF10	AF11	AF12	AF13	AF14	AF15
	Port	SYS_AF	TIM1/TIM2	TIM3/ TIM4/ TIM5	TIM9/ TIM10/ TIM11	I2C1/I2C2/ I2C3	SPI1/SPI2/ I2S2/SPI3/ I2S3/SPI4	SPI2/I2S2/ SPI3/ I2S3	SPI3/I2S3/ USART1/ USART2	USART6	12C2/ 12C3	OTG1_FS		SDIO			
Η		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
Por	PH1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

Memory mapping 5

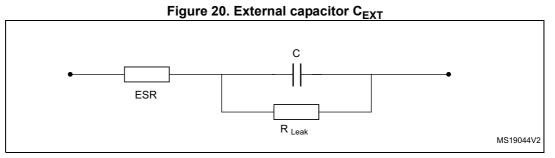
The memory map is shown in *Figure 15*.

Bus	Boundary address	Peripheral
	0xE010 0000 - 0xFFFF FFFF	Reserved
Cortex [®] -M4	0xE000 0000 - 0xE00F FFFF	Cortex-M4 internal peripherals
	0x5004 0000 - 0xDFFF FFFF	Reserved
AHB2	0x5000 0000 - 0x5003 FFFF	USB OTG FS
	0x4002 6800 - 0x4FFF FFFF	Reserved
	0x4002 6400 - 0x4002 67FF	DMA2
	0x4002 6000 - 0x4002 63FF	DMA1
	0x4002 5000 - 0x4002 4FFF	Reserved
	0x4002 3C00 - 0x4002 3FFF	Flash interface register
	0x4002 3800 - 0x4002 3BFF	RCC
	0x4002 3400 - 0x4002 37FF	Reserved
AHB1	0x4002 3000 - 0x4002 33FF	CRC
ALIBT	0x4002 2000 - 0x4002 2FFF	Reserved
	0x4002 1C00 - 0x4002 1FFF	GPIOH
	0x4002 1400 - 0x4002 1BFF	Reserved
	0x4002 1000 - 0x4002 13FF	GPIOE
	0x4002 0C00 - 0x4002 0FFF	GPIOD
	0x4002 0800 - 0x4002 0BFF	GPIOC
	0x4002 0400 - 0x4002 07FF	GPIOB
	0x4002 0000 - 0x4002 03FF	GPIOA

Table 10. STM32F401xB/STM32F401xC register boundary addresses

Bus	Boundary address	Peripheral
	0x4000 7000 - 0x4000 73FF	PWR
	0x4000 6000 - 0x4000 6FFF	Reserved
	0x4000 5C00 - 0x4000 5FFF	I2C3
	0x4000 5800 - 0x4000 5BFF	I2C2
	0x4000 5400 - 0x4000 57FF	I2C1
	0x4000 4800 - 0x4000 53FF	Reserved
	0x4000 4400 - 0x4000 47FF	USART2
	0x4000 4000 - 0x4000 43FF	I2S3ext
	0x4000 3C00 - 0x4000 3FFF	SPI3 / I2S3
APB1	0x4000 3800 - 0x4000 3BFF	SPI2 / I2S2
	0x4000 3400 - 0x4000 37FF	I2S2ext
	0x4000 3000 - 0x4000 33FF	IWDG
	0x4000 2C00 - 0x4000 2FFF	WWDG
	0x4000 2800 - 0x4000 2BFF	RTC & BKP Registers
	0x4000 1000 - 0x4000 27FF	Reserved
	0x4000 0C00 - 0x4000 0FFF	TIM5
	0x4000 0800 - 0x4000 0BFF	TIM4
	0x4000 0400 - 0x4000 07FF	TIM3
	0x4000 0000 - 0x4000 03FF	TIM2

Table 10. STM32F401xB/STM32F401xC register boundary addresses (continued)


Electrical characteristics

- 1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.
- 2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.
- 3. Refer to *Table 56: I/O AC characteristics* for frequencies vs. external load.
- V_{DD}/V_{DDA} minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.14.2: Internal reset OFF).
- 5. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
- The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

6.3.2 VCAP_1/VCAP_2 external capacitors

Stabilization for the main regulator is achieved by connecting 2 external capacitor C_{EXT} to the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT capacitors are replaced by a single capacitor.

C_{EXT} is specified in *Table 16*.

1. Legend: ESR is the equivalent series resistance.

Table 16. VCAP_1/VCAP_2 operating conditions⁽¹⁾

Symbol	Parameter	Conditions
CEXT	Capacitance of external capacitor with available VCAP_1 and VCAP_2 pins	2.2 µF
ESR	ESR of external capacitor with available VCAP_1 and VCAP_2 pins	< 2 Ω

1. When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

6.3.3 Operating conditions at power-up/power-down (regulator ON)

Subject to general operating conditions for T_A.

Table 17. Operating conditions at power-up / power-down (regulator ON)

Symbol	Parameter	Min	Мах	Unit
t _{VDD}	V _{DD} rise time rate	20	∞	us/V
	V _{DD} fall time rate	20	8	μ5/ ν

6.3.8 External clock source characteristics

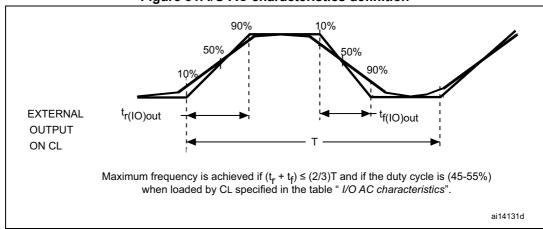
High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 54*. However, the recommended clock input waveform is shown in *Figure 22*.

The characteristics given in *Table 35* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	50	MHz		
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	V		
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v		
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns		
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	10	115		
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾		-	5	-	pF		
DuCy _(HSE)	Duty cycle		45	-	55	%		
ΙL	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA		

Table 35. High-speed external user clock characteristics


1. Guaranteed by design.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the *Table 54*. However, the recommended clock input waveform is shown in *Figure 23*.

The characteristics given in *Table 36* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 14*.

6.3.17 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 54*).

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 14*. Refer to *Table 54: I/O static characteristics* for the values of VIH and VIL for NRST pin.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse		-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 57. NRST pin characteristics

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design.

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 62* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 14*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	MHz
f	128 clock frequency	Master data: 32 bits	-	64xFs	MHz
f _{СК}	I2S clock frequency	Slave data: 32 bits	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	0	6	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	1	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	7.5	-	
t _{su(SD_SR)}		Slave receiver	2	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	0	-	
t _{h(SD_SR)}	Data input hold time	Slave receiver	0	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	27	
t _{h(SD_ST)} t _{v(SD_MT)}	Data output valid time	Master transmitter (after enable edge)	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	2.5	-	

Table 62. I ² S of	dynamic characteristics ⁽¹⁾
-------------------------------	--

1. Guaranteed by characterization.

2. The maximum value of 256xFs is 42 MHz (APB1 maximum frequency).

Note:

Refer to the I2S section of the reference manual for more details on the sampling frequency (F_{S}) .

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

Equation 1: R_{AIN} max formula

$$R_{AIN} = \frac{(k-0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error	f 40 MUL	±3	±4	
EO	Offset error	f _{ADC} =18 MHz V _{DDA} = 1.7 to 3.6 V V _{REF} = 1.7 to 3.6 V V _{DDA} -V _{REF} < 1.2 V	±2	±3	
EG	Gain error		±1	±3	LSB
ED	Differential linearity error		±1	±2	
EL	Integral linearity error		±2	±3	

1. Guaranteed by characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	$ f_{ADC} = 30 \text{ MHz}, \\ R_{AIN} < 10 \text{ k}\Omega, \\ V_{DDA} = 2.4 \text{ to } 3.6 \text{ V}, \\ V_{REF} = 1.7 \text{ to } 3.6 \text{ V}, \\ V_{DDA} - V_{REF} < 1.2 \text{ V} $	±1.5	±2.5	
EG	Gain error		±1.5	±3	LSB
ED	Differential linearity error		±1	±2	
EL	Integral linearity error		±1.5	±3	

Table 68. ADC accuracy at f_{ADC} = 30 MHz

1. Guaranteed by characterization.

Table 69. ADC accuracy at f_{ADC} = 36 MHz

Symbol	Parameter	Test conditions	Тур	Max ⁽¹⁾	Unit
ET	Total unadjusted error		±4	±7	
EO	Offset error	f _{ADC} =36 MHz, V _{DDA} = 2.4 to 3.6 V, V _{REF} = 1.7 to 3.6 V V _{DDA} –V _{REF} < 1.2 V	±2	±3	
EG	Gain error		±3	±6	LSB
ED	Differential linearity error		±2	±3	
EL	Integral linearity error		±3	±6	

1. Guaranteed by characterization.

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output characteristics.

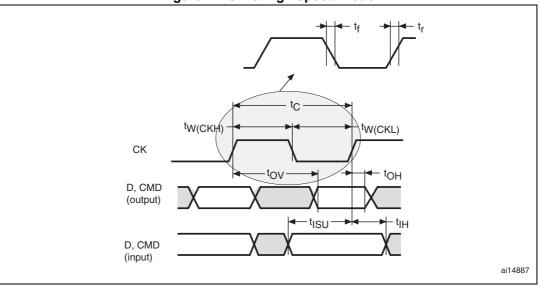
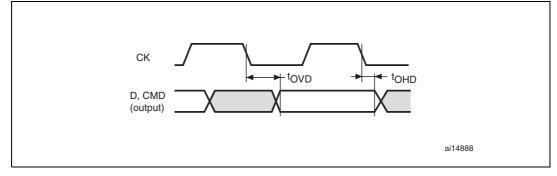



Figure 44. SDIO high-speed mode

Figure 45. SD default mode

Table 77. Dynamic characteristics: SD / MMC characteristics⁽¹⁾⁽²⁾

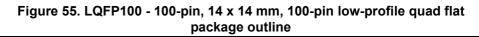
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PP}	Clock frequency in data transfer mode		0	-	48	MHz
-	SDIO_CK/fPCLK2 frequency ratio		-	-	8/3	-
t _{W(CKL)}	Clock low time	fpp = 48MHz	8.5	9	-	
t _{W(CKH)}	Clock high time	fpp = 48MHz	8.3	10	-	– ns
CMD, D inp	outs (referenced to CK) in MMC and SE) HS mode				
t _{ISU}	Input setup time HS	fpp = 48MHz	3.5	-	-	
t _{IH}	Input hold time HS	fpp = 48MHz	0	-	-	– ns
CMD, D ou	tputs (referenced to CK) in MMC and S	SD HS mode		•	•	
t _{OV}	Output valid time HS	fpp = 48MHz	-	4.5	7	20
	Output hold time HS	fpp = 48MHz	3		1	ns

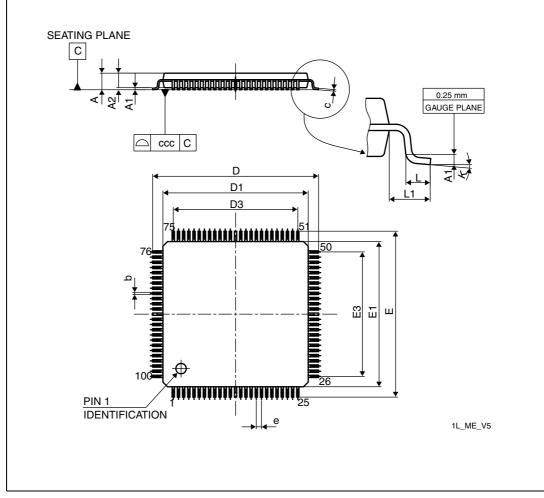
				- (in a ca,		
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
CMD, D inputs (referenced to CK) in SD default mode							
t _{ISUD}	Input setup time SD	fpp = 24MHz	1.5	-	-		
t _{IHD}	Input hold time SD	fpp = 24MHz	0.5	-	-	ns	
CMD, D out	CMD, D outputs (referenced to CK) in SD default mode						
t _{OVD}	Output valid default time SD	fpp =24MHz	-	4.5	6.5		
t _{OHD}	Output hold default time SD	fpp =24MHz	3.5	-	-	ns	

Table 77. Dynamic characteristics: SD / MMC characteristics⁽¹⁾⁽²⁾ (continued)

1. Guaranteed by characterization results.

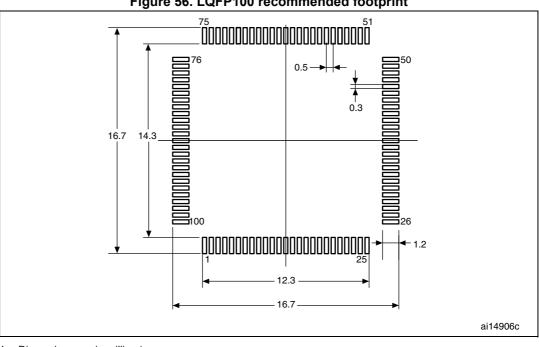
2. V_{DD} = 2.7 to 3.6 V.


6.3.25 RTC characteristics


Table 78. RTC characteristics

Symbol	Parameter	Conditions	Min	Max
-	f _{PCLK1} /RTCCLK frequency ratio	Any read/write operation from/to an RTC register	4	-

7.4 LQFP100 package information


1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	1.60	-	-	0.063
A1	0.050	-	0.150	0.002	-	0.0059
A2	1.350	1.40	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.622	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.622	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
К	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	0.080			0.0031		

Table 83. LQPF100- 100-pin, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 56. LQFP100 recommended footprint

1. Dimensions are in millimeters.

9 Revision history

Date	Revision	Changes	
23-Jul-2013	1	Initial release.	
06-Sep-2013	2	Updated product status to production data Added I2C 1 MBit/s in <i>Features</i> Updated <i>Figure 1: Compatible board design for LQFP100 package</i> Added notes and revised the main function after reset columnn <i>Table 8: STM32F401xB/STM32F401xC pin definitions</i> . Replaced 'I2S2_CKIN' signal name with 'I2S_CKIN' and added EVENTOUT alternate function in <i>Table 8:</i> <i>STM32F401xB/STM32F401xC pin definitions</i> and <i>Table 9: Alternate</i> <i>function mapping</i> Updated <i>Section 3.28: Analog-to-digital converter (ADC)</i> Updated the reference of V _{ESD(CDM)} in <i>Table 51: ESD absolute</i> <i>maximum ratings</i> Updated <i>Section 3.20: Inter-integrated circuit interface (I2C)</i> , including <i>Table 5: Comparison of I2C analog and digital filters</i> Removed first sentence ("Unless otherwise specified") in <i>I2C</i> <i>interface characteristics</i> Changed the order of the tables in <i>Section 6.3.6: Supply current</i> <i>characteristics</i> Modified the "SDA and SCL rise time" fast mode I2C minimum value in <i>Table 59: I²C characteristics</i> Updated <i>Figure 33: I²C bus AC waveforms and measurement circuit</i> and <i>Table 60: SCL frequency (f_{PCLK1}= 42 MHz, V_{DD} = V_{DD_12C} = 3.3 V)</i> Replaced "Marking of engineering samples" sections with "Marking of samples" sections, and added <i>UFBGA100 device marking</i> section for package UFGBA100 in <i>Section 7: Package information</i>	
08-Nov-2013	3	Updated UFBGA100 in <i>Table 86: Package thermal characteristics</i> . Changed WLCSP49 package measurements to 3 x 3 mm in <i>Section 7.1</i> .	

Table 88. Document revision history

