

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, SCI, SPI, USB OTG
Peripherals	LVD, PWM, WDT
Number of I/O	69
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	104-LFBGA
Supplier Device Package	104-MAPBGA (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51je256cml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. MCF51JE256/128	Functional Units
-------------------------	-------------------------

Unit	Function
DAC (digital to analog converter)	Used to output voltage levels.
12-BIT SAR ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution. The ADC has up to 12 single-ended inputs.
PDB (Programmable Delay Block)	Precisely trigger the DAC FIFO buffer.
Mini-FlexBus	Provides expansion capability for off-chip memory and peripherals.
USB On-the-Go	Supports the USB On-the-Go dual-role controller.
CMT (Carrier Modulator Timer)	Infrared output used for the Remote Controller operation.
MCG (Multipurpose Clock Generator)	Provides clocking options for the device, including a phase-locked loop (PLL) and frequency-locked loop (FLL) for multiplying slower reference clock sources.
BDM (Background Debug Module)	Provides single pin debugging interface (part of the V1 ColdFire core).
CF1 CORE (V1 ColdFire Core)	Executes programs and interrupt handlers.
PRACMP	Analog comparators for comparing external analog signals against each other, or a variety of reference levels.
COP (Computer Operating Properly)	Software Watchdog.
IRQ (Interrupt Request)	Single-pin high-priority interrupt (part of the V1 ColdFire core).
CRC (Cyclic Redundancy Check)	High-speed CRC calculation.
DBG (Debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core).
FLASH (Flash Memory)	Provides storage for program code, constants, and variables.
IIC (Inter-integrated Circuits)	Supports standard IIC communications protocol and SMBus.
INTC (Interrupt Controller)	Controls and prioritizes all device interrupts.
KBI1 & KBI2	Keyboard Interfaces 1 and 2.
LVD (Low-voltage Detect)	Provides an interrupt to the ColdFire V1 CORE in the event that the supply voltage drops below a critical value. The LVD can also be programmed to reset the device upon a low voltage event.
VREF (Voltage Reference)	The Voltage Reference output is available for both on- and off-chip use.
RAM (Random-Access Memory)	Provides stack and variable storage.
RGPIO (Rapid General-purpose Input/output)	Allows for I/O port access at CPU clock speeds. RGPIO is used to implement GPIO functionality.
SCI1, SCI2 (Serial Communications Interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols.
SIM (system integration unit)	

2.3 81-Pin MAPBGA

The following figure shows the 81-pin MAPBGA pinout configuration.

	1	2	3	4	5	6	7	8	9	
A	IRO	PTG0	PTF6	USB_DP	VBUS	VUSB33	PTF4	PTF3	PTE4	A
в	PTF7	PTA0	PTG1	USB_DM	PTF5	PTE7	PTF1	PTF0	PTE3	в
с	PTA4	PTA5	PTA6	PTA1	PTF2	PTE6	PTE5	PTE2	PTE1	с
D		PTA7	PTB0	PTB1	PTA2	PTA3	PTD5	PTD7	PTE0	D
E				VDD2	VDD3	VDD1	PTD2	PTD3	PTD6	E
F		ADP2		VSS2	VSS3	VSS1	PTB7	PTC7	PTD4	F
G	ADP0	DACO	ADP3		VREFO	PTB6	PTC0	PTC1	PTC2	G
н			ADP1		PTC3	PTC4	PTD0	PTC5	PTC6	н
J	VSSA	VREFL	VREFH	VDDA	PTB2	PTB3	PTD1	PTB4	PTB5	J
	1	2	3	4	5	6	7	8	9	_

Figure 4. 81-Pin MAPBGA

Pinouts and Pin Assignments

2.4 80-Pin LQFP

The following figure shows the 80-pin LQFP pinout configuration.

Figure 5. 80-Pin LQFP Pinout

Pinouts and Pin Assignments

	Package							
104 MAPB GA	100 LQFP	81 MAPB GA	80 LQFP	Default Function	Alternate 1	Alternate 2	Alternate 3	Composite Pin Name
L5	35	J3	30	VREFH	—	_	—	VREFH
L6	36	J4	31	VDDA	—	_	—	VDDA
H6	37	F4	32	VSS2	<u> </u>	_	—	VSS2
L8	38	J5	33	PTB2	EXTAL1	_	—	PTB2/EXTAL1
L7	39	J6	34	PTB3	XTAL1	_	—	PTB3/XTAL1
D6	40	E4	35	VDD2	—	_	—	VDD2
L11	41	J8	36	PTB4	EXTAL2	_	—	PTB4/EXTAL2
L10	42	J9	37	PTB5	XTAL2	_	—	PTB5/XTAL2
K5	43	G6	38	PTB6	KBI1P3	RGPIOP0	FB_AD17	PTB6/KBI1P3/RGPIOP0/ FB_AD17
K6	44	F7	39	PTB7	KBI1P4	RGPIOP1	FB_AD0	PTB7/KBI1P4/RGPIOP1/ FB_AD0
J7	45		_	PTH2	RGPIOP2	FB_D7	—	PTH2/RGPIOP2/FB_D7
J6	46		_	PTH3	RGPIOP3	FB_D6	—	PTH3/RGPIOP3/FB_D6
J5	47		_	PTH4	RGPIOP4	FB_D5	—	PTH4/RGPIOP4/FB_D5
K4	48		_	PTH5	RGPIOP5	FB_D4	—	PTH5/RGPIOP5/FB_D4
J4	49		_	PTH6	RGPIOP6	FB_D3	—	PTH6/RGPIOP6/FB_D3
J3	50		_	PTH7	RGPIOP7	FB_D2	—	PTH7/RGPIOP7/FB_D2
J10	51	G7	40	PTC0	MOSI2	FB_OE	FB_CS0	PTC0/MOSI2/FB_OE/ FB_CS0
J11	52	G8	41	PTC1	MISO2	FB_D0	FB_AD1	PTC1/MISO2/FB_D0/FB_AD1
J9	53	G9	42	PTC2	KBI1P5	SPSCK2	ADP6	PTC2/KBI1P5/SPSCK2/ADP6
K7	54	H5	43	PTC3	KBI1P6	SS2	ADP7	PTC3/KBI1P6/SS2/ADP7
K9	55	H6	44	PTC4	KBI1P7	CMPP0	ADP8	PTC4/KBI1P7/CMPP0/ADP8
K10	56	H8	45	PTC5	KBI2P0	CMPP1	ADP9	PTC5/KBI2P0/CMPP1/ADP9
K11	57	H9	46	PTC6	KBI2P1	PRACMPO	ADP10	PTC6/KBI2P1/PRACMPO/ ADP10
F8	58	F8	47	PTC7	KBI2P2	CLKOUT	ADP11	PTC7/KBI2P2/CLKOUT/ADP11
L9	59	H7	48	PTD0	BKGD	MS	—	PTD0/BKGD/MS
K8	60	J7	49	PTD1	CMPP2	RESET	—	PTD1/CMPP2/RESET
H11	61	E7	50	PTD2	USB_ALTCL K	RGPIOP8	TPM1CH0	PTD2/USB_ALTCLK/RGPIOP8/ TPM1CH0
H10	62	E8	51	PTD3	USB_PULL UP(D+)	RGPIOP9	TPM1CH1	PTD3/USB_PULLUP(D+)/ RGPIOP9/TPM1CH1
H9	63	F9	52	PTD4	SDA	RGPIOP10	TPM1CH2	PTD4/SDA/RGPIOP10/ TPM1CH2
G9	64	D7	53	PTD5	SCL	RGPIOP11	TPM1CH3	PTD5/SCL/RGPIOP11/ TPM1CH3
J8	65	E9	54	PTD6	USB_ALTCL K	TX1	_	PTD6/USB_ALTCLK/TX1

Table 3. Package Pin Assignments (continued)

#	Symbol	Rating		Value	Unit
		Operating temperature range (packag	ged):		
1	т				°C
	١A		MCF51JE256	-40 to 105	
			MCF51JE128	-40 to 105	
2	T _{JMAX}	Maximum junction temperature		135	°C
		Thermal resistance ^{1,2,3,4} Single-laye	r board — 1s		
	θ_{JA}		104-pin MBGA	67	
3			100-pin LQFP	53	°C/W
			81-pin MBGA	67	
			80-pin LQFP	53	
		Thermal resistance ^{1, 2, 3, 4} Four-laye	r board — 2s2p		
			104-pin MBGA	39	
4	θ_{JA}		100-pin LQFP	41	°C/W
			81-pin MBGA	39	
			80-pin LQFP	39	

Table 6. Thermal Characteristics

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction to Ambient Natural Convection

³ 1s — Single layer board, one signal layer

⁴ 2s2p — Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

 T_A = Ambient temperature, °C θ_{JA} = Package thermal resistance, junction-to-ambient, °C/W $P_D = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.4 ESD Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	Number of Pulse per pin		3	_
	Series Resistance	R1	0	Ω
Machine	Storage Capacitance	С	200	pF
	Number of Pulse per pin	—	3	_
	Minimum input voltage limit	—	-2.5	V
Laton-up	Maximum input voltage limit	_	7.5	V

Table 7. ESD and Latch-up Test Conditions

Table 8. ESD and Latch-Up Protection Characteristics

#	Rating	Symbol	Minimum	Maximum	Unit	С
1	Human Body Model (HBM)	V _{HBM}	±2000	—	V	Т
2	Machine Model (MM)	V _{MM}	±200	—	V	Т
3	Charge Device Model (CDM)	V _{CDM}	±500	—	V	Т
4	Latch-up Current at T _A = 125°C	I _{LAT}	±100	—	mA	Т

3.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

#	Symbol	Ch	aracteristic	Condition	Minimum	Typical ¹	Maximum	Unit	С
11	R _{PU}	Pull-up resistors	all digital inputs, when enabled	_	17.5	_	52.5	kΩ	Р
12	R _{PD}	Internal pull-down resistors ⁴		_	17.5	_	52.5	kΩ	Р
13		DC injection	Single pin limit	$V_{SS} > V_{IN} > V_{DD}$	-0.2	—	0.2	mA	
	I _{IC} current ^{5, 6,}	current ^{5, 6, 7}	Total MCU limit, includes sum of all stressed pins	$V_{SS} > V_{IN} > V_{DD}$	-5	_	5	mA	D
14	C _{In}	Input Capacitance	e, all pins	_	_	—	8	pF	С
15	V _{RAM}	RAM retention vo	ltage	_	_	0.6	1.0	V	С
16	V _{POR}	POR re-arm volta	nge ⁸	_	0.9	1.4	1.79	V	С
17	t _{POR}	POR re-arm time		_	10	—	_	μS	D
18	V _{LVDH}	Low-voltage dete	ction threshold — high rang	ge ⁹					
			-	V _{DD} falling	2.11	2.16	2.22	V	Ρ
			-	V _{DD} rising	2.16	2.21	2.27	V	Ρ
19	V _{LVDL}	Low-voltage dete	ction threshold — low rang	e ⁹					
			-	V _{DD} falling	1.80	1.82	1.91	V	Ρ
			-	V _{DD} rising	1.86	1.90	1.99	V	Ρ
20	V _{LVWH}	Low-voltage warr	ning threshold — high range	e ⁹					
			-	V_{DD} falling	2.36	2.46	2.56	V	Ρ
			-	V _{DD} rising	2.36	2.46	2.56	V	Ρ
21	V _{LVWL}	Low-voltage warr	ning threshold — low range	9	1				
			-	V _{DD} falling	2.11	2.16	2.22	V	Ρ
			-	V _{DD} rising	2.16	2.21	2.27	V	Ρ
22	V _{hys}	Low-voltage inhib hysteresis ¹⁰	it reset/recover	_	-	50	_	mV	С
23	V _{BG}	Bandgap Voltage	Reference ¹¹	_	1.145	1.17	1.195	V	Ρ

Table 9. DC Characteristics (continued)

¹ Typical values are measured at 25°C. Characterized, not tested ² As the supply voltage rises, the LVD circuit will hold the MCLL in

As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above V_{LVDL} .

³ Does not include analog module pins. Dedicated analog pins should not be pulled to VDD or VSS and should be left floating when not used to reduce current leakage.

⁴ Measured with $V_{In} = V_{DD}$.

 $^5\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}, except PTD1.

⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

#	Parameter	Condition	Temperature (°C)					Unite	C
	i arameter	Condition	-40	25	70	85	105	C	Ū
5	LVD ¹	LVDSE = 1	116	117	126	132	172	μΑ	Т
6	PRACMP ¹	Not using the bandgap (BGBE = 0)	17	18	24	35	74	μΑ	Т
7	ADC ¹	ADLPC = ADLSMP = 1 Not using the bandgap (BGBE = 0)	75	85	100	115	165	μΑ	Т
8	DAC ¹	High power mode; no load on DACO	500	500	500	500	500	μΑ	Т

Table 11. Stop Mode Adders (continued)

¹ Not available in stop2 mode.

Figure 6. Stop IDD versus Temperature

#	Symb	Characteristic	Conditions Minimum Typical ¹ Maximum L		Unit	С		
5	V _{REFL}	Ref Voltage Low	_	V _{SSAD}	V _{SSAD}	V _{SSAD}	V	D
6	V _{ADIN}	Input Voltage	—	V _{REFL}	_	V _{REFH}	V	D
7	C _{ADIN}	Input Capacitance	_	_	4	5	pF	С
8	R _{ADIN}	Input Resistance	—	—	2	5	kΩ	С
9	R _{AS}	Analog Source R	esistance ³					
			12 bit mode f _{ADCK} > 8 MHz	_	_	1	kΩ	С
			4 MHz < f _{ADCK} > 8 MHz	_	_	2	kΩ	С
			f _{ADCK} < 4 MHz	—	_	5	kΩ	С
			10-bit mode f _{ADCK} > 8MHz		_	2	kΩ	С
			4 MHz < f _{ADCK} < 8 MHz	_	_	5	kΩ	С
			f _{ADCK} < 4 MHz	—	—	10	kΩ	С
			8-bit mode f _{ADCK} > 8 MHz	_	_	5	kΩ	С
			f _{ADCK} < 8 MHz	—	—	10	kΩ	С
10	f _{ADCK}	ADC Conversion	Clock Freq.					
			High Speed (ADLPC=0, ADHSC=1)	1.0	_	8.0	MHz	D
			High Speed (ADLPC=0, ADHSC=0)	1.0	_	5.0	MHz	D
			Low Power (ADLPC=1, ADHSC=1)	1.0	_	2.5	MHz	D

Table 15. 12-bit ADC Operating Conditions (continued)

¹ Typical values assume V_{DDAD} = 3.0V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
 ² DC potential difference.

³ External to MCU. Assumes ADLSMP=0.

Table 16. 12-	bit SAR	ADC C	Characteri	stics fu	ull ope	rating	range
	<u>/\/</u>	_ V	v	_ V	``		

#	Symbol	Characteristic	Conditions ¹	Minimum	Typical ²	Maximum	Unit	С	
			ADLPC=1, ADHSC=0	_	215	_	μΑ	Т	
1	1	Supply Current	ADLPC=0, ADHSC=0	_	470		μΑ	Т	
1	'DDAD	ADCO=1)	ADLPC=0, ADHSC=1	_	610	_	μΑ	Т	
			Stop, Reset, Module Off	—	0.01	_	μΑ	С	
		ADC	ADLPC=1, ADHSC=0	—	2.4	_	MHz	Ρ	
2	f _{adack}	Asynchronous Clock Source	ADLPC=0, ADHSC=0	_	5.2	_	MHz	Ρ	
	(t _{ADACK} =1/f _{ADACK})		ADLPC=0, ADHSC=1	_	6.2	_	MHz	Ρ	
3	—	Sample Time — S	Sample Time — See Reference Manual for sample til						
4	—	Conversion Time	— See Rreference Manual for c	conversion t	imes.				
		Total Unadjusted	12-bit single-ended mode	—	±1.75	±3.5	LSB ³	Т	
5	тис	Error 32x Hardware	10-bit single-ended mode	—	±0.8	±1.5	LSB ³	Т	
5 IUE		Averaging (AVGE = %1 AVGS = %11)	8-bit single-ended mode	_	±0.5	±1.0	LSB ³	т	
			12-bit single-ended mode	_	±0.7	±1	LSB ³	Т	
6		Differential Non-Linearity	10-bit single-ended mode	_	±0.5	±0.75	LSB ³	Т	
			Non-Linearity	8-bit single-ended mode	—	±0.2	±0.5	LSB ³	Т

 $(V_{REFH} = V_{DDAD}, V_{REFL} = V_{SSAD})$

#	Chara	Characteristic			Typical ¹	Maximum	Unit	
		• Low range (RANGE = 0)	f _{lo}	32	_	38.4	kHz	
		 High range (RANGE = 1), FEE or FBE mode ² 	f _{hi-fll}	1	_	5	MHz	
1	Oscillator crystal or resonator	 High range (RANGE = 1), PEE or PBE mode ³ 	f _{hi-pll}	1	_	16	MHz	
	(EREFS = 1, ERCLKEN = 1)	 High range (RANGE = 1), High gain (HGO = 1), FBELP mode 	f _{hi-hgo}	1		16	MHz	
		 High range (RANGE = 1), Low power (HGO = 0), FBELP mode 	f _{hi-lp}	1	_	8	MHz	
2	2 Load capacitors			See Note ⁴				
2	Feedback resistor	Low range (32 kHz to 38.4 kHz)	R _F	_	10	_	МО	
3	High range (1 MHz to 16 MHz)		_	_	1	_	1015.2	
4	Series resistor — Low range	Low Gain (HGO = 0)	P.	_	0	—	kO	
4		High Gain (HGO = 1)	NS	_	100	—		
		• Low Gain (HGO = 0)		_	0	—		
		• High Gain (HGO = 1)						
5	Series resistor — High range	≥ 8 MHz	R _S		0	0	kΩ	
		4 MHz		_	0	10		
		1 MHz		_	0	20		
		Low range, low gain (RANGE=0,HGO=0)		_	200	_		
	Crivetal start up time ^{5,6}	Low range, high gain (RANGE=0,HGO=1)	^t CSTL	_	400	_		
U		High range, low gain (RANGE=1,HGO=0)	t	_	5	_	ms	
		High range, high gain (RANGE=1, HGO=1)	t _{CSTH}	_	15	_		

Table 18. XOSC (Temperature Range = -40 to 105°C Ambient)

¹ Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.

² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz to 2 MHz.

⁴ See crystal or resonator manufacturer's recommendation.

⁵ This parameter is characterized and not tested on each device.

⁶ Proper PC board layout procedures must be followed to achieve specifications.

3.11 Mini-FlexBus Timing Specifications

A multi-function external bus interface called Mini-FlexBus is provided with basic functionality to interface to slave-only devices up to a maximum bus frequency of 25.1666 MHz. It can be directly connected to asynchronous or synchronous devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For asynchronous devices, a simple chip-select based interface can be used.

All processor bus timings are synchronous; that is, input setup/hold and output delay are given in respect to the rising edge of a reference clock, MB_CLK. The MB_CLK frequency is half the internal system bus frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Mini-FlexBus output clock (MB_CLK). All other timing relationships can be derived from these values.

#	Characteristic	Symbol	Min	Max	Unit	С
1	Frequency of Operation	—	_	25.1666	MHz	—
2	Clock Period	MB1	39.73	—	ns	D
3	Output Valid ¹	MB2	_	20	ns	Т
4	Output Hold ¹	MB3	1.0	_	ns	D
5	Input Setup ²	MB4	22	—	ns	Т
6	Input Hold ²	MB5	10	_	ns	D

Table 19. Mini-FlexBus AC Timing Specifications

¹ Specification is valid for all MB_A[19:0], MB_D[7:0], MB_CS[1:0], MB_OE, MB_R/W, and MB_ALE.

² Specification is valid for all MB_D[7:0].

3.12 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

3.12.1 Control Timing

#	Parameter		Symbol	Minimum	Typica I ¹	Maximum	Unit	с
1	Bus frequency $(t_{cyc} = 1/f_{Bus})$				L			
		$V_{DD} \ge 1.8 \text{ V}$	f _{Bus}	dc	—	10	MHz	D
		V _{DD} > 2.1 V	f _{Bus}	dc	_	20	MHz	D
		V _{DD} > 2.4 V	f _{Bus}	dc	—	25.165	MHz	D
2	2 Internal low-power oscillator period		t _{LPO}	700	1000	1300	μS	Ρ
3	External reset pulse width ² $(t_{cyc} = 1/f_{Self_reset})$		t _{extrst}	100	_	_	ns	D
4	4 Reset low drive		t _{rstdrv}	66 x t _{cyc}	—	—	ns	D
5	Active background debug mode	latch setup time	t _{MSSU}	500	—	_	ns	D
6	Active background debug mode latch hold time		t _{MSH}	100		—	ns	D
7	 IRQ pulse width Asynchronous path² Synchronous path³ 		t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns	D
8	 KBIPx pulse width Asynchronous path² Synchronous path³ 		t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns	D
9	Port rise and fall time (load = $50 \text{ pF})^4$,	Low Drive						
		Slew rate control disabled (PTxSE = 0)	t _{Rise} , t _{Fall}	_	11	_	ns	D
		Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}	_	35	_	ns	D
		Slew rate control disabled (PTxSE = 0)	t _{Rise} , t _{Fall}	_	40	_	ns	D
		Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}	_	75	_	ns	D

Table 20. Control Timing

 1 Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 105 °C.

3.13 SPI Characteristics

The following table and Figure 15 through Figure 18 describe the timing requirements for the SPI system.

No. ¹	Characteristic ²		Symbol	Minimum	Maximum	Unit	С
1	Operating frequency	Master Slave	f _{op} f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz Hz	D
2	SPSCK period	Master Slave	t _{SPSCK} t _{SPSCK}	2 4	2048 —	t _{cyc} t _{cyc}	D
3	Enable lead time	Master Slave	t _{Lead} t _{Lead}	1/2 1		t _{SPSCK} t _{cyc}	D
4	Enable lag time	Master Slave	t _{Lag} t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}	D
5	Clock (SPSCK) high or low time	Master Slave	t _{WSPSCK} t _{WSPSCK}	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns	D
6	Data setup time (inputs)	Master Slave	t _{SU} t _{SU}	15 15		ns ns	D
7	Data hold time (inputs)	Master Slave	t _{HI} t _{HI}	0 25		ns ns	D
8	Slave access time ³		t _a	—	1	t _{cyc}	D
9	Slave MISO disable time ⁴		t _{dis}	_	1	t _{cyc}	D
10	Data valid (after SPSCK edge)	Master Slave	t _v t _v		25 25	ns ns	D
11	Data hold time (outputs)	Master Slave	t _{HO} t _{HO}	0 0		ns ns	D
12	Rise time	Input Output	t _{RI} t _{RO}		t _{cyc} – 25 25	ns ns	D
13	Fall time	Input Output	t _{FI} t _{FO}		t _{cyc} – 25 25	ns ns	D

Table 22. SPI Timing

¹ Numbers in this column identify elements in Figure 15 through Figure 18.

² All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.

³ Time to data active from high-impedance state.

⁴ Hold time to high-impedance state.

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

#	Characteristic	Symbol	Minimum	Typical	Maximu m	Unit	С
3	V _{USB33} input with internal VREG disabled	V _{usb33in}	3	3.3	3.6	V	С
4	VREG Quiescent Current	I _{VRQ}	_	0.5	—	mA	С

Table 24. Internal USB 3.3 V Voltage Regulator Characteristics (continued)

3.16 VREF Electrical Specifications

#	Characteristic	Symbol	Minimum	Maximum	Unit	С
1	Supply voltage	V _{DDA}	1.80	3.6	V	С
2	Temperature	T _A	-40	105	°C	С
3	Output Load Capacitance	CL	—	100	nf	D
4	Maximum Load	_	—	10	mA	_
5	Voltage Reference Output with Factory Trim. $V_{DD} = 3 V$.	Vout	1.148	1.152	V	Р
6	Temperature Drift (Vmin - Vmax across the full temperature range)	Tdrift	_	25	mV ¹	Т
7	Aging Coefficient ²	Ac	—	60	μV/year	С
8	Powered down Current (Off Mode, VREFEN = 0, VRSTEN = 0)	I	_	0.10	μA	С
9	Bandgap only (MODE_LV[1:0] = 00)	I	_	75	μΑ	Т
10	Low-Power buffer (MODE_LV[1:0] = 01)	I	—	125	μΑ	Т
11	Tight-Regulation buffer (MODE_LV[1:0] = 10)	I	_	1.1	mA	Т
12	Load Regulation (MODE_LV = 10)	—	—	100	μV/mA	С
13	Line Regulation MODE = 1:0, Tight Regulation VDD < 2.3 V, Delta VDDA = 100 mV, VREFH = 1.2 V driven externally with VREFO disabled. (Power Supply Rejection	DC	70	_	dB	C

Table 25. VREF Electrical Specifications

¹ See typical chart below.

² Linear reliability model (1008 hours stress at $125^{\circ}C = 10$ years operating life) used to calculate Aging μ V/year. Vrefo data recorded per month.

Figure 20. Typical VREF Output vs V_{DD}

• Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 28) in the "Enter Keyword" search box at the top of the page.

5 Revision History

This section lists major changes between versions of the MCF51JE256 Data Sheet.

Revision	Date	Description
0	March/April 09	Initial Draft
1	July 2009	 Revised to follow standard template. Removed extraneous headings from the TOC. Corrected units for Monotoncity to be blank in for the DAC specification. Updated ADC characteristic tables to include 16-Bit SAR in headings.
2	July 2009	 Changed MCG (XOSC) Electricals Table - Row 2, Average Internal Reference Frequency typical value from 32.768 to 31.25
3	April 2010	 Updated Thermal Characteristics table. Reinserted the 81 and 104 MapBGA devices. Revised the ESD and Latch-Up Protection Characeristic description to read: Latch-up Current at TA = 125°C. Changed Table 9. DC Characteristics rows 2 and 4, to 1.8 V, ILoad = -600 mA conditions to 1.8 V, ILoad = 600µA respectively. Corrected the 16-bit SAR ADC Operating Condition table Ref Voltage High Min value to be 1.13 instead of 1.15. Updated the ADC electricals. Inserted the Mini-FlexBus Timing Specifications. Added a Temp Drift parameter to the VREF Electrical Specifications. Removed the S08 Naming Convention diagram. Updated the Orderable Part Number Summary to include the Freescale Part Number suffixes. Completed the 80LQFP package drawing from 98ARL10530D to 98ASS23174W. Updated electrical characteristic data.

Table 29. Revision History