

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1933-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description			
RB5/AN13/CPS5/P2B/CCP3 ⁽¹⁾ / P3A ⁽¹⁾ /T1G ⁽¹⁾ /COM1	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.			
	AN13	AN	—	A/D Channel input.			
	CPS5	AN	_	Capacitive sensing input.			
	P2B	_	CMOS	PWM output.			
	CCP3	ST	CMOS	Capture/Compare/PWM.			
	P3A	_	CMOS	PWM output.			
	T1G	ST	—	Timer1 gate input.			
	COM1	_	AN	LCD Analog output.			
RB6/ICSPCLK/ICDCLK/SEG14	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.			
	ICSPCLK	ST	_	Serial Programming Clock.			
	ICDCLK	ST	_	In-Circuit Debug Clock.			
	SEG14	_	AN	LCD Analog output.			
RB7/ICSPDAT/ICDDAT/SEG13	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.			
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.			
	ICDDAT	ST	CMOS	In-Circuit Data I/O.			
	SEG13	_	AN	LCD Analog output.			
RC0/T1OSO/T1CKI/P2B ⁽¹⁾	RC0	ST	CMOS	General purpose I/O.			
	T10SO	XTAL	XTAL	Timer1 oscillator connection.			
	T1CKI	ST	—	Timer1 clock input.			
	P2B		CMOS	PWM output.			
RC1/T1OSI/CCP2 ⁽¹⁾ /P2A ⁽¹⁾	RC1	ST	CMOS	General purpose I/O.			
	T10SI	XTAL	XTAL	Timer1 oscillator connection.			
	CCP2	ST	CMOS	Capture/Compare/PWM.			
	P2A	_	CMOS	PWM output.			
RC2/CCP1/P1A/SEG3	RC2	ST	CMOS	General purpose I/O.			
	CCP1	ST	CMOS	Capture/Compare/PWM.			
	P1A	_	CMOS	PWM output.			
	SEG3	_	AN	LCD Analog output.			
RC3/SCK/SCL/SEG6	RC3	ST	CMOS	General purpose I/O.			
	SCK	ST	CMOS	SPI clock.			
	SCL	l ² C	OD	I ² C [™] clock.			
	SEG6	_	AN	LCD Analog output.			
RC4/SDI/SDA/T1G ⁽¹⁾ /SEG11	RC4	ST	CMOS	General purpose I/O.			
	SDI	ST	_	SPI data input.			
	SDA	l ² C	OD	I ² C™ data input/output.			
	T1G	ST	_	Timer1 gate input.			
	SEG11	_	AN	LCD Analog output.			
RC5/SDO/SEG10	RC5	ST	CMOS	General purpose I/O.			
	SDO	—	CMOS	SPI data output.			
	SEG10		AN	LCD Analog output.			

TABLE 1-2: PIC16(L)F1933 PINOUT DESCRIPTION (CONTINUED)

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1933 devices only.

6.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON register are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	0	х	1	1	Power-on Reset
0	0	1	1	0	х	0	х	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	0	х	х	0	Illegal, PD is set on POR
0	0	1	1	u	0	1	1	Brown-out Reset
u	u	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	u1 uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

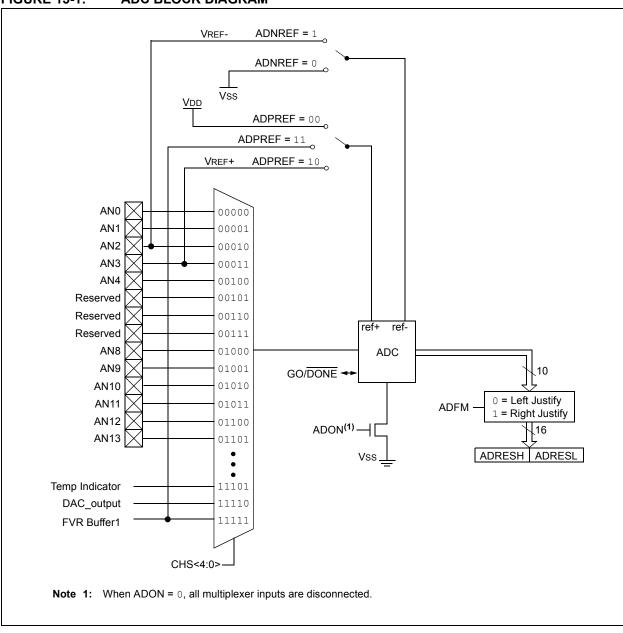
2: If a Status bit is not implemented, that bit will be read as '0'.

11.6 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM or program memory should be verified (see Example 11-6) to the desired value to be written. Example 11-6 shows how to verify a write to EEPROM.

EXAMPLE 11-6: EEPROM WRITE VERIFY

BANKSEI	L EEDATL		;
MOVF	EEDATL,	W	;EEDATL not changed
			;from previous write
BSF	EECON1,	RD	;YES, Read the
			;value written
XORWF	EEDATL,	W	;
BTFSS	STATUS,	Ζ	;Is data the same
GOTO	WRITE_E	RR	;No, handle error
:			;Yes, continue


15.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 15-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

FIGURE 15-1: ADC BLOCK DIAGRAM

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

	i	i	i	i		i	i	i	i
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CM1CON0	C10N	C1OUT	C10E	C1POL		C1SP	C1HYS	C1SYNC	163
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	163
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	_	—	C1NCI	H<1:0>	164
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	_	—	C2NCI	H<1:0>	164
CMOUT	—	_	—	—	_	—	MC2OUT	MC10UT	164
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	TSRNG CDAFVR<1:0>		ADFVR<1:0>		135
DACCON0	DACEN	DACLPS	DACOE	—	DACPS	S<1:0>	—	DACNSS	156
DACCON1	—	_	—			DACR<4:0>			156
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE	84
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	87
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	116
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	121
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	117
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	122

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

21.11 Register Definitions: Timer1 Control

REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u			
TMR1CS<1:0>		T1CKP	T1CKPS<1:0>		T1SYNC	_	TMR10N			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
u = Bit is unc	hanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BOI	R/Value at al	l other Resets			
'1' = Bit is se	t	'0' = Bit is clea	ared							
h# 7 0	THEACE	Ob . Time and Class	le Course Cole	at hita						
bit 7-6		0>: Timer1 Cloc								
		clock source is		-	(CAPOSC)					
		clock source is CEN = 0:	pin or oscillato	Dr:						
		I clock from T10	CKI pin (on the	risina edae)						
		CEN = 1:		, nonig eage)						
		oscillator on T1	OSI/T1OSO p	ins						
		lock source is system clock (Fosc)								
	00 = Timer1	clock source is i	instruction clo	ck (Fosc/4)						
bit 5-4	T1CKPS<1:	0>: Timer1 Inpu	t Clock Presca	ale Select bits						
	11 = 1:8 Pre									
		scale value								
	01 = 1:2 Pre 00 = 1:1 Pre									
bit 3		_P Oscillator En	able Control b	bit						
		ed Timer1 oscilla								
		ed Timer1 oscilla								
bit 2	T1SYNC: Tir	mer1 External C	lock Input Syr	nchronization Co	ontrol bit					
	<u>TMR1CS<1:</u>	0>=1X								
		1 = Do not synchronize external clock input								
	0 = Synchro	onize external clo	ock input with	system clock (F	OSC)					
	<u>TMR1CS<1:</u>	0> = <u>0X</u>								
	This bit is igr	nored.								
bit 1	1 Unimplemented: Read as '0'									
bit 0	TMR1ON: T	imer1 On bit								
	1 = Enables Timer1									
	1 = Enables	Timer1								

23.2.5 COMPARE DURING SLEEP

The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

23.2.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	114
CCPxCON	PxM<	1:0> ⁽¹⁾	DCxB	<1:0>		CCPxM<	:3:0>		214
CCPRxL	Capture/Co	mpare/PWM	Register x l	Low Byte (LS	SB)				192
CCPRxH	Capture/Co	mpare/PWM	Register x I	High Byte (M	ISB)				192
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	84
PIE3		CCP5IE	CCP4IE	CCP3IE	TMR6IE		TMR4IE	—	85
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF		CCP2IF	87
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	88
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	183
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	184
TMR1L	Holding Reg	gister for the	Least Signif	ficant Byte of	f the 16-bit TMR	1 Register			179
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								179
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	116
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	121
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125

TABLE 23-4: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Compare mode.

Note 1: Applies to ECCP modules only.

24.5.3 SLAVE TRANSMISSION

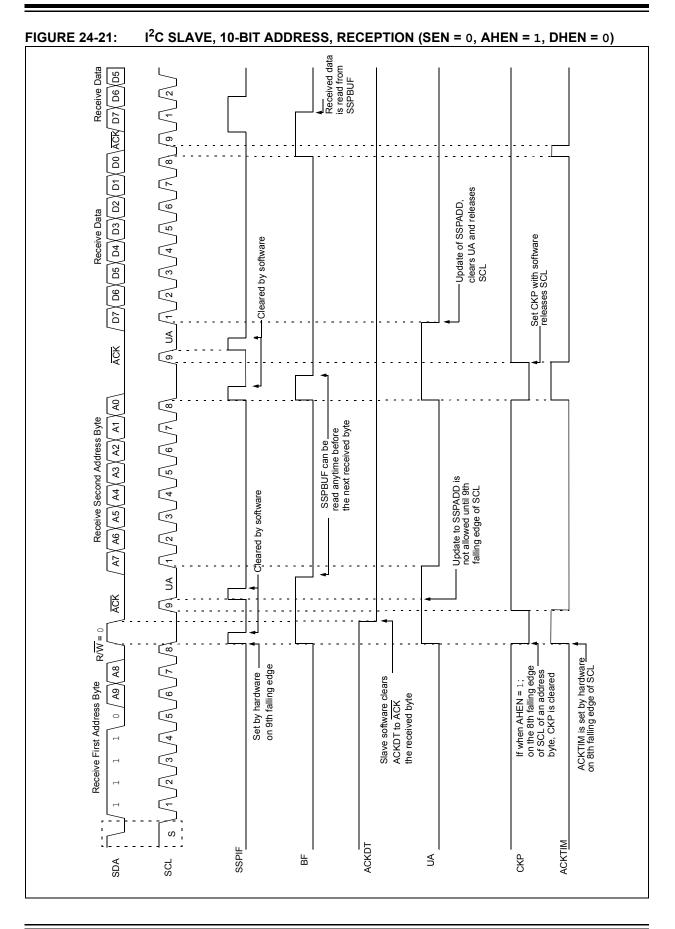
When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see Section 24.5.6 "Clock Stretching" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes Idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.


24.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPCON3 register is set, the BCLIF bit of the PIR register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLIF bit to handle a slave bus collision.

24.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 24-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPIF bit.
- 4. Slave hardware generates an ACK and sets SSPIF.
- 5. SSPIF bit is cleared by user.
- 6. Software reads the received address from SSPBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - **Note 1:** If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

REGISTER 24-2: SSPCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
WCOL	SSPOV	SSPEN	CKP		SSPN	/<3:0>		
bit 7							bit	
Legend:								
R = Readable b		W = Writable bi		•	nted bit, read as		. .	
u = Bit is unchar	nged	x = Bit is unkno				/alue at all other F		
'1' = Bit is set		'0' = Bit is clear	ed	HS = Bit is set I	by hardware	C = User cleare	d	
bit 7	Master mode: 1 = A write to a started 0 = No collision	-		pted while the I ² C	conditions were	not valid for a tra	nsmission to b	
	0 = No collisio	on		ll transmitting the p	revious word (mu	st be cleared in sof	tware)	
bit 6	$\frac{\text{In SPI mode:}}{1 = \text{A new byte}}$ $\frac{1 = \text{A new byte}}{\text{SSPSR is}}$ $\frac{1}{\text{ion} (\text{and tr})}$ $\frac{1 = \text{No overflo}}{1 = \text{A byte is for }}$	lost. Overflow can mitting data, to av ransmission) is ini w received while th node (must be cl	e the SSPBUF r n only occur in s oid setting over titated by writing ne SSPBUF re	egister is still holdir Slave mode. In Sla flow. In Master mo g to the SSPBUF re gister is still holdin are).	ve mode, the use de, the overflow b egister (must be o	er must read the S bit is not set since of cleared in software	SPBUF, even if each new rece _l).	
bit 5	 SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output In SPI mode: 1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins In I²C mode: 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins⁽³⁾ 0 = Disables serial port and configures these pins as I/O port pins 							
bit 4	0 = Idle state for $\frac{\ln l^2C}{SCL}$ so $\frac{1}{1}$ = Enable close	or clock is a high or clock is a low l o <u>ode:</u> ontrol ck k low (clock streto <u>node:</u>	evel	nsure data setup t	ime.)			

REGISTER 24-3: SSPCON2: SSP CONTROL REGISTER 2

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is cle	eared	HC = Cleared	d by hardware	S = User set	
bit 7	1 = Enable in	nterrupt when a	•	.,	or 00h) is receiv	red in the SSPS	SR
		call address di					
bit 6	1 = Acknowle	cknowledge Si edge was not r edge was recei		mode only)			
bit 5		-	ı bit (in I ² C moo	de only)			
	In Receive m	i <u>ode:</u> litted when the lowledge	·	• •	le sequence at	the end of a re	ceive
bit 4	ACKEN: Ack	nowledge Seq	uence Enable	bit (in I ² C Mas	ter mode only)		
	In Master Re	ceive mode:		,			
	Automat	Acknowledge ically cleared b edge sequenc	y hardware.	SDA and S	CL pins, and	transmit ACF	KDT data bit
bit 3	RCEN: Rece	ive Enable bit	(in I ² C Master i	mode only)			
		Receive mode	· _	.,			
bit 2	PEN: Stop Co	ondition Enabl	e bit (in I ² C Ma	ster mode only	y)		
		Release Contro	_				
	0 = Stop cond	dition Idle			atically cleared		
bit 1					ster mode only)		
	 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 						
bit 0	SEN: Start C	ondition Enabl	e/Stretch Enab	le bit			
	<u>In Master mo</u> 1 = Initiate St 0 = Start con	tart condition o	n SDA and SC	L pins. Autom	atically cleared	by hardware.	
				ave transmit ar	nd slave receive	e (stretch enab	led)
Note 1: Fo	or bits ACKEN, F	RCEN, PEN, R	SEN, SEN: If ti	he I ² C module	is not in the IdI	e mode, this bi	t may not be

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

27.11 LCD Interrupts

The LCD module provides an interrupt in two cases. An interrupt when the LCD controller goes from active to inactive controller. An interrupt also provides unframe boundaries for Type B waveform. The LCD timing generation provides an interrupt that defines the LCD frame timing.

27.11.1 LCD INTERRUPT ON MODULE SHUTDOWN

An LCD interrupt is generated when the module completes shutting down (LCDA goes from '1' to '0').

27.11.2 LCD FRAME INTERRUPTS

A new frame is defined to begin at the leading edge of the COM0 common signal. The interrupt will be set immediately after the LCD controller completes accessing all pixel data required for a frame. This will occur at a fixed interval before the frame boundary (TFINT), as shown in Figure 27-19. The LCD controller will begin to access data for the next frame within the interval from the interrupt to when the controller begins to access data after the interrupt (TFWR). New data must be written within TFWR, as this is when the LCD controller will begin to access the data for the next frame.

When the LCD driver is running with Type-B waveforms and the LMUX<1:0> bits are not equal to '00' (static drive), there are some additional issues that must be addressed. Since the DC voltage on the pixel takes two frames to maintain zero volts, the pixel data must not change between subsequent frames. If the pixel data were allowed to change, the waveform for the odd frames would not necessarily be the complement of the waveform generated in the even frames and a DC component would be introduced into the panel. Therefore, when using Type-B waveforms, the user must synchronize the LCD pixel updates to occur within a subframe after the frame interrupt.

To correctly sequence writing while in Type-B, the interrupt will only occur on complete phase intervals. If the user attempts to write when the write is disabled, the WERR bit of the LCDCON register is set and the write does not occur.

Note:	The LCD frame interrupt is not generated
	when the Type-A waveform is selected
	and when the Type-B with no multiplex
	(static) is selected.

29.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

30.2 DC Characteristics: Supply Currents (IDD)

PIC16LF1933			Operating temperature			itions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended		
PIC16F1933					litions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param	Device						Conditions	
No.	Characteristics	Min.	Тур†	Max.	Units	VDD	Note	
	Supply Current (IDD) ⁽¹⁾	, 2)						
D009	LDO Regulator	-	350	—	μA	—	HS, EC OR INTOSC/INTOSCIO (8-16 MHz) Clock modes with all VCAP pins disabled	
			50	_	μA		All VCAP pins disabled	
			30	—	μΑ		VCAP enabled	
		—	5	—	μA	—	LP Clock mode and Sleep (requires FVR and BOR to be disabled)	
D010		_	8	14	μA	1.8	Fosc = 32 kHz	
		-	12	18	μA	3.0	LP Oscillator mode (Note 4), $-40^{\circ}C \le TA \le +85^{\circ}C$	
D010		_	23	63	μA	1.8	Fosc = 32 kHz	
			28	74	μA	3.0	LP Oscillator mode (Note 4, Note 5),	
		—	33	79	μA	5.0	$-40^{\circ}C \le TA \le +85^{\circ}C$	
D010A		_	10	18	μA	1.8	Fosc = 32 kHz	
		-	15	20	μΑ	3.0	LP Oscillator mode (Note 4) -40°C \leq TA \leq +125°C	
D010A		—	24	79	μA	1.8	Fosc = 32 kHz	
		_	30	93	μA	3.0	LP Oscillator mode (Note 4, Note 5)	
		—	35	99	μA	5.0	$-40^{\circ}C \le TA \le +125^{\circ}C$	
D011		_	120	160	μΑ	1.8	Fosc = 1 MHz	
			200	255	μΑ	3.0	XT Oscillator mode	
D011			160	195	μA	1.8	Fosc = 1 MHz	
		_	230	275	μA	3.0	XT Oscillator mode (Note 5)	
		_	280	410	μA	5.0		
D012			325	370	μA	1.8	Fosc = 4 MHz	
		-	600	710	μΑ	3.0	XT Oscillator mode	
D012			350	410	μΑ	1.8	Fosc = 4 MHz	
			625	765	μΑ	3.0	XT Oscillator mode (Note 5)	
		—	700	850	μΑ	5.0		

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μF capacitor on VCAP.

6: 8 MHz crystal oscillator with 4x PLL enabled.

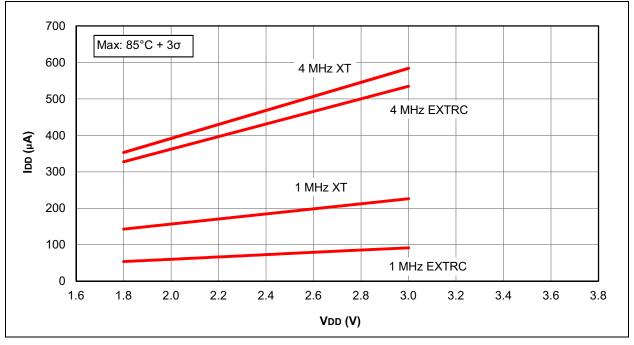
30.4	DC Characteristics: I/O Port	S
		Standard

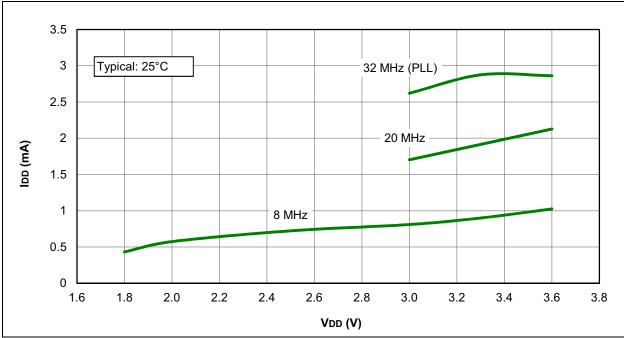
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature -40°C } \leq TA \leq +85°C \mbox{ for industrial} \\ -40°C \leq TA \leq +125°C \mbox{ for extended} \end{array}$					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O PORT:						
D032		with TTL buffer	—		0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D032A			—	_	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 4.5V$	
D033		with Schmitt Trigger buffer		_	0.2 VDD	V	$2.0V \le V\text{DD} \le 5.5V$	
		with I ² C [™] levels		_	0.3 VDD	V		
		with SMBus levels		_	0.8	V	$2.7V \le V\text{DD} \le 5.5V$	
D034		MCLR, OSC1 (RC mode)		_	0.2 VDD	V	(Note 1)	
D034A		OSC1 (HS mode)		_	0.3 VDD	V		
	VIH	Input High Voltage	<u>.</u>					
		I/O PORT:						
D040		with TTL buffer	2.0	_	_	V	$4.5V \le V\text{DD} \le 5.5V$	
D040A			0.25 VDD + 0.8	—	_	V	$1.8V \leq V\text{DD} \leq 4.5V$	
D041		with Schmitt Trigger buffer	0.8 VDD	_	_	V	$2.0V \le VDD \le 5.5V$	
		with I ² C™ levels	0.7 VDD	_	_	V		
		with SMBus levels	2.1	_	_	V	$2.7V \le VDD \le 5.5V$	
D042		MCLR	0.8 VDD	_	_	V		
D043A		OSC1 (HS mode)	0.7 VDD	_	_	V		
D043B		OSC1 (RC mode)	0.9 Vdd	_	_	V	VDD > 2.0V (Note 1)	
	lil	Input Leakage Current ⁽²⁾						
D060		I/O ports	—	± 5	± 125	nA	VSS \leq VPIN \leq VDD, Pin at high- impedance @ 85°C	
				± 5	± 1000	nA	125°C	
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \le Vpin \le Vdd @ 85^{\circ}C$	
	IPUR	Weak Pull-up Current						
D070*			25	100	200		VDD = 3.3V, VPIN = VSS	
			25	140	300	μA	VDD = 5.0V, VPIN = VSS	
	VOL	Output Low Voltage ⁽⁴⁾				_		
D080		I/O ports	_	—	0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V	
	Voh	Output High Voltage ⁽⁴⁾	1		1	1	1	
D090		I/O ports	Vdd - 0.7	_	_	v	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V	

These parameters are characterized but not tested.

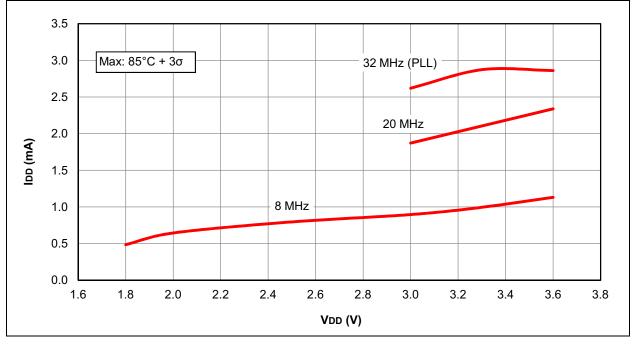
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

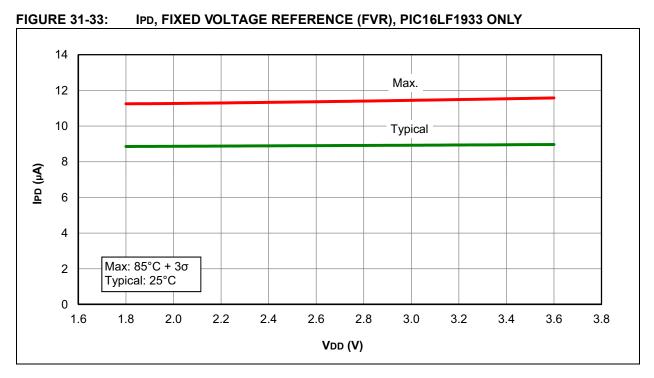
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

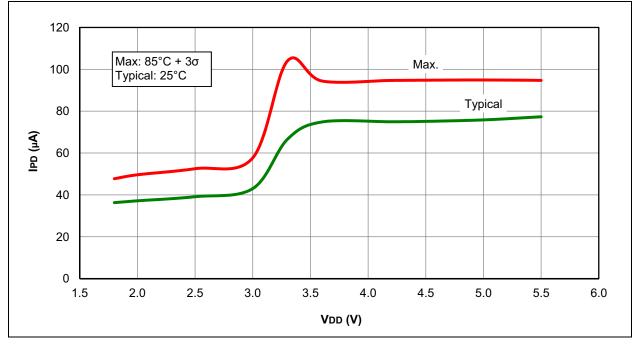

2: Negative current is defined as current sourced by the pin.

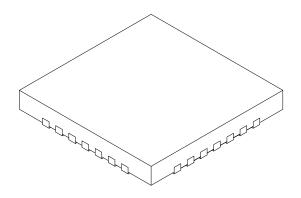

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.









28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensior	n Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.40 BSC	
Overall Height	A	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	E	4.00 BSC		
Exposed Pad Width	E2	2.55	2.65	2.75
Overall Length	D	4.00 BSC		
Exposed Pad Length	D2	2.55	2.65	2.75
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	ĸ	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

INDEX

4	7	
•	•	

A/D		
Specifications		386
Absolute Maximum Ratings (PIC16F/LF1933)		365
AC Characteristics		
Industrial and Extended (PIC16F/LF1933)		380
Load Conditions		
ACKSTAT		
ACKSTAT Status Flag		
ADC		
Acquisition Requirements		
Associated registers		
Block Diagram		
Calculating Acquisition Time		
Channel Selection		
Configuration		138
Configuring Interrupt		
Conversion Clock		
Conversion Procedure		
Internal Sampling Switch (Rss) Impedance		
Interrupts		
Operation		
Operation During Sleep		
Port Configuration		
Reference Voltage (VREF)		
Source Impedance		
Special Event Trigger		
Starting an A/D Conversion		
ADCON0 Register		
ADCON1 Register		
ADDFSR		
ADDWFC		
ADRESH Register		26
ADRESH Register (ADFM = 0)		
ADRESH Register (ADFM = 1)		
ADRESL Register (ADFM = 0)		
ADRESL Register (ADFM = 1)		
Alternate Pin Function		
Analog-to-Digital Converter. See ADC		
ANSELA Register		.117
ANSELB Register		
APFCON Register		
Assembler		
MPASM Assembler		434
_		
В		
BAUDCON Register		287
BF	. 254,	256
BF Status Flag	. 254,	256
Block Diagram		
Capacitive Sensing	. 305,	306
Block Diagrams	-	

 (CCP) Capture Mode Operation
 192

 ADC
 137

 ADC Transfer Function
 148

 Analog Input Model
 148, 162

 CCP PWM
 196

 Clock Source
 52

 Comparator
 158

 Compare
 194

 Crystal Operation
 54, 55

 Digital-to-Analog Converter (DAC)
 154

 EUSART Receive
 276

EUSART Transmit	275
External RC Mode	56
Fail-Safe Clock Monitor (FSCM)	64
Generic I/O Port	113
Interrupt Logic	77
LCD Bias Voltage Generation	321
LCD Clock Generation	
On-Chip Reset Circuit	69
PIC16F193X/LF193X	8, 14
PWM (Enhanced)	200
Resonator Operation	54
Timer0	171
Timer1	175
Timer1 Gate	180, 181, 182
Timer2/4/6	187
Voltage Reference	134
Voltage Reference Output Buffer Example	154
BORCON Register	71
BRA	356
Break Character (12-bit) Transmit and Receive	296
Brown-out Reset (BOR)	
Specifications	
Timing and Characteristics	383

С

C Compilers		
MPLAB C18		
CALL		
CALLW		
Capacitive Sensing		
Associated registers w/ Capacitive Sensing		
Specifications		
Capture Module. See Enhanced Capture/Compare/F	PWM	
(ECCP)		
Capture/Compare/PWM		191
Capture/Compare/PWM (CCP)		
Associated Registers w/ Capture		
Associated Registers w/ Compare		
Associated Registers w/ PWM		
Capture Mode		
CCPx Pin Configuration		
Compare Mode		194
CCPx Pin Configuration		
Software Interrupt Mode	192,	194
Special Event Trigger		194
Timer1 Mode Resource	192,	194
Prescaler		192
PWM Mode		
Duty Cycle		197
Effects of Reset		
Example PWM Frequencies and		
Resolutions, 20 MHZ		198
Example PWM Frequencies and		
Resolutions, 32 MHZ		198
Example PWM Frequencies and		
Resolutions, 8 MHz		198
Operation in Sleep Mode		
Resolution		
System Clock Frequency Changes		
PWM Operation		
PWM Overview		196
PWM Period		
PWM Setup		
CCP1CON Register		