

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1933-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Enhanced Mid-Range CPU	13
3.0	Memory Organization	15
4.0	Device Configuration	45
5.0	Oscillator Module (With Fail-Safe Clock Monitor)	51
6.0	Resets	69
7.0	Interrupts	
8.0	Low Dropout (LDO) Voltage Regulator	
9.0	Power-Down Mode (Sleep)	
10.0	Watchdog Timer (WDT)	
11.0	Data EEPROM and Flash Program Memory Control	
12.0	I/O Ports	113
13.0	Interrupt-On-Change	129
14.0	Fixed Voltage Reference	133
15.0	Analog-to-Digital Converter (ADC) Module	137
16.0	Temperature Indicator Module	151
17.0	Digital-to-Analog Converter (DAC) Module	153
18.0	Comparator Module	157
19.0	SR Latch	167
20.0	Timer0 Module	171
21.0	Timer1 Module with Gate Control	175
22.0	Timer2/4/6 Modules	187
23.0	Capture/Compare/PWM Modules (ECCP1, ECCP2, ECCP3, CCP4, CCP5)	191
24.0	Master Synchronous Serial Port (MSSP) Module	219
25.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	275
26.0	Capacitive Sensing Module	305
27.0	Liquid Crystal Display (LCD) Driver Module	313
28.0	In-Circuit Serial Programming™ (ICSP™)	347
29.0	Instruction Set Summary	351
30.0	Electrical Specifications	365
31.0	DC and AC Characteristics Graphs and Charts	397
32.0	Development Support	433
33.0	Packaging Information	437
Appe	ndix A: Data Sheet Revision History	449
Appe	ndix B: Migrating From Other PIC [®] Devices	449
Index	۲	451
The N	Vicrochip Web Site	459
Custo	omer Change Notification Service	459
Custo	omer Support	459
Read	er Response	460
Produ	uct Identification System	461

Name	Function	Input Type	Output Type	Description	
RA0/AN0/C12IN0-/C2OUT ⁽¹⁾ /	RA0	TTL	CMOS	General purpose I/O.	
SRNQ ⁽¹⁾ / SS⁽¹⁾/VCAP⁽²⁾/SEG12	AN0	AN	—	A/D Channel input.	
	C12IN0-	AN	—	Comparator negative input.	
	C2OUT	_	CMOS	Comparator output.	
	SRNQ	_	CMOS	SR latch inverting output.	
	SS	ST	_	Slave Select input.	
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1933 only).	
	SEG12		AN	LCD Analog output.	
RA1/AN1/C12IN1-/SEG7	RA1	TTL	CMOS	General purpose I/O.	
	AN1	AN	—	A/D Channel input.	
	C12IN1-	AN	—	Comparator negative input.	
	SEG7	_	AN	LCD Analog output.	
RA2/AN2/C2IN+/VREF-/	RA2	TTL	CMOS	General purpose I/O.	
DACOUT/COM2	AN2	AN	—	A/D Channel input.	
	C2IN+	AN	—	Comparator positive input.	
	VREF-	AN	—	A/D Negative Voltage Reference input.	
	DACOUT		AN	Voltage Reference output.	
	COM2	_	AN	LCD Analog output.	
RA3/AN3/C1IN+/VREF+/	RA3	TTL	CMOS	General purpose I/O.	
COM3/SEG15	AN3	AN	—	A/D Channel input.	
	C1IN+	AN	_	Comparator positive input.	
	VREF+	AN	_	A/D Voltage Reference input.	
	COM3		AN	LCD Analog output.	
	SEG15		AN	LCD Analog output.	
RA4/C10UT/CPS6/T0CKI/SRQ/	RA4	TTL	CMOS	General purpose I/O.	
CCP5/SEG4	C10UT		CMOS	Comparator output.	
	CPS6	AN	—	Capacitive sensing input.	
	TOCKI	ST	—	Timer0 clock input.	
	SRQ		CMOS	SR latch non-inverting output.	
	CCP5	ST	CMOS	Capture/Compare/PWM.	
	SEG4		AN	LCD Analog output.	
RA5/AN4/C2OUT ⁽¹⁾ /CPS7/	RA5	TTL	CMOS	General purpose I/O.	
SRNQ ⁽¹⁾ /SS ⁽¹⁾ /VCAP ⁽²⁾ /SEG5	AN4	AN	—	A/D Channel input.	
	C2OUT		CMOS	Comparator output.	
	CPS7	AN	—	Capacitive sensing input.	
	SRNQ		CMOS	SR latch inverting output.	
	SS	ST		Slave Select input.	
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1933 only).	
	SEG5	—	AN	LCD Analog output.	
Legend: AN = Analog input or c	output CMC	S = CMO	DS compa	atible input or output OD = Open Drain	

TABLE 1-2: PIC16(L)F1933 PINOUT DESCRIPTION

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1933 devices only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 15											
780h ⁽²⁾	INDF0	Addressing (not a phys	this location	uses contents	s of FSR0H/F	SR0L to addr	ess data mei	nory		****	XXXX XXXX
781h ⁽²⁾	INDF1	Addressing (not a phys	this location	uses contents	s of FSR1H/F	SR1L to addr	ess data mei	mory		XXXX XXXX	XXXX XXXX
782h ⁽²⁾	PCL	Program C	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
783h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
784h ⁽²⁾	FSR0L	Indirect Da	ta Memory Ac	dress 0 Low	Pointer		•			0000 0000	uuuu uuuu
785h ⁽²⁾	FSR0H	Indirect Da	ta Memory Ac	dress 0 High	Pointer					0000 0000	0000 0000
786h ⁽²⁾	FSR1L	Indirect Da	ta Memory Ac	dress 1 Low	Pointer					0000 0000	uuuu uuuu
787h ⁽²⁾	FSR1H	Indirect Da	ta Memory Ac	dress 1 High	Pointer					0000 0000	0000 0000
788h ⁽²⁾	BSR	_	_	_			BSR<4:0>			0 0000	0 0000
789h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
78Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	nter			-000 0000	-000 0000
78Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTE	IOCIF	0000 0000	0000 0000
78Ch	_	Unimpleme	ented							_	_
 790h											
791h	LCDCON	LCDEN	SLPEN	WERR	_	CS<	1:0>	LMUX	(<1:0>	000- 0011	000- 0011
792h	LCDPS	WFT	BIASMD	LCDA	WA		LP<3	3:0>		0000 0000	0000 0000
793h	LCDREF	LCDIRE	LCDIRS	LCDIRI		VLCD3PE	VLCD2PE	VLCD1PE		000- 000-	000- 000-
794h	LCDCST	_	_	_	_	_	L	CDCST<2:0	>	000	000
795h	LCDRL	LRLA	P<1:0>	LRLB	P<1:0>	_		LRLAT<2:0>		0000 -000	0000 -000
796h	_	Unimpleme	ented	l.						_	_
797h	_	Unimpleme	ented							<u> </u>	_
798h	LCDSE0		SE<7.0>					0000 0000	uuuu uuuu		
799h	LCDSE1				SE<1	5:8>				0000 0000	uuuu uuuu
79Ah	_	Unimpleme	ented							_	_
79Fh		0505	0700	0505	0504	0500	0500	0504	0500		
7A0h	LCDDATA0	SEG7 COM0	SEG6 COM0	SEG5 COM0	SEG4 COM0	SEG3 COM0	SEG2 COM0	SEG1 COM0	SEG0 COM0	XXXX XXXX	uuuu uuuu
7A1h	LCDDATA1	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG9 COM0	SEG8 COM0	**** ****	uuuu uuuu
7A2h	_	Unimpleme	ented				_		-	_	—
7A3h	LCDDATA3	SEG7 COM1	SEG6 COM1	SEG5 COM1	SEG4 COM1	SEG3 COM1	SEG2 COM1	SEG1 COM1	SEG0 COM1	XXXX XXXX	uuuu uuuu
7A4h	LCDDATA4	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG9 COM1	SEG8 COM1	XXXX XXXX	uuuu uuuu
7A5h	_	Unimpleme	ented				•			_	_
7A6h	LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	XXXX XXXX	uuuu uuuu
7A7h	LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	XXXX XXXX	uuuu uuuu
7A8h	_	Unimpleme	ented	1	1	1		1	1	_	_
7A9h	LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	XXXX XXXX	uuuu uuuu
7AAh	LCDDATA10	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	XXXX XXXX	uuuu uuuu
7ABh —	—	Unimpleme	ented		<u> </u>		1	<u> </u>		—	-
7EFh											

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Unimplemented, read as '1'.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See Section 7.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

7.6.2 PIE2 REGISTER

REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	OSFIE: Oscill 1 = Enables 0 = Disables	ator Fail Interru the Oscillator F the Oscillator F	upt Enable bit ail interrupt Fail interrupt				
bit 6	C2IE: Compa 1 = Enables 0 = Disables	rator C2 Interru the Comparato the Comparato	upt Enable bit r C2 interrupt pr C2 interrupt				
bit 5	it 5 C1IE: Comparator C1 Interrupt Enable bit 1 = Enables the Comparator C1 interrupt 0 = Disables the Comparator C1 interrupt						
bit 4	Dit 4 EEIE: EEPROM Write Completion Interrupt Enable bit 1 = Enables the EEPROM Write Completion interrupt 0 = Disables the EEPROM Write Completion interrupt						
bit 3	 BCLIE: MSSP Bus Collision Interrupt Enable bit 1 = Enables the MSSP Bus Collision Interrupt 0 = Disables the MSSP Bus Collision Interrupt 						
bit 2	2 LCDIE: LCD Module Interrupt Enable bit 1 = Enables the LCD module interrupt 0 = Disables the LCD module interrupt						
bit 1	Unimplemented: Read as '0'						
bit 0	CCP2IE: CCF 1 = Enables 0 = Disables	P2 Interrupt Ena the CCP2 inter the CCP2 inter	able bit rupt rupt				
Note: Bit set	PEIE of the IN to enable any p	TCON register	must be rupt.				

8.0 LOW DROPOUT (LDO) VOLTAGE REGULATOR

The PIC16F193X has an internal Low Dropout Regulator (LDO) which provides operation above 3.6V. The LDO regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. There is no user enable/disable control available for the LDO, it is always active. The PIC16LF193X operates at a maximum VDD of 3.6V and does not incorporate an LDO.

A device I/O pin may be configured as the LDO voltage output, identified as the VCAP pin. Although not required, an external low-ESR capacitor may be connected to the VCAP pin for additional regulator stability.

The VCAPEN<1:0> bits of Configuration Words determines which pin is assigned as the VCAP pin. Refer to Table 8-1.

TABLE 8-1: VCAPEN<1	:0> SELECT BITS
---------------------	-----------------

VCAPEN<1:0>	Pin
00	RA0
01	RA5
10	RA6
11	No Vcap

On power-up, the external capacitor will load the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information on the constant current rate, refer to the LDO Regulator Characteristics Table in Section 30.0 "Electrical Specifications".

TABI F 8-2.	SUMMARY OF CONFIGURATION WORD WITH I DO

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	LVP	DEBUG	_	BORV	STVREN	PLLEN	40
CONFIGZ	7:0	_	_	VCAPEN	N<1:0> ⁽¹⁾	_	-	WRT1	WRT0	48

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by LDO.

Note 1: PIC16F1933 only.

11.2 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM without exceeding the total number of write cycles to a single byte. Refer to **Section 30.0 "Electrical Specifications"**. If this is the case, then a refresh of the array must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

11.2.1 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADRL register, clear the EEPGD and CFGS control bits of the EECON1 register, and then set control bit RD. The data is available at the very next cycle, in the EEDATL register; therefore, it can be read in the next instruction. EEDATL will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 11-1: DATA EEPROM READ

BANKSEL	EEADRL		;
MOVLW	DATA_EE_	ADDR	;
MOVWF	EEADRL		;Data Memory
			;Address to read
BCF	EECON1,	CFGS	;Deselect Config space
BCF	EECON1,	EEPGD	;Point to DATA memory
BSF	EECON1,	RD	;EE Read
MOVF	EEDATL,	W	;W = EEDATL

Note: Data EEPROM can be read regardless of the setting of the CPD bit.

11.2.2 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADRL register and the data to the EEDATL register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the above sequence is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set the WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

11.2.3 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

- Brown-out
- Power Glitch
- · Software Malfunction

11.2.4 DATA EEPROM OPERATION DURING CODE-PROTECT

Data memory can be code-protected by programming the \overline{CPD} bit in the Configuration Words to '0'.

When the data memory is code-protected, only the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from replacing your program with a program that will access the contents of the data EEPROM.

EXAMPLE 11-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG ADDR HI: PROG ADDR LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   BANKSELEEADRL; Select Bank for EEPROM registersMOVLWPROG_ADDR_LO;MOVWFEEADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWLEEADRH; Store MSB of address
            EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
            EECON1,CFGS
    BSF
              INTCON,GIE ; Disable interrupts
    BCF
                                ; Initiate read
    BSF
              EECON1,RD
    NOP
                                  ; Executed (Figure 11-1)
   NOP
                                  ; Ignored (Figure 11-1)
    BSF
             INTCON, GIE
                                ; Restore interrupts
             EEDATL,W
    MOVF
                                ; Get LSB of word
    MOVWF
           PROG_DATA_LO ; Store in user location
            EEDATH,W ; Get MSB of word
PROG_DATA_HI ; Store in user location
    MOVE
    MOVWF
```

12.6 PORTE Registers

12.6.1 DATA REGISTER

<u>RE3</u> is input only, and also functions as \overline{MCLR} . The MCLR feature can be disabled via a configuration fuse. RE3 also supplies the programming voltage. The TRIS bit for RE3 (TRISE3) always reads '1'.

REGISTER 12-14: PORTE: PORTE REGISTER

U-0 U-0 U-0 R-x/u U-0 U-0 U-0 RE3 bit 7 bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	RE3: PORTE Input Pin bit
	1 = Port pin is > Vін
	0 = Port pin is < VI∟
bit 2-0	Unimplemented: Read as '0'

REGISTER 12-15: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1 ⁽¹⁾	U-0	U-0	U-0
—	—	—	—	_	—	—	_
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	Unimplemented: Read as '1'

bit 2-0 Unimplemented: Read as '0'

Note 1: Unimplemented, read as '1'.

12.6.2 PORTE FUNCTIONS AND OUTPUT PRIORITIES

No output priorities, RE3 is an input only pin.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplei	mented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value	at POR and BC	OR/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 15-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

bit 7-0 **ADRES<9:2>:** ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 15-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u R/W-x/u R/W-x/u			R/W-x/u	R/W-x/u	R/W-x/u
ADRES<1:0>		—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits Lower two bits of 10-bit conversion result bit 5-0 Reserved: Do not use.

bit 5-0 **Reserved**. Do not use

FIGURE 18-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

23.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

23.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

23.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

23.3.10 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	CCP3SEL	T1GSEL	T1GSEL P2BSEL		C2OUTSEL	SSSEL	CCP2SEL	114
CCPxCON	PxM<	1:0> ⁽¹⁾	DCxB	<1:0>		CCPxN	/<3:0>		214
CCPTMRS0	C4TSE	L<1:0>	C3TSE	EL<1:0>	C2TSE	:L<1:0>	C1TSE	L<1:0>	215
CCPTMRS1	_	—	—	—	—	—	C5TSE	L<1:0>	215
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE	84
PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	85
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF	87
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	88
PRx	Timer2/4/6 F	Period Registe	er						187*
TxCON	—		TxOUTPS<3:0> TMRxON TxCKPS<:0>1						
TMRx	Timer2/4/6 N	mer2/4/6 Module Register							187
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	116
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	121
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125

TABLE 23-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Note 1: Applies to ECCP modules only.

Page provides register information.

25.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 25-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 25-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 25-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> the Break character (see <u>Section 25.4.3</u> "Auto-Wake-up on Break").

- 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
- 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 25-6:	BRG COUNTER	CLOCK RATES
-------------	-------------	-------------

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 25-6: AUTOMATIC BAUD RATE CALIBRATION

3RG Value	XXXXh	<u>(</u> 0000h)						001Ch
RX pin		; ; ,	Start	Edge #1	-Edge #2 bit 2bit 3	Edge #3	Edge ; it 5 bit 6	#4 bit 7	– Edge #5 Stop bit
BRG Clock		hunn	nn	nnn	www	uuuu	uuuu	The second se	
	Set by User —	1 1 	י י י						Auto Cleared
ABDEN bit	·`	J	1					L	1
RCIDL			1					∖г	!
RCIF bit			י ו ו						<u> </u>
(Interrupt)		1	1						. /
Read		I I	ı						<u> </u>
NONLO		1						4	•
SPBRGL		I	I	XXh				X	1Ch
SPBRGH				XXh				<u> </u>	00h

26.0 CAPACITIVE SENSING (CPS) MODULE

The Capacitive Sensing (CPS) module allows for an interaction with an end user without a mechanical interface. In a typical application, the CPS module is attached to a pad on a Printed Circuit Board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the CPS module. The CPS module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

- Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- · Multiple current ranges
- Multiple voltage reference modes
- Multiple timer resources
- · Software control
- · Operation during Sleep

FIGURE 26-1: CAPACITIVE SENSING BLOCK DIAGRAM

27.5.3 AUTOMATIC POWER MODE SWITCHING

As an LCD segment is electrically only a capacitor, current is drawn only during the interval where the voltage is switching. To minimize total device current, the LCD internal reference ladder can be operated in a different power mode for the transition portion of the duration. This is controlled by the LCDRL Register (Register 27-7).

The LCDRL register allows switching between two power modes, designated 'A' and 'B'. 'A' power mode is active for a programmable time, beginning at the time when the LCD segments transition. 'B' power mode is the remaining time before the segments or commons change again. The LRLAT<2:0> bits select how long, if any, that the 'A' power mode is active. Refer to Figure 27-4.

To implement this, the 5-bit prescaler used to divide the 32 kHz clock down to the LCD controller's 1 kHz base rate is used to select the power mode.

FIGURE 27-4: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A

FIGURE 27-5: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A WAVEFORM (1/2 MUX, 1/2 BIAS DRIVE)

TABLE 30-8: PIC16(L)F1933 A/D CONVERTER (ADC) CHARACTERISTICS.^(1,2,3)

Standard Operating Conditions (unless otherwise stated)

Operati	ng temp	perature Tested at 25°C					
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD01	NR	Resolution	—		10	bit	
AD02	EIL	Integral Error			±1.7	LSb	VREF = 3.0V
AD03	Edl	Differential Error	_		±1	LSb	No missing codes VREF = 3.0V
AD04	EOFF	Offset Error			±2.5	LSb	VREF = 3.0V
AD05	Egn	Gain Error	_	_	±2.0	LSb	VREF = 3.0V
AD06	VREF	Reference Voltage ⁽⁴⁾	1.8		Vdd	V	VREF = (VREF+ minus VREF-)
AD07	VAIN	Full-Scale Range	Vss		VREF	V	
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	_		10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

4: ADC Reference Voltage (Ref+) is the selected reference input, VREF+ pin, VDD pin or the FVR Buffer1. When the FVR is selected as the reference input, the FVR Buffer1 output selection must be 2.048V or 4.096V, (ADFVR<1:0> = 1x).

TABLE 30-9: PIC16(L)F1933 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
AD130*	TAD	A/D Clock Period	1.0	-	9.0	μS	Tosc-based			
		A/D Internal RC Oscillator Period	1.0	2.5	6.0	μS	ADCS<1:0> = 11 (ADRC mode)			
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		11		TAD	Set GO/DONE bit to conversion complete			
AD132*	TACQ	Acquisition Time	_	5.0	_	μS				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

FIGURE 31-11: IDD TYPICAL, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16F1933 ONLY

