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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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   Bank 4
200h(2) INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory

(not a physical register)
xxxx xxxx xxxx xxx

201h(2) INDF1 Addressing this location uses contents of FSR1H/FSR1L to address data memory
(not a physical register)

xxxx xxxx xxxx xxx

202h(2) PCL Program Counter (PC) Least Significant Byte 0000 0000 0000 000

203h(2) STATUS — — — TO PD Z DC C ---1 1000 ---q quu

204h(2) FSR0L Indirect Data Memory Address 0 Low Pointer 0000 0000 uuuu uuu

205h(2) FSR0H Indirect Data Memory Address 0 High Pointer 0000 0000 0000 000

206h(2) FSR1L Indirect Data Memory Address 1 Low Pointer 0000 0000 uuuu uuu

207h(2) FSR1H Indirect Data Memory Address 1 High Pointer 0000 0000 0000 000

208h(2) BSR — — — BSR<4:0> ---0 0000 ---0 000

209h(2) WREG Working Register 0000 0000 uuuu uuu

20Ah(1, 2) PCLATH — Write Buffer for the upper 7 bits of the Program Counter -000 0000 -000 000

20Bh(2) INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 0000 0000 0000 000

20Ch — Unimplemented — —

20Dh WPUB WPUB7 WPUB6 WPUB5 WPUB4 WPUB3 WPUB2 WPUB1 WPUB0 1111 1111 1111 111

20Eh — Unimplemented — —

20Fh — Unimplemented — —

210h WPUE — — — — WPUE3 — — — ---- 1--- ---- 1--

211h SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register xxxx xxxx uuuu uuu

212h SSPADD ADD<7:0> 0000 0000 0000 000

213h SSPMSK MSK<7:0> 1111 1111 1111 111

214h SSPSTAT SMP CKE D/A P S R/W UA BF 0000 0000 0000 000

215h SSPCON1 WCOL SSPOV SSPEN CKP SSPM<3:0> 0000 0000 0000 000

216h SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 0000 0000 0000 000

217h SSPCON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 0000 0000 0000 000

218h — Unimplemented — —

219h — Unimplemented — —

21Ah — Unimplemented — —

21Bh — Unimplemented — —

21Ch — Unimplemented — —

21Dh — Unimplemented — —

21Eh — Unimplemented — —

21Fh — Unimplemented — —

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on
POR, BOR

Value on a
other 

Resets

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as ‘0’, r = reserved. 
Shaded locations are unimplemented, read as ‘0’.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are 
transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.
3: Unimplemented, read as ‘1’.
 2011-2012 Microchip Technology Inc. DS41575C-page 29
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FIGURE 3-8: INDIRECT ADDRESSING

0x0000

0x0FFF

Traditional

FSR
Address
Range

Data Memory

0x1000
Reserved

Linear
Data Memory

Reserved

0x2000

0x29AF

0x29B0

0x7FFF
0x8000

0xFFFF

0x0000

0x0FFF

0x0000

0x7FFF

Program
Flash Memory

Note: Not all memory regions are completely implemented. Consult device memory tables for memory limits.

0x1FFF
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FIGURE 6-2: BROWN-OUT SITUATIONS 

6.3 Register Definitions: BOR Control
             
REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u U-0 U-0 U-0 U-0 U-0 U-0 R-q/u
SBOREN — — — — — — BORRDY

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7 SBOREN: Software Brown-out Reset Enable bit
If BOREN <1:0> in Configuration Words  01:
SBOREN is read/write, but has no effect on the BOR.
If BOREN <1:0> in Configuration Words = 01:
1 = BOR Enabled
0 = BOR Disabled

bit 6-1 Unimplemented: Read as ‘0’
bit 0 BORRDY: Brown-out Reset Circuit Ready Status bit

1 = The Brown-out Reset circuit is active
0 = The Brown-out Reset circuit is inactive

TPWRT(1)

VBOR 
VDD

Internal
Reset

VBOR 
VDD

Internal
Reset TPWRT(1)< TPWRT

TPWRT(1)

VBOR 
VDD

Internal
Reset

Note 1: TPWRT delay only if PWRTE bit is programmed to ‘0’.
 2011-2012 Microchip Technology Inc. DS41575C-page 71



PIC16(L)F1933

6.11 Determining the Cause of a Reset
Upon any Reset, multiple bits in the STATUS and
PCON register are updated to indicate the cause of the
Reset. Table 6-3 and Table 6-4 show the Reset
conditions of these registers.

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE 

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS(2) 

STKOVF STKUNF RMCLR RI POR BOR TO PD Condition

0 0 1 1 0 x 1 1 Power-on Reset

0 0 1 1 0 x 0 x Illegal, TO is set on POR

0 0 1 1 0 x x 0 Illegal, PD is set on POR

0 0 1 1 u 0 1 1 Brown-out Reset

u u u u u u 0 u WDT Reset 

u u u u u u 0 0 WDT Wake-up from Sleep

u u u u u u 1 0 Interrupt Wake-up from Sleep

u u 0 u u u u u MCLR Reset during normal operation

u u 0 u u u 1 0 MCLR Reset during Sleep

u u u 0 u u u u RESET Instruction Executed

1 u u u u u u u Stack Overflow Reset (STVREN = 1)

u 1 u u u u u u Stack Underflow Reset (STVREN = 1)

Condition Program
Counter

STATUS
Register

PCON
Register

Power-on Reset 0000h ---1 1000 00-- 110x

MCLR Reset during normal operation 0000h ---u uuuu uu-- 0uuu

MCLR Reset during Sleep 0000h ---1 0uuu uu-- 0uuu

WDT Reset 0000h ---0 uuuu uu-- uuuu

WDT Wake-up from Sleep PC + 1 ---0 0uuu uu-- uuuu

Brown-out Reset 0000h ---1 1uuu 00-- 11u0

Interrupt Wake-up from Sleep PC + 1(1) ---1 0uuu uu-- uuuu

RESET Instruction Executed 0000h ---u uuuu uu-- u0uu

Stack Overflow Reset (STVREN = 1) 0000h ---u uuuu 1u-- uuuu

Stack Underflow Reset (STVREN = 1) 0000h ---u uuuu u1-- uuuu

Legend: u = unchanged,   x = unknown, - = unimplemented bit, reads as ‘0’.
Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on 

the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.
2: If a Status bit is not implemented, that bit will be read as ‘0’.
DS41575C-page 74  2011-2012 Microchip Technology Inc.
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7.6.4 PIR1 REGISTER
             
REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0/0 R/W-0/0 R-0/0 R-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 TMR1GIF: Timer1 Gate Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending

bit 6 ADIF: A/D Converter Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending

bit 5 RCIF: USART Receive Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending

bit 4 TXIF: USART Transmit Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending

bit 3 SSPIF: Synchronous Serial Port (MSSP) Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending

bit 2 CCP1IF: CCP1 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending

bit 1 TMR2IF: Timer2 to PR2 Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending

bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit
1 = Interrupt is pending
0 = Interrupt is not pending

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Enable bit, GIE, of the INTCON register.
User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
DS41575C-page 86  2011-2012 Microchip Technology Inc.
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10.1 Independent Clock Source
The WDT derives its time base from the 31 kHz
LFINTOSC internal oscillator. Time intervals in this
chapter are based on a nominal interval of 1 ms. See
the Electrical Specifications Chapters for the
LFINTOSC tolerances.

10.2 WDT Operating Modes
The Watchdog Timer module has four operating modes
controlled by the WDTE<1:0> bits in Configuration
Words. See Table 10-1.

10.2.1 WDT IS ALWAYS ON
When the WDTE bits of Configuration Words are set to
‘11’, the WDT is always on. 

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP
When the WDTE bits of Configuration Words are set to
‘10’, the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE
When the WDTE bits of Configuration Words are set to
‘01’, the WDT is controlled by the SWDTEN bit of the
WDTCON register.

WDT protection is unchanged by Sleep. See
Table 10-1 for more details.

TABLE 10-1: WDT OPERATING MODES

10.3 Time-Out Period
The WDTPS bits of the WDTCON register set the
time-out period from 1 ms to 256 seconds (nominal).
After a Reset, the default time-out period is two
seconds.

10.4 Clearing the WDT
The WDT is cleared when any of the following
conditions occur:

• Any Reset
• CLRWDT instruction is executed
• Device enters Sleep
• Device wakes up from Sleep
• Oscillator fail
• WDT is disabled
• Oscillator Start-up TImer (OST) is running

See Table 10-2 for more information.

10.5 Operation During Sleep
When the device enters Sleep, the WDT is cleared. If
the WDT is enabled during Sleep, the WDT resumes
counting.

When the device exits Sleep, the WDT is cleared
again. The WDT remains clear until the OST, if
enabled, completes. See Section 5.0 “Oscillator
Module (with Fail-Safe Clock Monitor)” for more
information on the OST.

When a WDT time-out occurs while the device is in
Sleep, no Reset is generated. Instead, the device wakes
up and resumes operation. The TO and PD bits in the
STATUS register are changed to indicate the event. See
Section 3.0 “Memory Organization” and STATUS
register (Register 3-1) for more information.

WDTE<1:0> SWDTEN Device 
Mode

WDT 
Mode

11 X X Active

10 X
Awake Active

Sleep Disabled

01
1 X Active

0 X Disabled

00 X X Disabled

TABLE 10-2: WDT CLEARING CONDITIONS
Conditions WDT

WDTE<1:0> = 00

Cleared

WDTE<1:0> = 01 and SWDTEN = 0
WDTE<1:0> = 10 and enter Sleep
CLRWDT Command
Oscillator Fail Detected
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK
Exit Sleep + System Clock = XT, HS, LP Cleared until the end of OST
Change INTOSC divider (IRCF bits) Unaffected
DS41575C-page 96  2011-2012 Microchip Technology Inc.
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TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER  

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register 
on Page

OSCCON SPLLEN IRCF<3:0> — SCS<1:0> 66
STATUS — — — TO PD Z DC C 18
WDTCON — — WDTPS<4:0> SWDTEN 97
Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by Watchdog Timer.

Name Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 Bit 10/2 Bit 9/1 Bit 8/0 Register 
on Page

CONFIG1
13:8 — — FCMEN IESO CLKOUTEN BOREN<1:0> CPD

46
7:0 CP MCLRE PWRTE WDTE<1:0> FOSC<2:0>

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Watchdog Timer.
DS41575C-page 98  2011-2012 Microchip Technology Inc.
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11.3.2 ERASING FLASH PROGRAM 

MEMORY
While executing code, program memory can only be
erased by rows. To erase a row:

1. Load the EEADRH:EEADRL register pair with
the address of new row to be erased.

2. Clear the CFGS bit of the EECON1 register.
3. Set the EEPGD, FREE and WREN bits of the

EECON1 register.
4. Write 55h, then AAh, to EECON2 (Flash

programming unlock sequence).
5. Set control bit WR of the EECON1 register to

begin the erase operation.
6. Poll the FREE bit in the EECON1 register to

determine when the row erase has completed.

See Example 11-4.

After the “BSF EECON1,WR” instruction, the processor
requires two cycles to set up the erase operation. The
user must place two NOP instructions after the WR bit is
set. The processor will halt internal operations for the
typical 2 ms erase time. This is not Sleep mode as the
clocks and peripherals will continue to run. After the
erase cycle, the processor will resume operation with
the third instruction after the EECON1 write instruction.

11.3.3 WRITING TO FLASH PROGRAM 
MEMORY

Program memory is programmed using the following
steps:

1. Load the starting address of the word(s) to be
programmed.

2. Load the write latches with data.
3. Initiate a programming operation.
4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be
written must be erased or previously unwritten.
Program memory can only be erased one row at a time.
No automatic erase occurs upon the initiation of the
write. 

Program memory can be written one or more words at
a time. The maximum number of words written at one
time is equal to the number of write latches. See
Figure 11-2 (block writes to program memory with eight
write latches) for more details. The write latches are
aligned to the address boundary defined by EEADRL
as shown in Table 11-1. Write operations do not cross
these boundaries. At the completion of a program
memory write operation, the write latches are reset to
contain 0x3FFF. 

The following steps should be completed to load the
write latches and program a block of program memory.
These steps are divided into two parts. First, all write
latches are loaded with data except for the last program
memory location. Then, the last write latch is loaded
and the programming sequence is initiated. A special
unlock sequence is required to load a write latch with
data or initiate a Flash programming operation. This
unlock sequence should not be interrupted.

1. Set the EEPGD and WREN bits of the EECON1
register.

2. Clear the CFGS bit of the EECON1 register.
3. Set the LWLO bit of the EECON1 register. When

the LWLO bit of the EECON1 register is ‘1’, the
write sequence will only load the write latches
and will not initiate the write to Flash program
memory.

4. Load the EEADRH:EEADRL register pair with
the address of the location to be written.

5. Load the EEDATH:EEDATL register pair with
the program memory data to be written.

6. Write 55h, then AAh, to EECON2, then set the
WR bit of the EECON1 register (Flash
programming unlock sequence). The write latch
is now loaded.

7. Increment the EEADRH:EEADRL register pair
to point to the next location.

8. Repeat steps 5 through 7 until all but the last
write latch has been loaded.

9. Clear the LWLO bit of the EECON1 register.
When the LWLO bit of the EECON1 register is
‘0’, the write sequence will initiate the write to
Flash program memory.

10. Load the EEDATH:EEDATL register pair with
the program memory data to be written.

11. Write 55h, then AAh, to EECON2, then set the
WR bit of the EECON1 register (Flash
programming unlock sequence). The entire
latch block is now written to Flash program
memory.

It is not necessary to load the entire write latch block
with user program data. However, the entire write latch
block will be written to program memory.

An example of the complete write sequence for eight
words is shown in Example 11-5. The initial address is
loaded into the EEADRH:EEADRL register pair; the
eight words of data are loaded using indirect
addressing.

Note: The code sequence provided in
Example 11-5 must be repeated multiple
times to fully program an erased program
memory row.
DS41575C-page 104  2011-2012 Microchip Technology Inc.
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NOTES:
DS41575C-page 136  2011-2012 Microchip Technology Inc.
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TABLE 18-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE  

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register 
on Page

CM1CON0 C1ON C1OUT C1OE C1POL --- C1SP C1HYS C1SYNC 163
CM2CON0 C2ON C2OUT C2OE C2POL — C2SP C2HYS C2SYNC 163
CM1CON1 C1NTP C1INTN C1PCH<1:0> — — C1NCH<1:0> 164
CM2CON1 C2NTP C2INTN C2PCH<1:0> — — C2NCH<1:0> 164
CMOUT — — — — — — MC2OUT MC1OUT 164
FVRCON FVREN FVRRDY TSEN TSRNG CDAFVR<1:0> ADFVR<1:0> 135
DACCON0 DACEN DACLPS DACOE — DACPSS<1:0> — DACNSS 156
DACCON1 — — — DACR<4:0> 156
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 82
PIE2 OSFIE C2IE C1IE EEIE BCLIE LCDIE — CCP2IE 84
PIR2 OSFIF C2IF C1IF EEIF BCLIF LCDIF — CCP2IF 87
TRISA TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 116
TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 121
ANSELA — — ANSA5 ANSA4 ANSA3 ANSA2 ANSA1 ANSA0 117
ANSELB — — ANSB5 ANSB4 ANSB3 ANSB2 ANSB1 ANSB0 122
Legend: — = unimplemented location, read as ‘0’. Shaded cells are unused by the comparator module.
 2011-2012 Microchip Technology Inc. DS41575C-page 165
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19.0 SR LATCH
The module consists of a single SR latch with multiple
Set and Reset inputs as well as separate latch outputs.
The SR latch module includes the following features:

• Programmable input selection
• SR latch output is available externally
• Separate Q and Q outputs
• Firmware Set and Reset

The SR latch can be used in a variety of analog appli-
cations, including oscillator circuits, one-shot circuit,
hysteretic controllers, and analog timing applications.

19.1 Latch Operation
The latch is a Set-Reset Latch that does not depend on
a clock source. Each of the Set and Reset inputs are
active-high. The latch can be set or reset by:

• Software control (SRPS and SRPR bits)
• Comparator C1 output (sync_C1OUT)
• Comparator C2 output (sync_C2OUT)
• SRI pin
• Programmable clock (SRCLK)

The SRPS and the SRPR bits of the SRCON0 register
may be used to set or reset the SR latch, respectively.
The latch is Reset-dominant. Therefore, if both Set and
Reset inputs are high, the latch will go to the Reset
state. Both the SRPS and SRPR bits are self resetting
which means that a single write to either of the bits is all
that is necessary to complete a latch Set or Reset oper-
ation.

The output from Comparator C1 or C2 can be used as
the Set or Reset inputs of the SR latch. The output of
either comparator can be synchronized to the Timer1
clock source. See Section 18.0 “Comparator
Module” and Section 21.0 “Timer1 Module with
Gate Control” for more information.

An external source on the SRI pin can be used as the
Set or Reset inputs of the SR latch. 

An internal clock source is available that can periodically
set or reset the SR latch. The SRCLK<2:0> bits in the
SRCON0 register are used to select the clock source
period. The SRSCKE and SRRCKE bits of the SRCON1
register enable the clock source to set or reset the SR
latch, respectively.

19.2 Latch Output
The SRQEN and SRNQEN bits of the SRCON0
register control the Q and Q latch outputs. Both of the
SR latch outputs may be directly output to an I/O pin at
the same time. The Q latch output pin function can be
moved to an alternate pin using the SRNQSEL bit of
the APFCON register.

The applicable TRIS bit of the corresponding port must
be cleared to enable the port pin output driver. 

19.3 Effects of a Reset
Upon any device Reset, the SR latch output is not
initialized to a known state. The user’s firmware is
responsible for initializing the latch output before
enabling the output pins.
 2011-2012 Microchip Technology Inc. DS41575C-page 167
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23.4.2.1 Direction Change in Full-Bridge 

Mode
In the Full-Bridge mode, the PxM1 bit in the CCPxCON
register allows users to control the forward/reverse
direction. When the application firmware changes this
direction control bit, the module will change to the new
direction on the next PWM cycle.

A direction change is initiated in software by changing
the PxM1 bit of the CCPxCON register. The following
sequence occurs four Timer cycles prior to the end of
the current PWM period:

• The modulated outputs (PxB and PxD) are placed 
in their inactive state.

• The associated unmodulated outputs (PxA and 
PxC) are switched to drive in the opposite 
direction.

• PWM modulation resumes at the beginning of the 
next period.

See Figure 23-12 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band
delay. As one output is modulated at a time, dead-band
delay is generally not required. There is a situation
where dead-band delay is required. This situation
occurs when both of the following conditions are true:

1. The direction of the PWM output changes when
the duty cycle of the output is at or near 100%.

2. The turn off time of the power switch, including
the power device and driver circuit, is greater
than the turn on time.

Figure 23-13 shows an example of the PWM direction
changing from forward to reverse, at a near 100% duty
cycle. In this example, at time t1, the output PxA and
PxD become inactive, while output PxC becomes
active. Since the turn-off time of the power devices is
longer than the turn-on time, a shoot-through current
will flow through power devices QC and QD (see
Figure 23-10) for the duration of ‘t’. The same
phenomenon will occur to power devices QA and QB
for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required
for an application, two possible solutions for eliminating
the shoot-through current are:

1. Reduce PWM duty cycle for one PWM period
before changing directions.

2. Use switch drivers that can drive the switches off
faster than they can drive them on.

Other options to prevent shoot-through current may
exist.

FIGURE 23-12: EXAMPLE OF PWM DIRECTION CHANGE

Pulse Width

Period(1)
Signal

Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.
2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The

modulated PxB and PxD signals are inactive at this time. The length of this time is four Timer counts.

Period

(2)

PxA (Active-High)

PxB (Active-High)

PxC (Active-High)

PxD (Active-High)

Pulse Width
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FIGURE 23-13: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

Forward Period Reverse Period

PxA

TON

TOFF

T = TOFF – TON

PxB

PxC

PxD

External Switch D

Potential
Shoot-Through Current

Note 1: All signals are shown as active-high.
2: TON is the turn-on delay of power switch QC and its driver.
3: TOFF is the turn-off delay of power switch QD and its driver.

External Switch C

t1

PW

PW
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23.4.6.1 Steering Synchronization
The STRxSYNC bit of the PSTRxCON register gives
the user two selections of when the steering event will
happen. When the STRxSYNC bit is ‘0’, the steering
event will happen at the end of the instruction that
writes to the PSTRxCON register. In this case, the
output signal at the Px<D:A> pins may be an
incomplete PWM waveform. This operation is useful
when the user firmware needs to immediately remove
a PWM signal from the pin.

When the STRxSYNC bit is ‘1’, the effective steering
update will happen at the beginning of the next PWM
period. In this case, steering on/off the PWM output will
always produce a complete PWM waveform.

Figures 23-19 and 23-20 illustrate the timing diagrams
of the PWM steering depending on the STRxSYNC
setting.

23.4.7 START-UP CONSIDERATIONS
When any PWM mode is used, the application
hardware must use the proper external pull-up and/or
pull-down resistors on the PWM output pins.

The CCPxM<1:0> bits of the CCPxCON register allow
the user to choose whether the PWM output signals are
active-high or active-low for each pair of PWM output
pins (PxA/PxC and PxB/PxD). The PWM output
polarities must be selected before the PWM pin output

drivers are enabled. Changing the polarity
configuration while the PWM pin output drivers are
enable is not recommended since it may result in
damage to the application circuits.

The PxA, PxB, PxC and PxD output latches may not be
in the proper states when the PWM module is
initialized. Enabling the PWM pin output drivers at the
same time as the Enhanced PWM modes may cause
damage to the application circuit. The Enhanced PWM
modes must be enabled in the proper Output mode and
complete a full PWM cycle before enabling the PWM
pin output drivers. The completion of a full PWM cycle
is indicated by the TMRxIF bit of the PIRx register
being set as the second PWM period begins. 

FIGURE 23-19: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRxSYNC = 0)   

FIGURE 23-20: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION
(STRxSYNC = 1)   

Note: When the microcontroller is released from
Reset, all of the I/O pins are in the
high-impedance state. The external cir-
cuits must keep the power switch devices
in the Off state until the microcontroller
drives the I/O pins with the proper signal
levels or activates the PWM output(s).

PWM

P1n = PWM

STRx

P1<D:A> PORT Data

PWM Period

PORT Data

PWM

PORT Data

P1n = PWM

STRx

P1<D:A> PORT Data
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24.5.4 SLAVE MODE 10-BIT ADDRESS 

RECEPTION
This section describes a standard sequence of events
for the MSSP module configured as an I2C Slave in
10-bit Addressing mode. 

Figure 24-20 is used as a visual reference for this
description.

This is a step by step process of what must be done by
slave software to accomplish I2C communication.

1. Bus starts Idle.
2. Master sends Start condition; S bit of SSPSTAT

is set; SSPIF is set if interrupt on Start detect is
enabled.

3. Master sends matching high address with R/W
bit clear; UA bit of the SSPSTAT register is set.

4. Slave sends ACK and SSPIF is set.
5. Software clears the SSPIF bit.
6. Software reads received address from SSPBUF

clearing the BF flag.
7. Slave loads low address into SSPADD,

releasing SCL.
8. Master sends matching low address byte to the

Slave; UA bit is set.

9. Slave sends ACK and SSPIF is set.

10. Slave clears SSPIF.
11. Slave reads the received matching address

from SSPBUF clearing BF.
12. Slave loads high address into SSPADD.
13. Master clocks a data byte to the slave and

clocks out the slaves ACK on the 9th SCL pulse;
SSPIF is set.

14. If SEN bit of SSPCON2 is set, CKP is cleared by
hardware and the clock is stretched.

15. Slave clears SSPIF.
16. Slave reads the received byte from SSPBUF

clearing BF.
17. If SEN is set the slave sets CKP to release the

SCL.
18. Steps 13-17 repeat for each received byte.
19. Master sends Stop to end the transmission.

24.5.5 10-BIT ADDRESSING WITH 
ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or
DHEN set is the same as with 7-bit modes. The only
difference is the need to update the SSPADD register
using the UA bit. All functionality, specifically when the
CKP bit is cleared and SCL line is held low are the
same. Figure 24-21 can be used as a reference of a
slave in 10-bit addressing with AHEN set. 

Figure 24-22 shows a standard waveform for a slave
transmitter in 10-bit Addressing mode.

Note: Updates to the SSPADD register are not
allowed until after the ACK sequence.

Note: If the low address does not match, SSPIF
and UA are still set so that the slave soft-
ware can set SSPADD back to the high
address. BF is not set because there is no
match. CKP is unaffected.
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24.6.13.2 Bus Collision During a Repeated 

Start Condition
During a Repeated Start condition, a bus collision
occurs if: 

a) A low level is sampled on SDA when SCL goes
from a low level to a high level.

b) SCL goes low before SDA is asserted low,
indicating that another master is attempting to
transmit a data ‘1’.

When the user releases SDA and the pin is allowed to
float high, the BRG is loaded with SSPADD and counts
down to zero. The SCL pin is then deasserted and
when sampled high, the SDA pin is sampled. 

If SDA is low, a bus collision has occurred (i.e., another
master is attempting to transmit a data ‘0’, Figure 24-36).
If SDA is sampled high, the BRG is reloaded and begins
counting. If SDA goes from high-to-low before the BRG
times out, no bus collision occurs because no two
masters can assert SDA at exactly the same time. 

If SCL goes from high-to-low before the BRG times out
and SDA has not already been asserted, a bus collision
occurs. In this case, another master is attempting to
transmit a data ‘1’ during the Repeated Start condition,
see Figure 24-37.

If, at the end of the BRG time-out, both SCL and SDA
are still high, the SDA pin is driven low and the BRG is
reloaded and begins counting. At the end of the count,
regardless of the status of the SCL pin, the SCL pin is
driven low and the Repeated Start condition is
complete. 

FIGURE 24-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)        

FIGURE 24-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)      

SDA

SCL

RSEN

BCLIF

S

SSPIF

Sample SDA when SCL goes high.
If SDA = 0, set BCLIF and release SDA and SCL.

Cleared by software

’0’

’0’

SDA

SCL

BCLIF

RSEN

S

SSPIF

Interrupt cleared
by software

SCL goes low before SDA,
set BCLIF. Release SDA and SCL.

TBRG TBRG

’0’
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26.5 Timer Resources
To measure the change in frequency of the capacitive
sensing oscillator, a fixed time base is required. For the
period of the fixed time base, the capacitive sensing
oscillator is used to clock either Timer0 or Timer1. The
frequency of the capacitive sensing oscillator is equal
to the number of counts in the timer divided by the
period of the fixed time base.

26.6 Fixed Time Base
To measure the frequency of the capacitive sensing
oscillator, a fixed time base is required. Any timer
resource or software loop can be used to establish the
fixed time base. It is up to the end user to determine the
method in which the fixed time base is generated.

26.6.1 TIMER0
To select Timer0 as the timer resource for the capacitive
sensing module:

• Set the T0XCS bit of the CPSCON0 register.
• Clear the TMR0CS bit of the OPTION_REG 

register.

When Timer0 is chosen as the timer resource, the
capacitive sensing oscillator will be the clock source for
Timer0. Refer to Section 20.0 “Timer0 Module” for
additional information.

26.6.2 TIMER1
To select Timer1 as the timer resource for the
Capacitive Sensing module, set the TMR1CS<1:0> of
the T1CON register to ‘11’. When Timer1 is chosen as
the timer resource, the capacitive sensing oscillator will
be the clock source for Timer1. Because the Timer1
module has a gate control, developing a time base for
the frequency measurement can be simplified by using
the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in con-
junction with the Toggle mode of the Timer1 gate, be
used to develop the fixed time base required by the
software portion of the Capacitive Sensing module.
Refer to Section 21.11 “Register Definitions: Timer1
Control” for additional information.

TABLE 26-2: TIMER1 ENABLE FUNCTION 

26.7 Software Control
The software portion of the capacitive sensing module
is required to determine the change in frequency of the
capacitive sensing oscillator. This is accomplished by
the following:

• Setting a fixed time base to acquire counts on 
Timer0 or Timer1.

• Establishing the nominal frequency for the 
capacitive sensing oscillator.

• Establishing the reduced frequency for the 
capacitive sensing oscillator due to an additional 
capacitive load.

• Set the frequency threshold.

26.7.1 NOMINAL FREQUENCY
(NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive
sensing oscillator:

• Remove any extra capacitive load on the selected 
CPSx pin.

• At the start of the fixed time base, clear the timer 
resource.

• At the end of the fixed time base save the value in 
the timer resource.

The value of the timer resource is the number of
oscillations of the capacitive sensing oscillator for the
given time base. The frequency of the capacitive
sensing oscillator is equal to the number of counts on
in the timer divided by the period of the fixed time base.

26.7.2 REDUCED FREQUENCY 
(ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the
capacitive sensing oscillator to decrease. To determine
the reduced frequency of the capacitive sensing
oscillator:

• Add a typical capacitive load on the selected 
CPSx pin.

• Use the same fixed time base as the nominal 
frequency measurement.

• At the start of the fixed time base, clear the timer 
resource.

• At the end of the fixed time base save the value in 
the timer resource.

The value of the timer resource is the number of oscil-
lations of the capacitive sensing oscillator with an addi-
tional capacitive load. The frequency of the capacitive
sensing oscillator is equal to the number of counts on
in the timer divided by the period of the fixed time base.
This frequency should be less than the value obtained
during the nominal frequency measurement.

Note: The fixed time base can not be generated
by the timer resource that the capacitive
sensing oscillator is clocking.

TMR1ON TMR1GE Timer1 Operation

0 0 Off
0 1 Off
1 0 On

1 1 Count Enabled by input
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FIGURE 27-14: TYPE-B WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE 
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FIGURE 31-3: IDD TYPICAL, XT AND EXTRC OSCILLATOR MODE, PIC16LF1933 ONLY

FIGURE 31-4: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16LF1933 ONLY
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FIGURE 31-47: IPD, COMPARATOR, NORMAL-POWER MODE, CxSP = 1, PIC16LF1933 ONLY

FIGURE 31-48: IPD, COMPARATOR, NORMAL-POWER MODE, CxSP = 1, PIC16F1933 ONLY
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