

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1933-e-sp

Email: info@E-XFL.COM

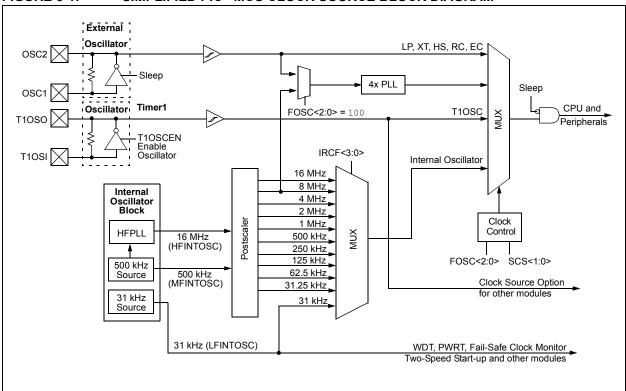
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2:	PIC16(L)F1933 PINOUT DESCRIPTION (CONTINUED)
-------------------	--

Name	Function	Input Type	Output Type	Description
RC6/TX/CK/CCP3/P3A/SEG9	RC6	ST	CMOS	General purpose I/O.
	TX	_	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
	CCP3	ST	CMOS	Capture/Compare/PWM.
	P3A	_	CMOS	PWM output.
	SEG9	_	AN	LCD Analog output.
RC7/RX/DT/P3B/SEG8	RC7	ST	CMOS	General purpose I/O.
	RX	ST	_	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
	P3B	_	CMOS	PWM output.
	SEG8	_	AN	LCD Analog output.
RE3/MCLR/VPP	RE3	TTL	_	General purpose input.
	MCLR	ST	_	Master Clear with internal pull-up.
	VPP	HV	_	Programming voltage.
VDD	Vdd	Power	_	Positive supply.
Vss	Vss	Power	_	Ground reference.

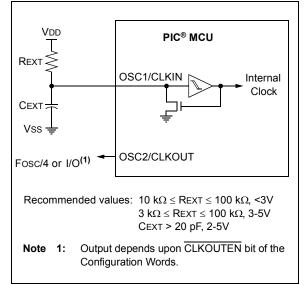
Legend: AN = Analog input or output CMOS = CMOS compatible input or output

OD = Open Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I²C[™] = Schmitt Trigger input with I²C HV = High Voltage XTAL = Crystal levels


Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1933 devices only.

TABLE 3-4: PIC16(L)F1933 MEMORY MAP, BANKS 8-15


	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	INDF0	480h	INDF0	500h	INDF0	580h	INDF0	600h	INDF0	680h	INDF0	700h	INDF0	780h	INDF0
401h	INDF1	481h	INDF1	501h	INDF1	581h	INDF1	601h	INDF1	681h	INDF1	701h	INDF1	781h	INDF1
402h	PCL	482h	PCL	502h	PCL	582h	PCL	602h	PCL	682h	PCL	702h	PCL	782h	PCL
403h	STATUS	483h	STATUS	503h	STATUS	583h	STATUS	603h	STATUS	683h	STATUS	703h	STATUS	783h	STATUS
404h	FSR0L	484h	FSR0L	504h	FSR0L	584h	FSR0L	604h	FSR0L	684h	FSR0L	704h	FSR0L	784h	FSR0L
405h	FSR0H	485h	FSR0H	505h	FSR0H	585h	FSR0H	605h	FSR0H	685h	FSR0H	705h	FSR0H	785h	FSR0H
406h	FSR1L	486h	FSR1L	506h	FSR1L	586h	FSR1L	606h	FSR1L	686h	FSR1L	706h	FSR1L	786h	FSR1L
407h	FSR1H	487h	FSR1H	507h	FSR1H	587h	FSR1H	607h	FSR1H	687h	FSR1H	707h	FSR1H	787h	FSR1H
408h	BSR	488h	BSR	508h	BSR	588h	BSR	608h	BSR	688h	BSR	708h	BSR	788h	BSR
409h	WREG	489h	WREG	509h	WREG	589h	WREG	609h	WREG	689h	WREG	709h	WREG	789h	WREG
40Ah	PCLATH	48Ah	PCLATH	50Ah	PCLATH	58Ah	PCLATH	60Ah	PCLATH	68Ah	PCLATH	70Ah	PCLATH	78Ah	PCLATH
40Bh	INTCON	48Bh	INTCON	50Bh	INTCON	58Bh	INTCON	60Bh	INTCON	68Bh	INTCON	70Bh	INTCON	78Bh	INTCON
40Ch	—	48Ch	—	50Ch		58Ch		60Ch		68Ch	—	70Ch		78Ch	_
40Dh	—	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	—	70Dh	_	78Dh	—
40Eh	—	48Eh	—	50Eh		58Eh		60Eh		68Eh	—	70Eh	_	78Eh	—
40Fh	—	48Fh	—	50Fh	—	58Fh	—	60Fh	—	68Fh	—	70Fh	_	78Fh	—
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	_	790h	—
411h	—	491h	—	511h	—	591h	—	611h	—	691h	—	711h	_	791h	
412h	—	492h	—	512h	_	592h		612h		692h	—	712h		792h	
413h	_	493h	_	513h		593h		613h		693h		713h	_	793h	
414h	—	494h	_	514h		594h		614h		694h		714h	_	794h	
415h	TMR4	495h	—	515h		595h		615h		695h		715h		795h	
416h	PR4	496h	—	516h		596h		616h		696h	_	716h		796h	
417h	T4CON	497h	—	517h	—	597h	_	617h		697h	_	717h	_	797h	
418h	—	498h	—	518h	—	598h		618h	—	698h	—	718h	_	798h	
419h	_	499h	—	519h	—	599h	_	619h	_	699h	_	719h	_	799h	
41Ah	_	49Ah		51Ah		59Ah		61Ah		69Ah		71Ah		79Ah	
41Bh	—	49Bh	—	51Bh	—	59Bh		61Bh		69Bh		71Bh	_	79Bh	See Table 3-7
41Ch	TMR6	49Ch		51Ch		59Ch		61Ch		69Ch		71Ch		79Ch	
41Dh	PR6	49Dh	—	51Dh	—	59Dh	_	61Dh	_	69Dh	—	71Dh	_	79Dh	
41Eh	T6CON	49Eh		51Eh		59Eh		61Eh		69Eh		71Eh		79Eh	
41Fh	_	49Fh	—	51Fh	—	59Fh		61Fh		69Fh		71Fh	_	79Fh	
420h		4A0h		520h		5A0h		620h		6A0h		720h		7A0h	
	Unimplemented Read as '0'														
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h – 7Fh		Accesses 70h – 7Fh												
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'.

FIGURE 5-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

FIGURE 5-6: EXTERNAL RC MODES

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

5.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

5.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables in Section 30.0 "Electrical Specifications".

5.6 Register Definitions: Oscillator Control

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN		IRCF	<3:0>		_	SCS	<1:0>
bit 7							bit 0
Legend:							
R = Readable		W = Writable		U = Unimplem			
u = Bit is unch	nanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	OR/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	If PLLEN in (SPLLEN bit i	Configuration W	ords = <u>1:</u> LL is always e	nabled (subject	to oscillator r	equirements)	
bit 6-3	1111 = 16 M 1110 = 8 M 1101 = 4 M 1100 = 2 M 1011 = 1 M 1010 = 500 1001 = 250 1000 = 125	Hz or 32 MHz H Hz HF Hz HF kHz HF ⁽¹⁾ kHz HF ⁽¹⁾ kHz HF ⁽¹⁾ kHz MF (defau kHz MF kHz MF kHz MF 5 kHz MF 25 kHz HF ⁽¹⁾ 25 kHz MF	IF(see <mark>Sectio</mark>	n 5.2.2.1 "HFIN	ITOSC")		
bit 2	Unimpleme	nted: Read as '	0'				
bit 1-0	1x = Internal 01 = Timer1			Configuration W	/ords.		

Note 1: Duplicate frequency derived from HFINTOSC.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	nanged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set '0' = Bit is cleared			ared							
bit 7-0	RA<7:0>: PC	ORTA I/O Value	bits ⁽¹⁾							

1 = Port pin is > VIH

0 = Port pin is < VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

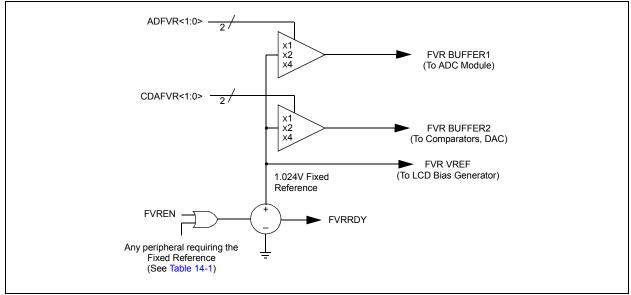
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISA<7:0>: PORTA Tri-State Control bits

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER


| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾

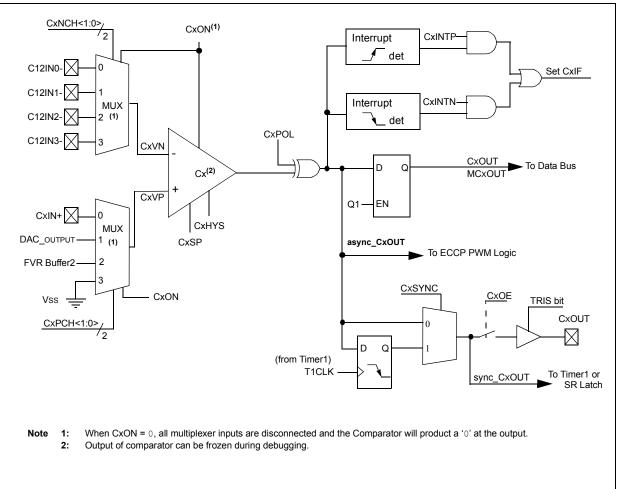
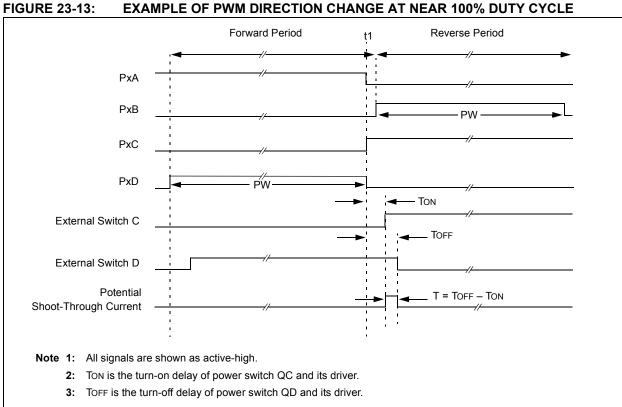

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

FIGURE 14-1: VOLTAGE REFERENCE BLOCK DIAGRAM

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFM		ADCS<2:0>		_	ADNREF	ADPRE	EF<1:0>
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared				
bit 7	1 = Right ju: loaded.	Result Format S stified. Six Most ified. Six Least	Significant bi				
bit 6-4	111 = FRC (110 = Fosc 101 = Fosc 100 = Fosc	/16 /4 /clock supplied f /32 /8	rom a dedicat	ed RC oscillato			
bit 3	Unimpleme	nted: Read as '	0'				
bit 2	1 = VREF- i	/D Negative Vol s connected to s connected to	external VREF		n bit		
bit 1-0	11 = VREF+		internal Fixed external VREF	Voltage Refere		dule ⁽¹⁾	

Note 1: When selecting the FVR or the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See **Section 30.0 "Electrical Specifications**" for details.


FIGURE 18-2: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP2CON	P2M<	P2M<1:0> DC2B<1:0> CCP2M<3:0>						214	
INTCON	GIE	IE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF					IOCIF	82	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	85
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
PIR3	_	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	88
PR2	Timer2 Mod	dule Period	Register						187*
PR4	Timer4 Mod	Timer4 Module Period Register							187*
PR6	Timer6 Module Period Register						187*		
T2CON	—		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	189
T4CON	_		T4OUT	PS<3:0>		TMR4ON	T4CKP	S<1:0>	189
T6CON	_							189	
TMR2	Holding Register for the 8-bit TMR2 Register						187*		
TMR4	Holding Re	Holding Register for the 8-bit TMR4 Register ⁽¹⁾							187*
TMR6	Holding Re	gister for the	e 8-bit TMR6	6 Register ⁽¹⁾					187*

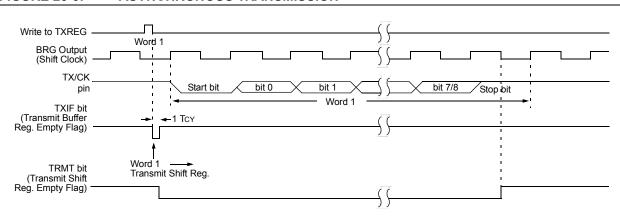
TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

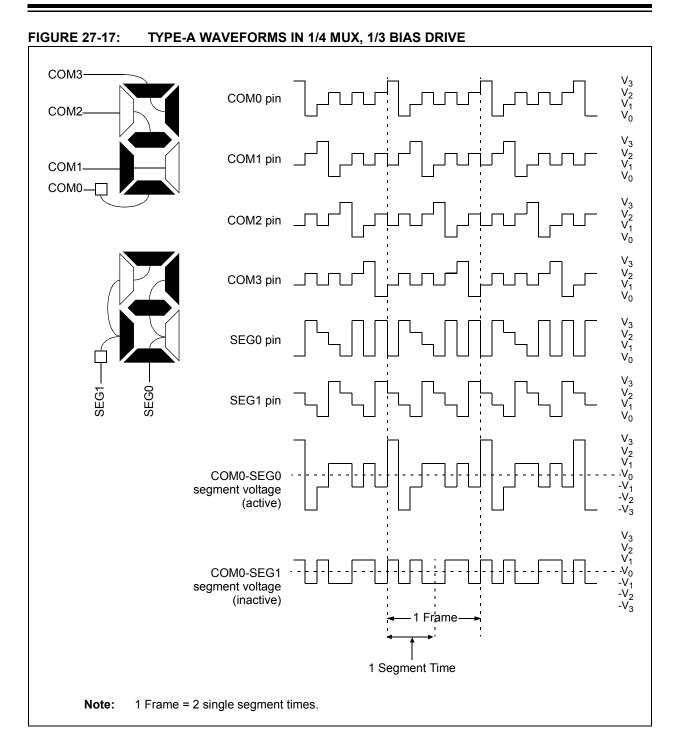
* Page provides register information.

25.1.1.5 TSR Status

The TRMT bit of the TXSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.


Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

25.1.1.6 Transmitting 9-Bit Characters


The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 25.1.2.7** "Address **Detection**" for more information on the address mode.

- 25.1.1.7 Asynchronous Transmission Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXREG register. This will start the transmission.

FIGURE 25-3: ASYNCHRONOUS TRANSMISSION

IADLE 21-3.									
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
LCDCON	LCDEN	SLPEN	WERR	—	CS<	<1:0>	LMUX	(<1:0>	315
LCDCST	_	—	_	—	_	I	_CDCST<2:0	>	318
LCDDATA0	SEG7 COM0	SEG6 COM0	SEG5 COM0	SEG4 COM0	SEG3 COM0	SEG2 COM0	SEG1 COM0	SEG0 COM0	319
LCDDATA1	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG9 COM0	SEG8 COM0	319
LCDDATA3	SEG7 COM1	SEG6 COM1	SEG5 COM1	SEG4 COM1	SEG3 COM1	SEG2 COM1	SEG1 COM1	SEG0 COM1	319
LCDDATA4	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG9 COM1	SEG8 COM1	319
LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	319
LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	319
LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	319
LCDDATA10	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	319
LCDPS	WFT	BIASMD	LCDA	WA		LP<	<3:0>		316
LCDREF	LCDIRE	LCDIRS	LCDIRI	—	VLCD3PE	VLCD2PE	VLCD1PE	—	317
LCDRL	LRLA	P<1:0>	LRLBF	P<1:0>	_		LRLAT<2:0>		326
LCDSE0				SE	<7:0>				319
LCDSE1				SE	<15:8>				319
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE	84
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	87
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	183

TABLE 27-9: SUMMARY OF REGISTERS ASSOCIATED WITH LCD OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the LCD module.

TABLE 29-3:	PIC16(L)F1933 INSTRUCTION SET (CONTINUED)
-------------	---

Mnemonic, Operands		Description C			14-Bit	Opcode)	Status	Notes
				MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0 k k k	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS					•	
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	-	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED					•	
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	Onkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

 $W<3:0> \le k<3:0>$

RRF	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RRF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				
	C Register f				

SUBLW	Subtract W	/ from literal			
Syntax:	[label] Sl	JBLW k			
Operands:	$0 \leq k \leq 255$				
Operation:	$k \operatorname{-} (W) \operatorname{\rightarrow} (W$	/)			
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's com- plement method) from the eight-bit literal 'k'. The result is placed in the W register.				
	C = 0	W > k			
	C = 1	$W \le k$			
	DC = 0	W<3:0> > k<3:0>			

DC = 1

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT}, \\ 0 \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

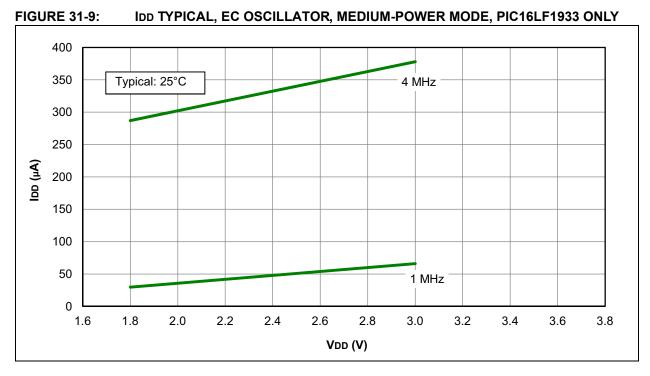
SUBWF	Subtract W from f					
Syntax:	[<i>label</i>] SU	BWF f,d				
oporariaor	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	$(f) - (W) \to (d$	estination)				
Status Affected:	C, DC, Z					
·	register from result is store	is '1', the result is stored				
	C = 0	W > f				
	C = 1	$W \leq f$				

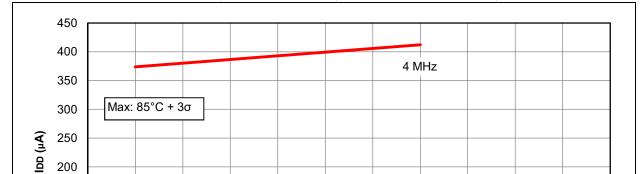
0	VV > 1
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W<3:0> \le f<3:0>$

SUBWFB	Subtract W from f with Borrow					
Syntax:	SUBWFB f {,d}					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$					
Status Affected:	C, DC, Z					
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					

30.2 DC Characteristics: Supply Currents (IDD) (Continued)

PIC16LF	1933	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
PIC16F1933			- F				less otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended		
Param Device Min.			Typ† Max. Units		Units	Conditions			
No.	Characteristics		IJPI	max.	Units	VDD	Note		
	Supply Current (IDD) ^{(1,}	2)							
D013		—	60	90	μA	1.8	Fosc = 500 kHz		
			85	135	μA	3.0	EC Oscillator Low-Power mode		
D013			60	137	μA	1.8	Fosc = 500 kHz		
			85	194	μA	3.0	EC Oscillator Low-Power mode (Note 5)		
			95	230	μA	5.0			
D014			300	340	μA	1.8	Fosc = 4 MHz		
		—	400	650	μA	3.0	EC Oscillator mode Medium-Power mode		
D014			350	375	μA	1.8	Fosc = 4 MHz		
			550	700	μA	3.0	EC Oscillator mode (Note 5) Medium-Power mode		
		—	600	900	μΑ	5.0			
D015		_	3.7	4.2	mA	3.0	Fosc = 32 MHz		
		—	4.2	5.2	mA	3.6	EC Oscillator High-Power mode		
D015		_	3.7	4.2	mA	3.0	Fosc = 32 MHz		
		—	3.9	4.7	mA	5.0	EC Oscillator High-Power mode (Note 5)		
D016		—	4	10	μA	1.8	Fosc = 32 kHz		
		—	7	13	μA	3.0	LFINTOSC mode, 85°C		
D016		_	27	61	μA	1.8	Fosc = 32 kHz		
	— 33	33	74	μA	3.0	LFINTOSC mode, 85°C (Note 5)			
		—	34	76	μA	5.0			


Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.


2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

- 4: FVR and BOR are disabled.
- 5: 0.1 μ F capacitor on VCAP.

6: 8 MHz crystal oscillator with 4x PLL enabled.

2.6

2.8

VDD (V)

2.2

2.4

1 MHz

3.0

3.2

3.4

3.6

3.8

FIGURE 31-10: IDD MAXIMUM, EC OSCILLATOR, MEDIUM-POWER MODE, PIC16LF1933 ONLY

150

100

50

0

1.6

1.8

2.0

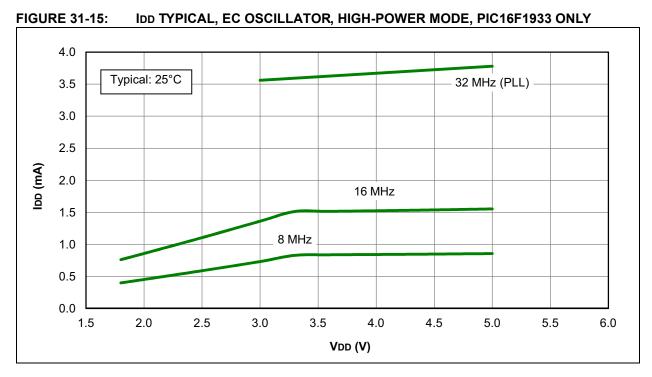
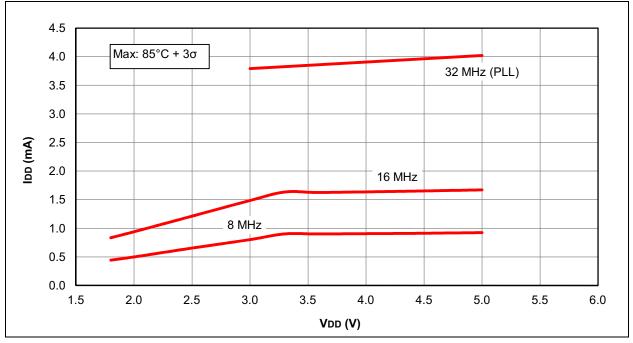



FIGURE 31-16: IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC16F1933 ONLY

© 2011-2012 Microchip Technology Inc.