

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1933-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

0/1	28-Pin SPDIP/SOIC/SSOP	28-Pin QFN/UQFN	ANSEL	A/D	Cap Sense	Comparator	SR Latch	Timers	d C C	EUSART	ASSM	ГСD	Interrupt	Pull-up	Basic
RA0	2	27	Y	AN0	—	C12IN0-/ C2OUT ⁽¹⁾	SRNQ ⁽¹⁾	—	_	-	SS ⁽¹⁾	SEG12	_	—	VCAP ⁽²⁾
RA1	3	28	Y	AN1	_	C12IN1-	_	_	_	—	_	SEG7	_	—	_
RA2	4	1	Y	AN2/ VREF-	—	C2IN+/ DACOUT	—	—	_	_	—	COM2		—	_
RA3	5	2	Y	AN3/ VREF+	—	C1IN+	—	—	-	-	—	SEG15/ COM3	-	—	_
RA4	6	3	Y	—	CPS6	C10UT	SRQ	T0CKI	CCP5	—	—	SEG4	—		—
RA5	7	4	Y	AN4	CPS7	C2OUT ⁽¹⁾	SRNQ ⁽¹⁾	_	_	—	SS ⁽¹⁾	SEG5	-	_	VCAP ⁽²⁾
RA6	10	7		—	—	—	—	—		-	—	SEG1		_	OSC2/ CLKOUT V _{CAP} ⁽²⁾
RA7	9	6	l	_	—	—	—	—		-	—	SEG2		—	OSC1/ CLKIN
RB0	21	18	Y	AN12	CPS0	—	SRI	—	CCP4	-	—	SEG0	INT/ IOC	Y	—
RB1	22	19	Y	AN10	CPS1	C12IN3-	_	—	P1C	—	—	VLCD1	IOC	Y	—
RB2	23	20	Y	AN8	CPS2	_	—	_	P1B	—	_	VLCD2	IOC	Y	—
RB3	24	21	Y	AN9	CPS3	C12IN2-	—	—	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	—	—	VLCD3	IOC	Y	—
RB4	25	22	Y	AN11	CPS4	—	—	—	P1D		—	COM0	IOC	Y	—
RB5	26	23	Y	AN13	CPS5	—	_	T1G ⁽¹⁾	P2B ⁽¹⁾ CCP3 ⁽¹⁾ / P3A ⁽¹⁾	_	—	COM1	IOC	Y	_
RB6	27	24	_	—	—	_	—	_		_	—	SEG14	IOC	Y	ICSPCLK/ ICDCLK
RB7	28	25		_	—	—	—	_		—	—	SEG13	IOC	Y	ICSPDAT/ ICDDAT
RC0	11	8		—	—	—	—	T1OSO/ T1CKI	P2B ⁽¹⁾	—	—	_		—	—
RC1	12	9		—	—	_	—	T10SI	CCP2 ⁽¹⁾ / P2A ⁽¹⁾	_	—			—	—
RC2	13	10	-	—	—	_	—	_	CCP1/ P1A	—	—	SEG3		—	—
RC3	14	11	—	—	—	—	—		_	—	SCK/SCL	SEG6	_	—	_
RC4	15	12	_	—	—	—	—	T1G ⁽¹⁾	_	—	SDI/SDA	SEG11	—	—	—
RC5	16	13	_								SDO	SEG10			_
RC6	17	14	-	—	—	_	-	-	CCP3 ⁽¹⁾ P3A ⁽¹⁾	TX/CK	-	SEG9	—	-	—
RC7	18	15	_	_	—	—	—	—	P3B	RX/DT	—	SEG8		—	—
RE3	1	26							_					Y	MCLR/VPP
Vdd	20	17	—	_	_	_	_		_	_		—	—	—	Vdd
Vss	8, 19	5,16	—	—	—	—	—	—	—	-	—	—	—	—	Vss

TABLE 1: 28-PIN SUMMARY (PIC16F1933, PIC16LF1933)

Note 1: Pin functions can be moved using the APFCON register.

2: PIC16F1933 devices only.

TABLE 1-2: PIC16(L)F1933 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RA6/OSC2/CLKOUT/VCAP ⁽²⁾ /	RA6	TTL	CMOS	General purpose I/O.
SEG1	OSC2	—	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	—	CMOS	Fosc/4 output.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1933 only).
	SEG1	—	AN	LCD Analog output.
RA7/OSC1/CLKIN/SEG2	RA7	TTL	CMOS	General purpose I/O.
	OSC1	XTAL		Crystal/Resonator (LP, XT, HS modes).
	CLKIN	CMOS		External clock input (EC mode).
	SEG2	—	AN	LCD Analog output.
RB0/AN12/CPS0/CCP4/SRI/INT/ SEG0	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN12	AN		A/D Channel input.
	CPS0	AN		Capacitive sensing input.
	CCP4	ST	CMOS	Capture/Compare/PWM.
	SRI	—	ST	SR latch input.
	INT	ST		External interrupt.
	SEG0	—	AN	LCD analog output.
RB1/AN10/C12IN3-/CPS1/P1C/ VLCD1	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN10	AN		A/D Channel input.
	C12IN3-	AN	—	Comparator negative input.
	CPS1	AN	_	Capacitive sensing input.
	P1C	_	CMOS	PWM output.
	VLCD1	AN		LCD analog input.
RB2/AN8/CPS2/P1B/VLCD2	RB2	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN8	AN		A/D Channel input.
	CPS2	AN	_	Capacitive sensing input.
	P1B	_	CMOS	PWM output.
	VLCD2	AN		LCD analog input.
RB3/AN9/C12IN2-/CPS3/ CCP2 ⁽¹⁾ /P2A ⁽¹⁾ /VLCD3	RB3	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN9	AN		A/D Channel input.
	C12IN2-	AN	_	Comparator negative input.
	CPS3	AN		Capacitive sensing input.
	CCP2	ST	CMOS	Capture/Compare/PWM.
	P2A	_	CMOS	PWM output.
	VLCD3	AN		LCD analog input.
RB4/AN11/CPS4/P1D/COM0	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN11	AN		A/D Channel input.
	CPS4	AN		Capacitive sensing input.
	P1D		CMOS	PWM output.
	COM0		AN	LCD Analog output.
Legend: AN = Analog input or o	utput CMC	S= CMC	DS compa	atible input or output OD = Open Drain

Legend: AN = Analog input or output CMOS = CMOS compatible input or output

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal

levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1933 devices only.

R-1/q R-0/q		R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q			
T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Condition	al	_				
bit 7	T1OSCR: Tim <u>If T1OSCEN</u> : 1 = Timer1 c 0 = Timer1 c <u>If T1OSCEN</u> : 1 = Timer1 c	ner1 Oscillator = <u>1</u> : oscillator is rea- oscillator is not = <u>0</u> : clock source is	Ready bit dy ready always ready							
bit 6	bit 6 PLLR 4x PLL Ready bit 1 = 4x PLL is ready 0 = 4x PLL is not ready									
bit 5	OSTS: Oscilla 1 = Running 0 = Running	ator Start-up Ti from the clock from an intern	mer Status bit defined by the al oscillator (Fo	e FOSC<2:0> k OSC<2:0> = 1	oits of the Confi 00)	guration Words	S			
bit 4	HFIOFR: High 1 = HFINTOS 0 = HFINTOS	n-Frequency Ir SC is ready SC is not ready	iternal Oscillato	or Ready bit						
bit 3	HFIOFL: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is at least 2 SC is not 2% a	ternal Oscillato % accurate ccurate	or Locked bit						
bit 2	MFIOFR: Med 1 = MFINTOS 0 = MFINTOS	dium-Frequenc SC is ready SC is not ready	cy Internal Osci /	illator Ready bi	it					
bit 1	LFIOFR: Low 1 = LFINTOS 0 = LFINTOS	r-Frequency Inf SC is ready SC is not ready	ernal Oscillato	r Ready bit						
bit 0	HFIOFS: High 1 = HFINTOS 0 = HFINTOS	n-Frequency In SC is at least 0 SC is not 0.5%	ternal Oscillato .5% accurate accurate	or Stable bit						

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the write operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms, only during the cycle in which the write takes place (i.e., the last word of the block write). This is not Sleep mode as the clocks and peripherals will

continue to run. The processor does not stall when LWLO = 1, loading the write latches. After the write cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

EXAMPLE 11-4: ERASING ONE ROW OF PROGRAM MEMORY

;	This	row erase routine assumes the following:							
;	1. A	valid addre	ess within the e	rase block is loaded in ADDRH:ADDRL					
;	2. AI	DDRH and ADD	ORL are located	in shared data memory 0x70 - 0x7F (common RAM)					
		BCF	INTCON, GIE	; Disable ints so required sequences will execute properly					
		BANKSEL	EEADRL						
		MOVF	ADDRL,W	; Load lower 8 bits of erase address boundary					
		MOVWF	EEADRL						
		MOVF	ADDRH,W	; Load upper 6 bits of erase address boundary					
		MOVWF	EEADRH						
		BSF	EECON1, EEPGD	; Point to program memory					
		BCF	EECON1,CFGS	; Not configuration space					
		BSF	EECON1, FREE	; Specify an erase operation					
		BSF	EECON1,WREN	; Enable writes					
		MOVLW	55h	; Start of required sequence to initiate erase					
		MOVWF	EECON2	; Write 55h					
	ed Dce	MOVLW	0AAh	;					
	uir Jer	MOVWF	EECON2	; Write AAh					
	eqi eq	BSF	EECON1,WR	; Set WR bit to begin erase					
	щω	NOP		; Any instructions here are ignored as processor					
				; halts to begin erase sequence					
		NOP		; Processor will stop here and wait for erase complete.					
	L								
				; after erase processor continues with 3rd instruction					
		BCF	FECON1 WREN	· Disable writes					
		BSF	INTCON GIE	· Enable interrunts					
		201	11,10011,011	, Endore incertaped					

EXAMPLE 11-5: WRITING TO FLASH PROGRAM MEMORY

;	This	write routi	ne assumes the	fo	llowing:
;	1. Tł	ne 16 bytes	of data are loa	de	d, starting at the address in DATA_ADDR
;	2. Ea	ach word of	data to be writ	te	n is made up of two adjacent bytes in DATA_ADDR,
;	st	cored in lit	tle endian form	at	
;	3. A	valid start	ing address (th	e	least significant bits = 000) is loaded in ADDRH:ADDRL
;	4. Al	DDRH and ADD	RL are located	ın	shared data memory Ux/U - Ux/F (common RAM)
;		BCF	INTCON GIE		Disable ints so required sequences will execute properly
		BANKSEL	EEADRH	,	Bank 3
		MOVE	ADDRH, W	;	Load initial address
		MOVWF	EEADRH	;	
		MOVF	ADDRL,W	;	
		MOVWF	EEADRL	;	
		MOVLW	LOW DATA ADDR	;	Load initial data address
		MOVWF	FSROL	;	
		MOVLW	HIGH DATA_ADDR	;	Load initial data address
		MOVWF	FSROH	;	
		BSF	EECON1, EEPGD	;	Point to program memory
		BCF	EECON1,CFGS	;	Not configuration space
		BSF	EECON1,WREN	;	Enable writes
		BSF	EECON1,LWLO	;	Only Load Write Latches
LC	OP				
		MOVIW	FSR0++	;	Load first data byte into lower
		MOVWF	EEDATL	;	
		MOVIW	FSR0++	;	Load second data byte into upper
		MOVWF'	EEDATH	;	
		MOLT			Check if laws hits of address and 10001
		YODIW	DW07	;	Check if we're on the last of 2 addresses
		VDIM	0x07	΄.	check if we le on the fast of o addresses
		RTESC	970707 97707119 7	΄.	Exit if last of eight words
		GOTO	START WRITE	,	DATE IT TASE OF CIGHE WOLDS,
		0010	omini_mini	'	
		MOVLW	55h	;	Start of required write sequence:
		MOVWF	EECON2	;	Write 55h
	т e	MOVLW	0AAh	;	
	irec	MOVWF	EECON2	;	Write AAh
	nb	BSF	EECON1,WR	;	Set WR bit to begin write
	Se Re	NOP		;	Any instructions here are ignored as processor
				;	halts to begin write sequence
		NOP		;	Processor will stop here and wait for write to complete.
				;	After write processor continues with 3rd instruction.
		INCE	FFADRI, F		Still loading latches Increment address
		GOTO	LOOP	;	Write next latches
		0010	2001	'	
SI	ART V	VRITE			
	_	BCF	EECON1,LWLO	;	No more loading latches - Actually start Flash program
				;	memory write
		MOVLW	55h	;	Start of required write sequence:
		MOVWF	EECON2	;	Write 55h
	ed nce	MOVLW	OAAh	;	
	quir uei	MOVWF	EECON2	;	Write AAh
	Seq.	BSF	EECON1,WR	;	Set WR bit to begin write
		NOL		;	Any instructions here are ignored as processor
		NOR		;	naits to pegin write sequence
		NOF		;	riocessor will stop here and walt for write complete.
					after write processor continues with 3rd instruction
		BCF	EECON1,WREN	;	Disable writes
		BSF	INTCON, GIE	;	Enable interrupts
1				í	÷

11.4 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.
- 8. Repeat steps 6 and 7 as many times as required to reprogram the erased row.

11.5 User ID, Device ID and Configuration Word Access

Instead of accessing program memory or EEPROM data memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the EECON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 11-2.

When read access is initiated on an address outside the parameters listed in Table 11-2, the EEDATH:EEDATL register pair is cleared.

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

TABLE 11-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

EXAMPLE 11-3: CONFIGURATION WORD AND DEVICE ID ACCESS

* This code block will read 1 word of program memory at the memory address:

* PROG ADDR LO (must be 00h-08h) data will be returned in the variables;

* PROG DATA HI, PROG DATA LO

BANKSEL	EEADRL	; Select correct Bank
MOVLW	PROG_ADDR_LO	;
MOVWF	EEADRL	; Store LSB of address
CLRF	EEADRH	; Clear MSB of address
BSF BCF BSF NOP NOP BSF	EECON1,CFGS INTCON,GIE EECON1,RD INTCON,GIE	<pre>; Select Configuration Space ; Disable interrupts ; Initiate read ; Executed (See Figure 11-1) ; Ignored (See Figure 11-1) ; Restore interrupts</pre>
MOVF	EEDATL,W	; Get LSB of word
MOVWF	PROG_DATA_LO	; Store in user location
MOVF	EEDATH,W	; Get MSB of word
MOVWF	PROG_DATA_HI	; Store in user location

NOTES:

18.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 30.0 "Electrical Specifications"** for more information.

18.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 21.6 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

18.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from either comparator, C1 or C2, can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 18-2) and the Timer1 Block Diagram (Figure 22-1) for more information.

18.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a Falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

18.6 Comparator Positive Input Selection

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · CxIN+ analog pin
- DAC_output
- DAC FVR Buffer2
- Vss (Ground)

See Section 14.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

20.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- · Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 20-1 is a block diagram of the Timer0 module.

20.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

20.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION REG register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

FIGURE 20-1: BLOCK DIAGRAM OF THE TIMER0

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSCLK) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.

8-Bit Counter mode using the Capacitive Sensing Oscillator (CPSCLK) signal is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

23.1.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	114	
CCPxCON	PxM<	1:0> ⁽¹⁾	DCxB<1:0> CCPxM<3:0>					214		
CCPRxL	Capture/Cor	mpare/PWM	Register x Lo	gister x Low Byte (LSB)						
CCPRxH	Capture/Cor	mpare/PWM	Register x H	x High Byte (MSB)						
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83	
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	84	
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	85	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86	
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	87	
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	-	TMR4IF	—	88	
T1CON	TMR1C	:S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	183	
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	184	
TMR1L	Holding Reg	ister for the	Least Signific	cant Byte of t	he 16-bit TMR1 I	Register			179	
TMR1H	Holding Reg	ister for the	Most Signific	ant Byte of th	ne 16-bit TMR1 F	Register			179	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	116	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	121	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125	

 TABLE 23-2:
 SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Capture mode.

Note 1: Applies to ECCP modules only.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PxRSEN				PxDC<6:0>					
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	PxRSEN: P\	NM Restart Ena	ible bit						
	1 = Upon au the PWI	ito-shutdown, th VI restarts auton	e CCPxASE b natically	pit clears automa	atically once the	e shutdown eve	ent goes away;		
	0 = Upon auto-shutdown, CCPxASE must be cleared in software to restart the PWM								
bit 6-0	Dit 6-0 PxDC<6:0>: PWM Delay Count bits								
PxDCx = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM							a PWM signal		

REGISTER 23-5: PWMxCON: ENHANCED PWM CONTROL REGISTER

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

should transition active and the actual time it transitions active

I²C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1) **FIGURE 24-19:** Stop condition Master sends ___ ACK D7/D6/D5/D4/D3/D2/D1/D0/ Master's <u>ACK</u> response is copied to SSPSTAT cleared after 8th falling edge of SCL CKP not cleared Transmitting Data after not ACK BF is automatically Automatic D7/D6/D5/D4/D3/D2/D1/D0/ACK 6 Transmitting Data Cleared by software Data to transmit is loaded into SSPBUF Set by software, releases SCL -ACKTIM is cleared on 9th rising edge of SCL Automatic Master releases SDA to slave for ACK sequence ACK 6 When R/W = 1; CKP is always cleared after ACK R/<u>W</u> = ⊥ <u>1</u>234566778 Slave clears ACKDT to ACK address is read from SSPBUF A7\ A6\ A5\ A4\ A3\ A2\ A1 Received address ACKTIM is set on 8th falling edge of SCL Receiving Address When AHEN = 1; CKP is cleared by hardware -after receiving matching address. S D/A RW СKР SDA ВΓ ACKDT SSPIF ACKSTAT ACKTIM SCL

PIC16(L)F1933

24.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 24-30).

24.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

24.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 24-31).

24.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 24-30: ACKNOWLEDGE SEQUENCE WAVEFORM

TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL				BRG	<7:0>				288*
SPBRGH				BRG<	:15:8>				288*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125
TXREG	EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

* Page provides register information.

26.7.3 FREQUENCY THRESHOLD

The frequency threshold should be placed midway between the value of nominal frequency and the reduced frequency of the capacitive sensing oscillator. Refer to Application Note AN1103, "Software Handling for Capacitive Sensing" (DS01103) for more detailed information on the software required for the capacitive sensing module.

Note:	For more information on general capacitive sensing refer to Application Notes:
	 AN1101, "Introduction to Capacitive Sensing" (DS01101)
	 AN1102, "Layout and Physical Design Guidelines for Capacitive

Sensing" (DS01102)

26.8 Operation during Sleep

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occurred, the part must be awake. However, the part does not have to be awake when the timer resource is acquiring counts.

Note: Timer0 does not operate when in Sleep, and therefore cannot be used for capacitive sense measurements in Sleep.

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations	0
OPCODE d f (FILE #)	Ĩ
d = 0 for destination W d = 1 for destination f f = 7-bit file register address	_]
Bit-oriented file register operations	0
OPCODE b (BIT #) f (FILE #)	
b = 3-bit bit address f = 7-bit file register address	
Literal and control operations	
General	
	0
OPCODE K (literal)	
k = 8-bit immediate value	
CALL and GOTO instructions only	
13 11 10	0
OPCODE k (literal)	
k = 11-bit immediate value	
MOVLP instruction only	0
OPCODE k (literal)	Ť
k = 7-bit immediate value	
MOVLB instruction only	~
k = 5-bit immediate value	
BRA instruction only	0
OPCODE k (literal)	
k = 9-bit immediate value]
FSR Offset instructions	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
k = 6-bit immediate value	
FSR Increment instructions	_
13 3 2 1	0 10)
n = appropriate FSR	(0)
m = 2-bit mode value	
OPCODE only	
)

FIGURE 30-19: SPI SLAVE MODE TIMING (CKE = 1)

