



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, LCD, POR, PWM, WDT                                 |
| Number of I/O              | 25                                                                         |
| Program Memory Size        | 7KB (4K x 14)                                                              |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 256 x 8                                                                    |
| RAM Size                   | 256 x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                |
| Data Converters            | A/D 11x10b                                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 28-UFQFN Exposed Pad                                                       |
| Supplier Device Package    | 28-UQFN (4x4)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f1933t-i-mv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 3.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC.

FIGURE 3-3: LOADING OF PC IN DIFFERENT SITUATIONS



#### 3.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

#### 3.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

### 3.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

#### 3.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

|              |                            | R/P-1                                     | R/P-1                                                                                                                  | U-1                      | R/P-1            | R/P-1           | R/P-1         |  |  |
|--------------|----------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-----------------|---------------|--|--|
|              |                            | LVP <sup>(1)</sup>                        | DEBUG <sup>(3)</sup>                                                                                                   | —                        | BORV             | STVREN          | PLLEN         |  |  |
|              |                            | bit 13                                    |                                                                                                                        |                          |                  |                 | bit 8         |  |  |
|              |                            |                                           |                                                                                                                        |                          |                  |                 |               |  |  |
| U-1          | U-1                        | R/P-1                                     | R/P-1                                                                                                                  | U-1                      | U-1              | R/P-1           | R/P-1         |  |  |
| —            | —                          | VCAPE                                     | N<1:0> <sup>(2)</sup>                                                                                                  | —                        | —                | WRT             | <1:0>         |  |  |
| bit 7        |                            |                                           |                                                                                                                        |                          |                  |                 | bit 0         |  |  |
|              |                            |                                           |                                                                                                                        |                          |                  |                 |               |  |  |
| Legend:      |                            |                                           |                                                                                                                        |                          |                  |                 |               |  |  |
| R = Read     | able bit                   | P = Program                               | mable bit                                                                                                              | U = Unimplem             | nented bit, read | d as '1'        |               |  |  |
| '0' = Bit is | cleared                    | '1' = Bit is se                           | t                                                                                                                      | -n = Value wh            | en blank or aft  | er Bulk Erase   |               |  |  |
|              |                            |                                           |                                                                                                                        |                          |                  |                 |               |  |  |
| bit 13       | LVP: Low-V                 | oltage Program                            | ming Enable bit                                                                                                        | t(1)                     |                  |                 |               |  |  |
|              | 1 = Low-volt               | age pro <u>gramm</u> i                    | ng enabled                                                                                                             |                          |                  |                 |               |  |  |
|              | 0 = High-vol               | tage on MCLR                              | must be used for                                                                                                       | or programming           | )                |                 |               |  |  |
| bit 12       | DEBUG: In-                 | Circuit Debugge                           | er Mode bit <sup>(3)</sup>                                                                                             |                          |                  |                 |               |  |  |
|              | 1 = In-Circui              | t Debugger disa                           | abled, ICSPCL                                                                                                          | K and ICSPDAT            | are general p    | urpose I/O pins |               |  |  |
| L:1 4 4      |                            | t Debugger ena                            |                                                                                                                        |                          | are dedicated    | to the debugge  |               |  |  |
| DICTI        | Unimpieme                  | nted: Read as                             |                                                                                                                        | L · · ( <b>4</b> )       |                  |                 |               |  |  |
| bit 10       | 1 = Brown-o                | vn-out Reset Vo                           | e (Vbor) low tri                                                                                                       | bit <sup>(*)</sup>       | ч                |                 |               |  |  |
|              | 0 = Brown-o                | ut Reset voltage                          | e (Vbor), 10w tri<br>e (Vbor), high ti                                                                                 | rip point selected       | a.<br>ed.        |                 |               |  |  |
| bit 9        | STVREN: S                  | tack Overflow/L                           | Inderflow Reset                                                                                                        | t Enable bit             |                  |                 |               |  |  |
|              | 1 = Stack Ov               | verflow or Unde                           | rflow will cause                                                                                                       | a Reset                  |                  |                 |               |  |  |
|              | 0 = Stack Ov               | verflow or Unde                           | rflow will not ca                                                                                                      | use a Reset              |                  |                 |               |  |  |
| bit 8        | PLLEN: PLL                 | _ Enable bit                              |                                                                                                                        |                          |                  |                 |               |  |  |
|              | 1 = 4xPLL e                | nabled                                    |                                                                                                                        |                          |                  |                 |               |  |  |
|              | 0 = 4xPLL d                | isabled                                   |                                                                                                                        |                          |                  |                 |               |  |  |
| bit 7-5      | Unimpleme                  | nted: Read as                             | '1'                                                                                                                    | (2)                      |                  |                 |               |  |  |
| bit 4        |                            | oltage Regulato                           | or Capacitor Ena                                                                                                       | able bits <sup>(2)</sup> |                  |                 |               |  |  |
|              | 00 = VCAP f<br>01 = VCAP f | unctionality is e                         | nabled on RAU                                                                                                          |                          |                  |                 |               |  |  |
|              | 10 = VCAP f                | unctionality is e                         | nabled on RA6                                                                                                          |                          |                  |                 |               |  |  |
|              | 11 = No cap                | pacitor on VCAP                           | pin                                                                                                                    |                          |                  |                 |               |  |  |
| bit 3-2      | Unimpleme                  | nted: Read as                             | '1'                                                                                                                    |                          |                  |                 |               |  |  |
| bit 1-0      | WRT<1:0>:                  | Flash Memory                              | Self-Write Prote                                                                                                       | ection bits              |                  |                 |               |  |  |
|              | 00 = VCAP f                | unctionality is e                         | nabled on RA0                                                                                                          |                          |                  |                 |               |  |  |
|              | 01 = VCAP f                | 01 = VCAP functionality is enabled on RA5 |                                                                                                                        |                          |                  |                 |               |  |  |
|              | 10 = VCAPT<br>11 = No car  | nacitor on VCAP                           | nin                                                                                                                    |                          |                  |                 |               |  |  |
|              |                            | Conton on VOAF                            | P'''                                                                                                                   |                          |                  |                 |               |  |  |
| Note 1:      | The LVP bit can            | not be program                            | med to '0' wher                                                                                                        | n Programming            | mode is enter    | ed via LVP.     |               |  |  |
| 2:           |                            | in Configuration                          | Norde is mon                                                                                                           | aged automotic           | ally by dovice   | development to  | ole including |  |  |
| J.           | debuggers and i            | programmers F                             | or normal device                                                                                                       | ce operation, th         | is bit should be | e maintained as |               |  |  |
| 4:           | See Vbor param             | eter for specific                         | grammers. For normal device operation, this bit should be maintained as a '1'.<br>er for specific trip point voltages. |                          |                  |                 |               |  |  |

#### REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2

#### 4.6 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See Section 11.5 "User ID, Device ID and Configuration Word Access" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

### 4.7 Register Definitions: Device ID

#### REGISTER 4-3: DEVID: DEVICE ID REGISTER



#### Legend:

R = Readable bit

'1' = Bit is set '0' = Bit is cleared

bit 13-5 **DEV<8:0>:** Device ID bits

| Dovico      | DEVID<13:0> Values |          |  |  |  |  |  |
|-------------|--------------------|----------|--|--|--|--|--|
| Device      | DEV<8:0>           | REV<4:0> |  |  |  |  |  |
| PIC16F1933  | 10 0011 001        | x xxxx   |  |  |  |  |  |
| PIC16LF1933 | 10 0100 001        | x xxxx   |  |  |  |  |  |

bit 4-0 REV<4:0>: Revision ID bits

These bits are used to identify the revision (see Table under DEV<8:0> above).

#### 5.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Words, the 4x PLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

### 5.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up delay specifications are located in the oscillator tables in Section 30.0 "Electrical Specifications".

### 7.6.5 PIR2 REGISTER

#### REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

| R/W-0/       | 0 R/W-0/0                      | R/W-0/0                                | R/W-0/0         | R/W-0/0        | R/W-0/0          | U-0            | R/W-0/0      |  |  |  |
|--------------|--------------------------------|----------------------------------------|-----------------|----------------|------------------|----------------|--------------|--|--|--|
| OSFIF        | C2IF                           | C1IF                                   | EEIF            | BCLIF          | LCDIF            | _              | CCP2IF       |  |  |  |
| bit 7        |                                |                                        |                 |                |                  |                | bit 0        |  |  |  |
|              |                                |                                        |                 |                |                  |                |              |  |  |  |
| Legend:      |                                |                                        |                 |                |                  |                |              |  |  |  |
| R = Reada    | able bit                       | W = Writable                           | bit             | U = Unimpler   | mented bit, read | as '0'         |              |  |  |  |
| u = Bit is u | inchanged                      | x = Bit is unkr                        | nown            | -n/n = Value a | at POR and BOF   | R/Value at all | other Resets |  |  |  |
| '1' = Bit is | set                            | '0' = Bit is cle                       | ared            |                |                  |                |              |  |  |  |
|              |                                |                                        |                 |                |                  |                |              |  |  |  |
| bit 7        | <b>OSFIF:</b> Oscil            | lator Fail Interru                     | upt Flag bit    |                |                  |                |              |  |  |  |
|              | 1 = Interrupt                  | is pending                             |                 |                |                  |                |              |  |  |  |
|              | 0 = Interrupt                  | is not pending                         |                 |                |                  |                |              |  |  |  |
| bit 6        | C2IF: Compa                    | arator C2 Interru                      | upt Flag bit    |                |                  |                |              |  |  |  |
|              | 1 = Interrupt                  | is pending                             |                 |                |                  |                |              |  |  |  |
| bit 5        | C11E: Compa                    | arator C1 Interri                      | int Elag hit    |                |                  |                |              |  |  |  |
| bit 5        | 1 = Interrunt                  | is nending                             | apt i lag bit   |                |                  |                |              |  |  |  |
|              | 0 = Interrupt                  | is not pending                         |                 |                |                  |                |              |  |  |  |
| bit 4        | EEIF: EEPRO                    | OM Write Comp                          | pletion Interru | pt Flag bit    |                  |                |              |  |  |  |
|              | 1 = Interrupt                  | is pending                             |                 |                |                  |                |              |  |  |  |
|              | 0 = Interrupt                  | is not pending                         |                 |                |                  |                |              |  |  |  |
| bit 3        | BCLIF: MSS                     | P Bus Collision                        | Interrupt Flag  | g bit          |                  |                |              |  |  |  |
|              | 1 = Interrupt                  | is pending                             |                 |                |                  |                |              |  |  |  |
|              |                                | is not pending                         |                 |                |                  |                |              |  |  |  |
| DIT 2        | LCDIF: LCD                     | Module Interru                         | ot Flag bit     |                |                  |                |              |  |  |  |
|              | 1 = Interrupt<br>0 = Interrupt | is penaing                             |                 |                |                  |                |              |  |  |  |
| bit 1        | Unimplemen                     | nted: Read as '                        | 0'              |                |                  |                |              |  |  |  |
| bit 0        | CCP2IF: CCI                    | P2 Interrupt Fla                       | a bit           |                |                  |                |              |  |  |  |
|              | 1 = Interrupt is pending       |                                        |                 |                |                  |                |              |  |  |  |
|              | 0 = Interrupt                  | is not pending                         |                 |                |                  |                |              |  |  |  |
|              |                                |                                        |                 |                |                  |                |              |  |  |  |
| Note:        | Interrupt flag bits a          | are set when an                        | interrupt       |                |                  |                |              |  |  |  |
|              | condition occurs, r            | egardless of the                       | e state of      |                |                  |                |              |  |  |  |
|              | its corresponding              | corresponding enable bit or the Global |                 |                |                  |                |              |  |  |  |

its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

NOTES:

| Name    | Bit 7  | Bit 6   | Bit 5  | Bit 4       | Bit 3   | Bit 2    | Bit 1  | Bit 0   | Register<br>on Page |
|---------|--------|---------|--------|-------------|---------|----------|--------|---------|---------------------|
| APFCON  | —      | CCP3SEL | T1GSEL | P2BSEL      | SRNQSEL | C2OUTSEL | SSSEL  | CCP2SEL | 114                 |
| CCPxCON | PxM    | <1:0>   | DCxB   | <1:0>       |         | CCPxN    | /<3:0> |         | 214                 |
| LATC    | LATC7  | LATC6   | LATC5  | LATC4       | LATC3   | LATC2    | LATC1  | LATC0   | 125                 |
| LCDCON  | LCDEN  | SLPEN   | WERR   | —           | CS<     | 1:0>     | LMUX   | <1:0>   | 315                 |
| LCDSE0  | SE7    | SE6     | SE5    | SE4         | SE3     | SE2      | SE1    | SE0     | 319                 |
| LCDSE1  | SE15   | SE14    | SE13   | SE12        | SE11    | SE10     | SE9    | SE8     | 319                 |
| PORTC   | RC7    | RC6     | RC5    | RC4         | RC3     | RC2      | RC1    | RC0     | 125                 |
| RCSTA   | SPEN   | RX9     | SREN   | CREN        | ADDEN   | FERR     | OERR   | RX9D    | 286                 |
| SSPCON1 | WCOL   | SSPOV   | SSPEN  | СКР         |         | SSPM     | <3:0>  |         | 268                 |
| SSPSTAT | SMP    | CKE     | D/A    | Р           | S       | R/W      | UA     | BF      | 267                 |
| T1CON   | TMR1C  | S<1:0>  | T1CKP  | T1CKPS<1:0> |         | T1SYNC   | _      | TMR10N  | 183                 |
| TXSTA   | CSRC   | TX9     | TXEN   | SYNC        | SENDB   | BRGH     | TRMT   | TX9D    | 285                 |
| TRISC   | TRISC7 | TRISC6  | TRISC5 | TRISC4      | TRISC3  | TRISC2   | TRISC1 | TRISC0  | 125                 |

### TABLE 12-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

#### FIGURE 14-1: VOLTAGE REFERENCE BLOCK DIAGRAM



### 14.3 Register Definitions: FVR Control

| REGISTER 14-1: | FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER |
|----------------|--------------------------------------------------|
|                |                                                  |

| R/W-0/0        | ) R-q/q                                                                              | R/W-0/0                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W-0/0                                                                               | R/W-0/0                                                                                        | R/W-0/0                                                                               | R/W-0/0          | R/W-0/0      |  |
|----------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|--------------|--|
| FVREN          | FVRRDY <sup>(1)</sup>                                                                | TSEN                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TSRNG                                                                                 | CDAF                                                                                           | /R<1:0>                                                                               | ADFVI            | R<1:0>       |  |
| bit 7          |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                                                                                |                                                                                       |                  | bit C        |  |
|                |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                                                                                |                                                                                       |                  |              |  |
| Legend:        |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       |                                                                                                |                                                                                       |                  |              |  |
| R = Readal     | ble bit                                                                              | W = Writable                                                                                                                                                                                                                                                                                                                                                                                                                                              | bit                                                                                   | U = Unimpler                                                                                   | nented bit, read                                                                      | as '0'           |              |  |
| u = Bit is ur  | nchanged                                                                             | x = Bit is unkr                                                                                                                                                                                                                                                                                                                                                                                                                                           | nown                                                                                  | -n/n = Value a                                                                                 | at POR and BO                                                                         | R/Value at all c | other Resets |  |
| '1' = Bit is s | set                                                                                  | '0' = Bit is cle                                                                                                                                                                                                                                                                                                                                                                                                                                          | ared                                                                                  | q = Value dep                                                                                  | pends on condit                                                                       | ion              |              |  |
| bit 7          | FVREN: Fixed<br>1 = Fixed Vol<br>0 = Fixed Vol                                       | d Voltage Refe<br>Itage Referenc<br>Itage Referenc                                                                                                                                                                                                                                                                                                                                                                                                        | rence Enable<br>e is enabled<br>e is disabled                                         | bit                                                                                            |                                                                                       |                  |              |  |
| bit 6          | <b>FVRRDY:</b> Fixed<br>1 = Fixed Vol<br>0 = Fixed Vol                               | ed Voltage Ref<br>tage Referenc<br>tage Referenc                                                                                                                                                                                                                                                                                                                                                                                                          | erence Read<br>e output is rea<br>e output is no                                      | y Flag bit <sup>(1)</sup><br>ady for use<br>t ready or not e                                   | nabled                                                                                |                  |              |  |
| bit 5          | <b>TSEN:</b> Temperat<br>1 = Temperat<br>0 = Temperat                                | erature Indicato<br>ture Indicator is<br>ture Indicator is                                                                                                                                                                                                                                                                                                                                                                                                | or Enable bit <sup>(3</sup><br>s enabled<br>s disabled                                | )                                                                                              |                                                                                       |                  |              |  |
| bit 4          | <b>TSRNG:</b> Tem<br>1 = VOUT = V<br>0 = VOUT = V                                    | perature Indica<br>DD - 4VT (High<br>DD - 2VT (Low                                                                                                                                                                                                                                                                                                                                                                                                        | ator Range Se<br>Range)<br>Range)                                                     | election bit <sup>(3)</sup>                                                                    |                                                                                       |                  |              |  |
| bit 3-2        | <b>CDAFVR&lt;1:0</b><br>11 = Compara<br>10 = Compara<br>01 = Compara<br>00 = Compara | <b>CDAFVR&lt;1:0&gt;:</b> Comparator and DAC Fixed Voltage Reference Selection bit<br>11 = Comparator and DAC Fixed Voltage Reference Peripheral output is 4x (4.096V) <sup>(2)</sup><br>10 = Comparator and DAC Fixed Voltage Reference Peripheral output is 2x (2.048V) <sup>(2)</sup><br>01 = Comparator and DAC Fixed Voltage Reference Peripheral output is 1x (1.024V)<br>00 = Comparator and DAC Fixed Voltage Reference Peripheral output is 5 ff |                                                                                       |                                                                                                |                                                                                       |                  |              |  |
| bit 1-0        | ADFVR<1:0><br>11 = ADC Fix<br>10 = ADC Fix<br>01 = ADC Fix<br>00 = ADC Fix           | : ADC Fixed V<br>ed Voltage Re<br>ed Voltage Re<br>ed Voltage Re<br>ed Voltage Re                                                                                                                                                                                                                                                                                                                                                                         | oltage Refere<br>ference Peripl<br>ference Peripl<br>ference Peripl<br>ference Peripl | nce Selection to<br>heral output is a<br>heral output is<br>heral output is<br>heral output is | bit<br>4x (4.096V) <sup>(2)</sup><br>2x (2.048V) <sup>(2)</sup><br>1x (1.024V)<br>off |                  |              |  |
| Note 1:        | FVRRDY is always                                                                     | s '1' on devices                                                                                                                                                                                                                                                                                                                                                                                                                                          | with PIC16F                                                                           | 1933 only.                                                                                     |                                                                                       |                  |              |  |

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 16.0 "Temperature Indicator Module" for additional information.

#### TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

| Name   | Bit 7 | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2  | Bit 1 | Bit 0  | Register<br>on page |
|--------|-------|--------|-------|-------|-------|--------|-------|--------|---------------------|
| FVRCON | FVREN | FVRRDY | TSEN  | TSRNG | CDAFV | R<1:0> | ADFVI | R<1:0> | 135                 |

**Legend:** Shaded cells are not used with Fixed Voltage Reference.

| TABLE 16-2: | SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR |
|-------------|----------------------------------------------------------------|
|             |                                                                |

| Name   | Bit 7 | Bit 6  | Bit 5 | Bit 4 | Bit 3 | Bit 2   | Bit 1 | Bit 0  | Register<br>on page |
|--------|-------|--------|-------|-------|-------|---------|-------|--------|---------------------|
| FVRCON | FVREN | FVRRDY | TSEN  | TSRNG | CDAFV | ′R<1:0> | ADFVF | २<1:0> | 118                 |

**Legend:** Shaded cells are unused by the temperature indicator module.



### FIGURE 21-4: TIMER1 GATE TOGGLE MODE



### 21.11 Register Definitions: Timer1 Control

### REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

| R/W-0/u          | R/W-0/u                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R/W-0/u                                                                    | R/W-0/u                                                | R/W-0/u               | R/W-0/u          | U-0            | R/W-0/u      |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|-----------------------|------------------|----------------|--------------|--|
| TMR1C            | S<1:0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T1CKP                                                                      | 'S<1:0>                                                | T1OSCEN               | T1SYNC           | _              | TMR10N       |  |
| bit 7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                          |                                                        |                       |                  |                | bit 0        |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                                        |                       |                  |                |              |  |
| Legend:          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                                        |                       |                  |                |              |  |
| R = Readable     | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W = Writable                                                               | bit                                                    | U = Unimplen          | nented bit, read | d as '0'       |              |  |
| u = Bit is unch  | anged                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x = Bit is unkr                                                            | nown                                                   | -n/n = Value a        | at POR and BC    | R/Value at all | other Resets |  |
| '1' = Bit is set |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | '0' = Bit is clea                                                          | ared                                                   |                       |                  |                |              |  |
| bit 7-6          | Dit 7-6       TMR1CS<1:0>: Timer1 Clock Source Select bits         11 = Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC)         10 = Timer1 clock source is pin or oscillator:         If T1OSCEN = 0:         External clock from T1CKI pin (on the rising edge)         If T1OSCEN = 1:         Crystal oscillator on T1OSI/T1OSO pins         01 = Timer1 clock source is system clock (Fosc)         00 = Timer1 clock source is instruction clock (Fosc/4) |                                                                            |                                                        |                       |                  |                |              |  |
| bit 5-4          | T1CKPS<1:0<br>11 = 1:8 Pres<br>10 = 1:4 Pres<br>01 = 1:2 Pres<br>00 = 1:1 Pres                                                                                                                                                                                                                                                                                                                                                                                                | >: Timer1 Inpu<br>scale value<br>scale value<br>scale value<br>scale value | t Clock Presc                                          | ale Select bits       |                  |                |              |  |
| bit 3            | T1OSCEN: L<br>1 = Dedicate<br>0 = Dedicate                                                                                                                                                                                                                                                                                                                                                                                                                                    | P Oscillator En<br>d Timer1 oscill<br>d Timer1 oscill                      | able Control b<br>ator circuit ena<br>ator circuit dis | bit<br>abled<br>abled |                  |                |              |  |
| bit 2            | 2 <b>T1SYNC:</b> Timer1 External Clock Input Synchronization Control bit<br><u>TMR1CS&lt;1:0&gt; = 1x</u><br>1 = Do not synchronize external clock input<br>0 = Synchronize external clock input with system clock (Fosc)                                                                                                                                                                                                                                                     |                                                                            |                                                        |                       |                  |                |              |  |
|                  | This bit is igno                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ored.                                                                      |                                                        |                       |                  |                |              |  |
| bit 1            | Unimplemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ted: Read as '                                                             | 0'                                                     |                       |                  |                |              |  |
| bit 0            | TMR1ON: Tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ner1 On bit                                                                |                                                        |                       |                  |                |              |  |
|                  | <b>TMR1ON:</b> Timer1 On bit<br>1 = Enables Timer1<br>0 = Stops Timer1 and clears Timer1 gate flip-flop                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |                                                        |                       |                  |                |              |  |

### 22.0 TIMER2/4/6 MODULES

There are up to three identical Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).

| Note: | The 'x' variable used in this section is |
|-------|------------------------------------------|
|       | used to designate Timer2, Timer4, or     |
|       | Timer6. For example, TxCON references    |
|       | T2CON, T4CON, or T6CON. PRx refer-       |
|       | ences PR2, PR4, or PR6.                  |

The Timer2/4/6 modules incorporate the following features:

- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSP module (Timer2 only)

See Figure 22-1 for a block diagram of Timer2/4/6.





| R/W-0/0                                                                               | R/W-0/0                              | R/W-0/0           | R/W-0/0                  | R/W-0/0                                               | R/W-0/0           | R/W-0/0        | R/W-0/0        |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------|-------------------|--------------------------|-------------------------------------------------------|-------------------|----------------|----------------|--|--|--|
| PxRSEN                                                                                |                                      |                   |                          | PxDC<6:0>                                             |                   |                |                |  |  |  |
| bit 7                                                                                 |                                      |                   |                          |                                                       |                   |                | bit 0          |  |  |  |
|                                                                                       |                                      |                   |                          |                                                       |                   |                |                |  |  |  |
| Legend:                                                                               |                                      |                   |                          |                                                       |                   |                |                |  |  |  |
| R = Readable                                                                          | e bit                                | W = Writable      | bit                      | U = Unimplemented bit, read as '0'                    |                   |                |                |  |  |  |
| u = Bit is unch                                                                       | nanged                               | x = Bit is unkr   | nown                     | -n/n = Value at POR and BOR/Value at all other Resets |                   |                |                |  |  |  |
| '1' = Bit is set                                                                      |                                      | '0' = Bit is clea | ared                     |                                                       |                   |                |                |  |  |  |
|                                                                                       |                                      |                   |                          |                                                       |                   |                |                |  |  |  |
| bit 7                                                                                 | bit 7 PxRSEN: PWM Restart Enable bit |                   |                          |                                                       |                   |                |                |  |  |  |
| <ol> <li>Upon auto-shutdown, the CCPxAS<br/>the PWM restarts automatically</li> </ol> |                                      |                   | e CCPxASE b<br>natically | pit clears automa                                     | atically once the | e shutdown eve | ent goes away; |  |  |  |
| 0 = Upon auto-shutdown, CCPxASE mus                                                   |                                      |                   |                          | t be cleared in s                                     | software to res   | tart the PWM   |                |  |  |  |
| bit 6-0                                                                               | PxDC<6:0>:                           | PWM Delay Co      | ount bits                |                                                       |                   |                |                |  |  |  |
|                                                                                       | PxDCx = Nu                           | mber of Fosc/     | 4 (4 * Tosc) d           | cycles between                                        | the scheduled     | d time when a  | a PWM signal   |  |  |  |

#### REGISTER 23-5: PWMxCON: ENHANCED PWM CONTROL REGISTER

**Note 1:** Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

should transition active and the actual time it transitions active

## TABLE 25-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER<br/>TRANSMISSION

| Name    | Bit 7                               | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Register<br>on Page |  |
|---------|-------------------------------------|--------|--------|--------|--------|--------|--------|--------|---------------------|--|
| BAUDCON | ABDOVF                              | RCIDL  | _      | SCKP   | BRG16  | —      | WUE    | ABDEN  | 287                 |  |
| INTCON  | GIE                                 | PEIE   | TMR0IE | INTE   | IOCIE  | TMR0IF | INTF   | IOCIF  | 82                  |  |
| PIE1    | TMR1GIE                             | ADIE   | RCIE   | TXIE   | SSPIE  | CCP1IE | TMR2IE | TMR1IE | 83                  |  |
| PIR1    | TMR1GIF                             | ADIF   | RCIF   | TXIF   | SSPIF  | CCP1IF | TMR2IF | TMR1IF | 86                  |  |
| RCSTA   | SPEN                                | RX9    | SREN   | CREN   | ADDEN  | FERR   | OERR   | RX9D   | 286                 |  |
| SPBRGL  | BRG<7:0>                            |        |        |        |        |        |        |        |                     |  |
| SPBRGH  | BRG<15:8>                           |        |        |        |        |        |        |        | 288*                |  |
| TRISC   | TRISC7                              | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 | 125                 |  |
| TXREG   | TXREG EUSART Transmit Data Register |        |        |        |        |        |        |        |                     |  |
| TXSTA   | CSRC                                | TX9    | TXEN   | SYNC   | SENDB  | BRGH   | TRMT   | TX9D   | 285                 |  |

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

\* Page provides register information.

#### 25.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 25.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 25.5.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

| Name    | Bit 7                        | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Register<br>on Page |
|---------|------------------------------|--------|--------|--------|--------|--------|--------|--------|---------------------|
| BAUDCON | ABDOVF                       | RCIDL  | -      | SCKP   | BRG16  | —      | WUE    | ABDEN  | 287                 |
| INTCON  | GIE                          | PEIE   | TMR0IE | INTE   | IOCIE  | TMR0IF | INTF   | IOCIF  | 82                  |
| PIE1    | TMR1GIE                      | ADIE   | RCIE   | TXIE   | SSPIE  | CCP1IE | TMR2IE | TMR1IE | 83                  |
| PIR1    | TMR1GIF                      | ADIF   | RCIF   | TXIF   | SSPIF  | CCP1IF | TMR2IF | TMR1IF | 86                  |
| RCREG   | EUSART Receive Data Register |        |        |        |        |        |        | 280*   |                     |
| RCSTA   | SPEN                         | RX9    | SREN   | CREN   | ADDEN  | FERR   | OERR   | RX9D   | 286                 |
| TRISC   | TRISC7                       | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 | 125                 |
| TXSTA   | CSRC                         | TX9    | TXEN   | SYNC   | SENDB  | BRGH   | TRMT   | TX9D   | 285                 |

## TABLE 25-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

\* Page provides register information.

### 30.7 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

| т      |                                      |     |                |
|--------|--------------------------------------|-----|----------------|
| F      | Frequency                            | Т   | Time           |
| Lowerc | ase letters (pp) and their meanings: |     |                |
| рр     |                                      |     |                |
| сс     | CCP1                                 | OSC | OSC1           |
| ck     | CLKOUT                               | rd  | RD             |
| CS     | CS                                   | rw  | RD or WR       |
| di     | SDI                                  | SC  | SCK            |
| do     | SDO                                  | SS  | SS             |
| dt     | Data in                              | t0  | TOCKI          |
| io     | I/O PORT                             | t1  | T1CKI          |
| mc     | MCLR                                 | wr  | WR             |
| Upperc | ase letters and their meanings:      |     |                |
| S      |                                      |     |                |
| F      | Fall                                 | Р   | Period         |
| Н      | High                                 | R   | Rise           |
| I      | Invalid (High-impedance)             | V   | Valid          |
| L      | Low                                  | Z   | High-impedance |

#### FIGURE 30-5: LOAD CONDITIONS



#### TABLE 30-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

| Standard Operating Conditions (unless otherwise stated)<br>Operating Temperature -40°C $\leq$ TA $\leq$ +125°C |        |                                                          |              |            |              |        |                                                  |  |
|----------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------|--------------|------------|--------------|--------|--------------------------------------------------|--|
| Param<br>No.                                                                                                   | Sym.   | Characteristic                                           | Min.         | Тур†       | Max.         | Units  | Conditions                                       |  |
| 30                                                                                                             | ТмсL   | MCLR Pulse Width (low)                                   | 2            |            |              | μS     |                                                  |  |
| 31                                                                                                             | TWDTLP | Low-Power Watchdog Timer<br>Time-out Period              | 10           | 16         | 27           | ms     | V <sub>DD</sub> = 3.3V-5V<br>1:16 Prescaler used |  |
| 32                                                                                                             | Tost   | Oscillator Start-up Timer Period <sup>(1)</sup>          | _            | 1024       | _            | Tosc   |                                                  |  |
| 33*                                                                                                            | TPWRT  | Power-up Timer Period, $\overline{PWRTE} = 0$            | 40           | 65         | 140          | ms     |                                                  |  |
| 34*                                                                                                            | Tioz   | I/O high-impedance from MCLR Low or Watchdog Timer Reset | _            | —          | 2.0          | μS     |                                                  |  |
| 35                                                                                                             | VBOR   | Brown-out Reset Voltage <sup>(2)</sup>                   | 2.38<br>1.80 | 2.5<br>1.9 | 2.73<br>2.11 | V<br>V | BORV = 0<br>BORV = 1                             |  |
| 36*                                                                                                            | VHYST  | Brown-out Reset Hysteresis                               | 0            | 25         | 60           | mV     | -40°C to +85°C                                   |  |
| 37*                                                                                                            | TBORDC | Brown-out Reset DC Response<br>Time                      | 1            | 3          | 35           | μS     | $V D D \leq V B O R$                             |  |

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1  $\mu$ F and 0.01  $\mu$ F values in parallel are recommended.

#### **FIGURE 30-10:** TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS



### TABLE 30-8: PIC16(L)F1933 A/D CONVERTER (ADC) CHARACTERISTICS.<sup>(1,2,3)</sup>

Standard Operating Conditions (unless otherwise stated)

| Operati      | ng temp | perature Tested at 25°C                           |      |      |      |       |                                                                     |
|--------------|---------|---------------------------------------------------|------|------|------|-------|---------------------------------------------------------------------|
| Param<br>No. | Sym.    | Characteristic                                    | Min. | Тур† | Max. | Units | Conditions                                                          |
| AD01         | NR      | Resolution                                        | —    |      | 10   | bit   |                                                                     |
| AD02         | EIL     | Integral Error                                    |      |      | ±1.7 | LSb   | VREF = 3.0V                                                         |
| AD03         | Edl     | Differential Error                                | _    |      | ±1   | LSb   | No missing codes<br>VREF = 3.0V                                     |
| AD04         | EOFF    | Offset Error                                      |      |      | ±2.5 | LSb   | VREF = 3.0V                                                         |
| AD05         | Egn     | Gain Error                                        | _    | _    | ±2.0 | LSb   | VREF = 3.0V                                                         |
| AD06         | VREF    | Reference Voltage <sup>(4)</sup>                  | 1.8  |      | Vdd  | V     | VREF = (VREF+ minus VREF-)                                          |
| AD07         | VAIN    | Full-Scale Range                                  | Vss  |      | VREF | V     |                                                                     |
| AD08         | ZAIN    | Recommended Impedance of<br>Analog Voltage Source | _    |      | 10   | kΩ    | Can go higher if external 0.01µF capacitor is present on input pin. |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

4: ADC Reference Voltage (Ref+) is the selected reference input, VREF+ pin, VDD pin or the FVR Buffer1. When the FVR is selected as the reference input, the FVR Buffer1 output selection must be 2.048V or 4.096V, (ADFVR<1:0> = 1x).

### TABLE 30-9: PIC16(L)F1933 A/D CONVERSION REQUIREMENTS

| Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ |      |                                                                 |      |      |      |       |                                           |  |  |
|----------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------|------|------|------|-------|-------------------------------------------|--|--|
| Param<br>No.                                                                                                         | Sym. | Characteristic                                                  | Min. | Тур† | Max. | Units | Conditions                                |  |  |
| AD130*                                                                                                               | TAD  | A/D Clock Period                                                | 1.0  | -    | 9.0  | μS    | Tosc-based                                |  |  |
|                                                                                                                      |      | A/D Internal RC Oscillator<br>Period                            | 1.0  | 2.5  | 6.0  | μS    | ADCS<1:0> = 11 (ADRC mode)                |  |  |
| AD131                                                                                                                | TCNV | Conversion Time (not including Acquisition Time) <sup>(1)</sup> |      | 11   |      | TAD   | Set GO/DONE bit to conversion<br>complete |  |  |
| AD132*                                                                                                               | TACQ | Acquisition Time                                                | _    | 5.0  | _    | μS    |                                           |  |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.





