

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1933t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1933 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RA6/OSC2/CLKOUT/VCAP ⁽²⁾ /	RA6	TTL	CMOS	General purpose I/O.
SEG1	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	_	CMOS	Fosc/4 output.
	VCAP	Power	Power	Filter capacitor for Voltage Regulator (PIC16F1933 only).
	SEG1	_	AN	LCD Analog output.
RA7/OSC1/CLKIN/SEG2	RA7	TTL	CMOS	General purpose I/O.
	OSC1	XTAL		Crystal/Resonator (LP, XT, HS modes).
	CLKIN	CMOS	_	External clock input (EC mode).
	SEG2		AN	LCD Analog output.
RB0/AN12/CPS0/CCP4/SRI/INT/ SEG0	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN12	AN	—	A/D Channel input.
	CPS0	AN	—	Capacitive sensing input.
	CCP4	ST	CMOS	Capture/Compare/PWM.
	SRI	_	ST	SR latch input.
	INT	ST		External interrupt.
	SEG0		AN	LCD analog output.
RB1/AN10/C12IN3-/CPS1/P1C/ VLCD1	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN10	AN	_	A/D Channel input.
	C12IN3-	AN	_	Comparator negative input.
	CPS1	AN	_	Capacitive sensing input.
	P1C	_	CMOS	PWM output.
	VLCD1	AN	_	LCD analog input.
RB2/AN8/CPS2/P1B/VLCD2	RB2	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN8	AN	_	A/D Channel input.
	CPS2	AN	_	Capacitive sensing input.
	P1B	_	CMOS	PWM output.
	VLCD2	AN	_	LCD analog input.
RB3/AN9/C12IN2-/CPS3/ CCP2 ⁽¹⁾ /P2A ⁽¹⁾ /VLCD3	RB3	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN9	AN	_	A/D Channel input.
	C12IN2-	AN		Comparator negative input.
	CPS3	AN	_	Capacitive sensing input.
	CCP2	ST	CMOS	Capture/Compare/PWM.
	P2A	_	CMOS	PWM output.
	VLCD3	AN	_	LCD analog input.
RB4/AN11/CPS4/P1D/COM0	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN11	AN	—	A/D Channel input.
	CPS4	AN	_	Capacitive sensing input.
	P1D	_	CMOS	PWM output.
	COM0		AN	LCD Analog output.

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal

levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1933 devices only.

TABLE 3-7:PIC16(L)F1933 MEMORY MAP,
BANK 15

	Bank 15	
791h	LCDCON	
792h	LCDPS	
793h	LCDREF	
794h	LCDCST	
795h	LCDRL	
796h	_	
797h	_	
798h	LCDSE0	
799h	LCDSE1	
79Ah	_	
79Ah 79Bh	_	
79Dh		
79Ch		
79Dh 79Eh		
79Fh 7A0h	LCDDATA0	
7A011 7A1h	LCDDATA0	
7A2h	_	
7A3h	LCDDATA3	
7A4h	LCDDATA4	
7A5h	—	
7A6h	LCDDATA6	
7A7h	LCDDATA7	
7A8h 7A9h	LCDDATA9	
7A91 7AAh	LCDDATA10	
7ABh	_	
7ACh	_	
7ADh	_	
7AEh	_	
7AFh	_	
7B0h		
7B01 7B1h		
7B11		
7B2H 7B3h	_	
7B3fi 7B4h	_	
	_	
7B5h 7B6h		
7B011 7B7h		
7B7h 7B8h		
7 0011		
	Unimplemented	
	Read as '0'	
7EFh		
Legend:		ata memory locations, read
as	'0'.	

TABLE 3-8:PIC16(L)F1933 MEMORY MAP,
BANK 31

	Bank 31	
F8Ch		
	Unimplemented Read as '0'	
FE3h		
FE4h	STATUS_SHAD	
FE5h	WREG_SHAD	
FE6h	BSR_SHAD	
FE7h	PCLATH_SHAD	
FE8h	FSR0L_SHAD	
FE9h	FSR0H_SHAD	
FEAh	FSR1L_SHAD	
FEBh	FSR1H_SHAD	
FECh	—	
FEDh	STKPTR	
FEEh	TOSL	
FEFh	TOSH	
Legend: as	= Unimplemented data	memory locations, read

3.3.5 SPECIAL FUNCTION REGISTERS SUMMARY

The Special Function Register Summary for the device family are as follows:

Device	Bank(s)	Page No.
	0	25
	1	26
	2	27
	3	28
	4	29
	5	30
PIC16(L)F1933	6	31
	7	32
	8	33
	9-14	34
	15	35
	16-30	36
	31	37

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3								•	•		
180h ⁽²⁾	INDF0		this location ical register)	uses contents	s of FSR0H/F	SR0L to addre	ess data mei	mory		XXXX XXXX	XXXX XXXX
181h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addre	ess data mei	mory		XXXX XXXX	XXXX XXXX
182h ⁽²⁾	PCL	Program C	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
183h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
184h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ad	dress 0 Low	Pointer	•		•	•	0000 0000	uuuu uuuu
185h ⁽²⁾	FSR0H	Indirect Dat	ta Memory Ad	dress 0 High	Pointer					0000 0000	0000 0000
186h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ad	dress 1 Low	Pointer					0000 0000	uuuu uuuu
187h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ad	dress 1 High	Pointer					0000 0000	0000 0000
188h ⁽²⁾	BSR	_	_	_			BSR<4:0>			0 0000	0 0000
189h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
18Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Coun	iter			-000 0000	-000 0000
18Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
18Ch	ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	11 1111	11 1111
18Dh	ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	11 1111	11 1111
18Eh		Unimpleme	nted							_	
18Fh	_	Unimpleme	Unimplemented							_	_
190h	_	Unimpleme	ented							_	_
191h	EEADRL	EEPROM /	Program Me	mory Address	Register Lov	v Byte				0000 0000	0000 0000
192h	EEADRH	(3)	EEPROM / F	Program Mem	ory Address I	Register High	Byte			1000 0000	1000 0000
193h	EEDATL	EEPROM /	Program Me	mory Read Da	ata Register L	.ow Byte				XXXX XXXX	uuuu uuuu
194h	EEDATH	_	_	, 	•	ory Read Dat	a Register H	ligh Byte		xx xxxx	uu uuuu
195h	EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD		0000 q000
196h	EECON2	EEPROM of	EEPROM control register 2							0000 0000	-
197h	_	Unimplemented							_	_	
198h	_	Unimpleme	Unimplemented							<u> </u>	_
199h	RCREG	USART Receive Data Register							0000 0000	0000 0000	
19Ah	TXREG		USART ransmit Data Register							0000 0000	
19Bh	SPBRGL		BRG<7:0>								0000 0000
19Ch	SPBRGH				BRG<						0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D		0000 0010
		00110			0.110	01.00	2.1011			2000 0010	

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are

transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 5											
280h ⁽²⁾	INDF0		this location ical register)	uses contents	s of FSR0H/F	SR0L to addre	ess data mer	nory		XXXX XXXX	XXXX XXXX
281h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addre	ess data mer	nory		XXXX XXXX	XXXX XXXX
282h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
283h ⁽²⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
284h ⁽²⁾	FSR0L	Indirect Dat	a Memory Ad	dress 0 Low	Pointer					0000 0000	uuuu uuuu
285h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ad	dress 0 High	Pointer					0000 0000	0000 0000
286h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ad	dress 1 Low	Pointer					0000 0000	uuuu uuuu
287h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ad	dress 1 High	Pointer					0000 0000	0000 0000
288h ⁽²⁾	BSR	—	_	—			BSR<4:0>			0 0000	0 0000
289h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
28Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	rogram Coun	ter			-000 0000	-000 0000
28Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
28Ch	_	Unimpleme	nted							_	_
28Dh	_	Unimpleme	Unimplemented								_
28Eh	_	Unimpleme	Unimplemented							_	_
28Fh	—	Unimpleme	nted							_	_
290h	_	Unimpleme	nted							_	_
291h	CCPR1L	Capture/Co	mpare/PWM	Register 1 (L	SB)					XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Co	mpare/PWM	Register 1 (M	ISB)					XXXX XXXX	uuuu uuuu
293h	CCP1CON	P1M	<1:0>	DC1E	<1:0>		CCP1N	<3:0>		0000 0000	0000 0000
294h	PWM1CON	P1RSEN			F	P1DC<6:0>				0000 0000	0000 0000
295h	CCP1AS	CCP1ASE	(CCP1AS<2:0	>	PSS1A	C<1:0>	PSS1B	D<1:0>	0000 0000	0000 0000
296h	PSTR1CON	_	_	_	STR1SYNC	STR1D	STR1C	STR1B	STR1A	0 0001	0 0001
297h	—	Unimplemented							_	_	
298h	CCPR2L	Capture/Compare/PWM Register 2 (LSB)							XXXX XXXX	uuuu uuuu	
299h	CCPR2H	Capture/Co	Capture/Compare/PWM Register 2 (MSB)							XXXX XXXX	uuuu uuuu
29Ah	CCP2CON	P2M	P2M<1:0> DC2B<1:0> CCP2M<3:0>						0000 0000	0000 0000	
29Bh	PWM2CON	P2RSEN		P2DC<6:0>						0000 0000	0000 0000
29Ch	CCP2AS	CCP2ASE	(0000 0000	0000 0000	
29Dh	PSTR2CON	—	_	—	STR2SYNC	STR2D	STR2C	STR2B	STR2A	0 0001	0 0001
29Eh	CCPTMRS0	C4TSEL1	C4TSEL0	C3TSEL1	C3TSEL0	C2TSEL1	C2TSEL0	C1TSEL1	C1TSEL0	0000 0000	0000 0000
29Fh	CCPTMRS1			_				C5TSE	L<1:0>	00	00

TABLE 3-9 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

3: Unimplemented, read as '1'.

6.12 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- Stack Overflow Reset (STKOVF)
- Stack Underflow Reset (STKUNF)
- MCLR Reset (RMCLR)

The PCON register bits are shown in Register 6-2.

6.13 Register Definitions: Power Control

REGISTER 6-2: PCON: POWER CONTROL REGISTER

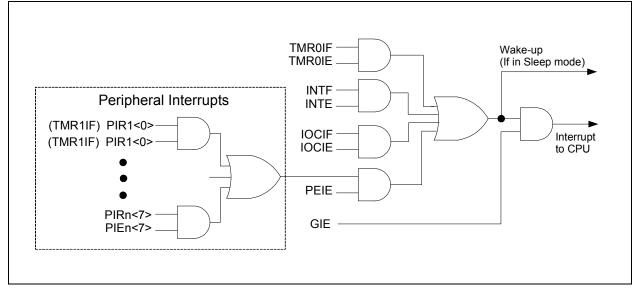
R/W/HS-0/q	R/W/HS-0/q	U-0	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	_	RMCLR	RI	POR	BOR
bit 7	•			· · · · · ·		•	bit 0

Legend:		
HC = Bit is cleared by har	dware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	STKOVF: Stack Overflow Flag bit
	1 = A Stack Overflow occurred
	0 = A Stack Overflow has not occurred or set to '0' by firmware
bit 6	STKUNF: Stack Underflow Flag bit
	1 = A Stack Underflow occurred
	0 = A Stack Underflow has not occurred or set to '0' by firmware
bit 5-4	Unimplemented: Read as '0'
bit 3	RMCLR: MCLR Reset Flag bit
	1 = A MCLR Reset has not occurred or set to '1' by firmware
	0 = A MCLR Reset has occurred (set to '0' in hardware when a MCLR Reset occurs)
bit 2	RI: RESET Instruction Flag bit
	1 = A RESET instruction has not been executed or set to '1' by firmware
	0 = A RESET instruction has been executed (set to '0' in hardware upon executing a RESET instruction)
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

8.0 LOW DROPOUT (LDO) VOLTAGE REGULATOR

The PIC16F193X has an internal Low Dropout Regulator (LDO) which provides operation above 3.6V. The LDO regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. There is no user enable/disable control available for the LDO, it is always active. The PIC16LF193X operates at a maximum VDD of 3.6V and does not incorporate an LDO.

A device I/O pin may be configured as the LDO voltage output, identified as the VCAP pin. Although not required, an external low-ESR capacitor may be connected to the VCAP pin for additional regulator stability.

The VCAPEN<1:0> bits of Configuration Words determines which pin is assigned as the VCAP pin. Refer to Table 8-1.

TABLE 8-1: VCAPEN<1:0> SELECT BITS

VCAPEN<1:0>	Pin
00	RA0
01	RA5
10	RA6
11	No Vcap

On power-up, the external capacitor will load the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information on the constant current rate, refer to the LDO Regulator Characteristics Table in Section 30.0 "Electrical Specifications".

TABLE 8-2 :	SUMMARY OF CONFIGURATION WORD WITH LDO

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8		—	LVP	DEBUG	—	BORV	STVREN	PLLEN	40
CONFIGZ	7:0			VCAPEN	\<1:0> ⁽¹⁾			WRT1	WRT0	48

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by LDO.

Note 1: PIC16F1933 only.

9.0 POWER-DOWN MODE (SLEEP)

The Power-Down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. TO bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
 - Timer1 oscillator
 - CapSense oscillator
- 7. ADC is unaffected, if the dedicated FRC clock is selected.
- 8. Capacitive Sensing oscillator is unaffected.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).
- 10. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- · I/O pins should not be floating
- · External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- Modules using Timer1 oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or VSS externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

9.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to Section 6.11 "Determining the Cause of a Reset".

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

TABLE 15-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)			•	uency (Fosc) uency (Fosc)		
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾
FRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.6 μ s for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

Tcy - Tad	TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	Tad9	TAD10	TAD11		
≜ ↑ †		b9	b8	b7	b6	b5	b4	b3	b2	b1	b0		
	onvers	sion sta	arts										
Holding	capac	itor is	discon	nected	from a	inalog i	nput (t	ypically	[,] 100 n	is)			
 Set GO b	hit												
5et 60 t	JIL				C)n tha f		g cycle					
										d, GO b	oit is cle	eared,	
					A	DIF bit	is set,	holding	g capa	citor is	connec	cted to analo	og inpu

NOTES:

17.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT pin
- Capacitive Sensing module (CPS)

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

EQUATION 17-1: DAC OUTPUT VOLTAGE

$\frac{IF DACEN = 1}{VOUT} = \left((VSOURCE+ - VSOURCE-) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE-$

IF DACEN = 0 and DACLPS = 1 and DACR[4:0] = 11111

VOUT = VSOURCE +

IF DACEN = 0 and DACLPS = 0 and DACR[4:0] = 00000

VOUT = VSOURCE -

VSOURCE+ = VDD, VREF+, or FVR BUFFER 2

VSOURCE- = VSS or VREF-

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 30.0** "Electrical **Specifications**".

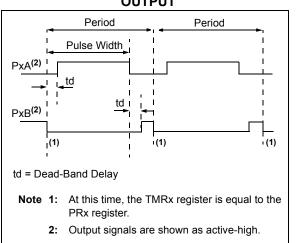
17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACCON1 register.

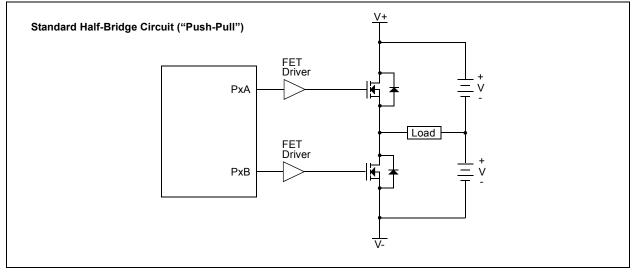
The DAC output voltage is determined by the following equations:

17.3 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the DACCON0 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.


Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 17-2 shows an example buffering technique.

23.4.5 PROGRAMMABLE DEAD-BAND DELAY MODE


In half-bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 23-16 for illustration. The lower seven bits of the associated PWMxCON register (Register 23-5) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 23-16: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 23-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS

24.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

24.5.6.1 Normal Clock Stretching

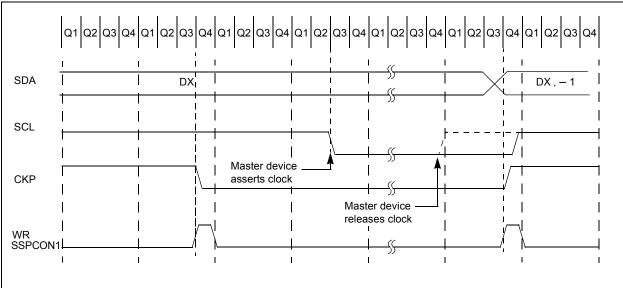
Following an \overline{ACK} if the R/ \overline{W} bit of SSPSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPBUF with data to transfer to the master. If the SEN bit of SSPCON2 is set, the slave hardware will always stretch the clock after the \overline{ACK} sequence. Once the slave is ready; CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPBUF was read before the 9th falling edge of SCL.
 - Previous versions of the module did not stretch the clock for a transmission if SSPBUF was loaded before the 9th falling edge of SCL. It is now always cleared for read requests.

24.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPADD.

Note:	Previous versions of the module did not
	stretch the clock if the second address byte
	did not match.


24.5.6.3 Byte NACKing

When the AHEN bit of SSPCON3 is set; CKP is cleared by hardware after the 8th falling edge of SCL for a received matching address byte. When the DHEN bit of SSPCON3 is set; CKP is cleared after the 8th falling edge of SCL for received data.

Stretching after the 8th falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

24.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 24-23).

FIGURE 24-23: CLOCK SYNCHRONIZATION TIMING

25.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

25.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see Section 25.5.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 25.5.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 25-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125
TXREG	EUSART T	ransmit Dat	ta Register						277*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

* Page provides register information.

30.2 DC Characteristics: Supply Currents (IDD)

PIC16LF	1933			d Operati g tempera	ature	-40°C ≤ T	less otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended		
PIC16F1	933			d Operati g tempera	ature	litions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param	Device						Conditions		
No.	Characteristics	Min.	Тур†	Max.	Units	VDD	Note		
	Supply Current (IDD) ⁽¹⁾	, 2)							
D009	LDO Regulator	-	350	—	μA	—	HS, EC OR INTOSC/INTOSCIO (8-16 MHz) Clock modes with all VCAP pins disabled		
			50	_	μA		All VCAP pins disabled		
			30	—	μΑ		VCAP enabled		
		—	5	—	μA	—	LP Clock mode and Sleep (requires FVR and BOR to be disabled)		
D010		_	8	14	μA	1.8	Fosc = 32 kHz		
		-	12	18	μA	3.0	LP Oscillator mode (Note 4), $-40^{\circ}C \le TA \le +85^{\circ}C$		
D010		_	23	63	μA	1.8	Fosc = 32 kHz		
			28	74	μA	3.0	LP Oscillator mode (Note 4, Note 5),		
		—	33	79	μA	5.0	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D010A		_	10	18	μA	1.8	Fosc = 32 kHz		
		-	15	20	μΑ	3.0	LP Oscillator mode (Note 4) -40°C \leq TA \leq +125°C		
D010A		—	24	79	μA	1.8	Fosc = 32 kHz		
		_	30	93	μA	3.0	LP Oscillator mode (Note 4, Note 5)		
		—	35	99	μA	5.0	$-40^{\circ}C \le TA \le +125^{\circ}C$		
D011		_	120	160	μΑ	1.8	Fosc = 1 MHz		
			200	255	μΑ	3.0	XT Oscillator mode		
D011			160	195	μA	1.8	Fosc = 1 MHz		
		_	230	275	μA	3.0	XT Oscillator mode (Note 5)		
			280	410	μA	5.0			
D012			325	370	μA	1.8	Fosc = 4 MHz		
		-	600	710	μΑ	3.0	XT Oscillator mode		
D012			350	410	μΑ	1.8	Fosc = 4 MHz		
			625	765	μΑ	3.0	XT Oscillator mode (Note 5)		
		—	700	850	μΑ	5.0			

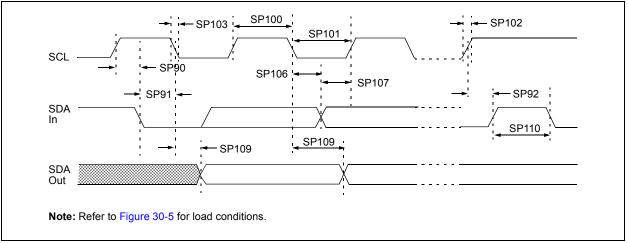
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

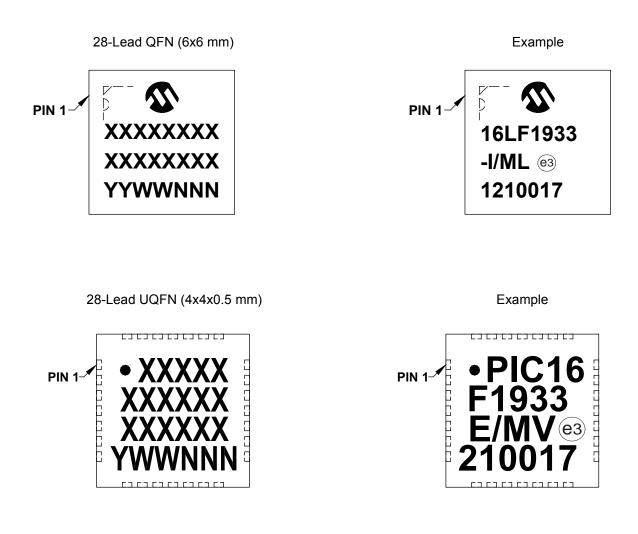
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.


5: 0.1 μF capacitor on VCAP.

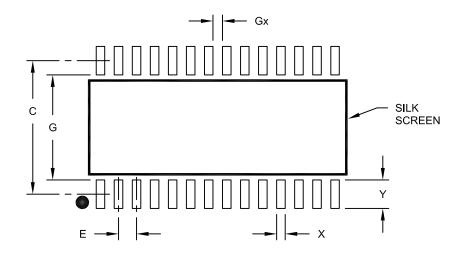

6: 8 MHz crystal oscillator with 4x PLL enabled.

Param No.	Symbol	Charac	teristic	Min.	Тур	Max.	Units	Conditions
NO.								
SP90*	TSU:STA	Start condition	100 kHz mode	4700	—	—	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	_	_		Start condition
SP91*	THD:STA	Start condition	100 kHz mode	4000	—	—	ns	After this period, the first
		Hold time	400 kHz mode	600	_	—		clock pulse is generated
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	_	—	ns	
		Setup time	400 kHz mode	600	_	—		
SP93	THD:STO	Stop condition	100 kHz mode	4000	_		ns	
		Hold time	400 kHz mode	600	_	_		


TABLE 30-15: I²C[™] BUS START/STOP BITS REQUIREMENTS

* These parameters are characterized but not tested.

Package Marking Information (Continued)



Legend	: XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

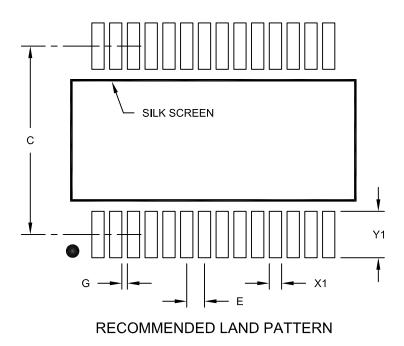
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	ILLIMETER	S
Dimension	n Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	<i>MILLIMETER</i>	S
Dimensior	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

High Baud Rate Select (BRGH Bit) Synchronous Master Mode	
Associated Registers	297, 302
Receive	301
Transmit	
Reception	
Transmission	
Synchronous Slave Mode	
Associated Registers	
Receive	303
Transmit	
Reception	
Transmission	
Extended Instruction Set	
ADDFSR	355
F	
Fail-Safe Clock Monitor	64
- Fail-Safe Clock Monitor	
•	64
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection	64 64
- Fail-Safe Clock Monitor Fail-Safe Condition Clearing	64 64 64
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection Fail-Safe Operation	
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection Fail-Safe Operation Reset or Wake-up from Sleep	
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection Fail-Safe Operation Reset or Wake-up from Sleep Firmware Instructions	64 64 64 64 351
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection Fail-Safe Operation Reset or Wake-up from Sleep Firmware Instructions Fixed Voltage Reference (FVR)	
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection Fail-Safe Operation Reset or Wake-up from Sleep Firmware Instructions Fixed Voltage Reference (FVR) Associated Registers	
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection Fail-Safe Operation Reset or Wake-up from Sleep Firmware Instructions. Fixed Voltage Reference (FVR) Associated Registers Flash Program Memory	64 64 64 64 351 135 99 104
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection Fail-Safe Operation Reset or Wake-up from Sleep Firmware Instructions Fixed Voltage Reference (FVR) Associated Registers Flash Program Memory Erasing	64 64 64
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection Fail-Safe Operation Reset or Wake-up from Sleep Firmware Instructions Fixed Voltage Reference (FVR) Associated Registers Flash Program Memory Erasing Modifying	64 64 64 351 135 99 104 108 104
Fail-Safe Clock Monitor Fail-Safe Condition Clearing Fail-Safe Detection Fail-Safe Operation Reset or Wake-up from Sleep Firmware Instructions. Fixed Voltage Reference (FVR) Associated Registers Flash Program Memory Erasing Modifying Writing	

L

I ² C Mode (MSSP)	
Acknowledge Sequence Timing	258
Bus Collision	
During a Repeated Start Condition	263
During a Stop Condition	264
Effects of a Reset	
I ² C Clock Rate w/BRG	
Master Mode	
Operation	250
Reception	256
Start Condition Timing	253
Transmission	254
Multi-Master Communication, Bus Collision and	
Arbitration	259
Multi-Master Mode	259
Read/Write Bit Information (R/W Bit)	235
Slave Mode	
Transmission	240
Sleep Operation	259
Stop Condition Timing	
INDF Register25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36	3, 37
Indirect Addressing	41
Instruction Format	352
Instruction Set	351
ADDLW	355
ADDWF	355
ADDWFC	355
ANDLW	355
ANDWF	355
BRA	356
CALL	357
CALLW	357
LSLF	359

LSRF	359
MOVF	359
MOVIW	
MOVLB	
MOVWI	361
OPTION	361
RESET	361
SUBWFB	
TRIS	364
BCF	. 356
BSF	356
BTFSC	
BTFSS	. 356
CALL	357
CLRF	. 357
CLRW	
CLRWDT	
COMF	357
DECF	. 357
DECFSZ	
GOTO	
INCF	. 358
INCFSZ	358
IORLW	
IORWF	. 358
MOVLW	. 360
MOVWF	360
NOP	
RETFIE	
RETLW	362
RETURN	362
RLF	
RRF	
SLEEP	363
SUBLW	. 363
SUBWF	
SWAPF	
XORLW	364
XORWF	. 364
INTCON Register	
	02
Internal Oscillator Block	
INTOSC	
Specifications	. 381
Internal Sampling Switch (Rss) Impedance	147
Internet Address	
Interrupt-On-Change	
Associated Registers	. 132
Interrupts	77
ADC	
Associated registers w/ Interrupts	
Configuration Word w/ Clock Sources	
Configuration Word w/ LDO	91
TMR1	
INTOSC Specifications	
IOCBF Register	
IOCBN Register	. 131
IOCBP Register	
L	
LATA Register 116	
LATB Register	. 121

	······································
LCD	
Associated Registers	346
Bias Voltage Generation	321, 322
Clock Source Selection	320
Configuring the Module	345