

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1933t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2:	PIC16(L)F1933 PINOUT DESCRIPTION (CONTINUED)
------------	--

Name	Function	Input Type	Output Type	Description
RC6/TX/CK/CCP3/P3A/SEG9	RC6	ST	CMOS	General purpose I/O.
	ΤX	_	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
	CCP3	ST	CMOS	Capture/Compare/PWM.
	P3A	_	CMOS	PWM output.
	SEG9	_	AN	LCD Analog output.
RC7/RX/DT/P3B/SEG8	RC7	ST	CMOS	General purpose I/O.
	RX	ST	_	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
	P3B	_	CMOS	PWM output.
	SEG8	_	AN	LCD Analog output.
RE3/MCLR/VPP	RE3	TTL	_	General purpose input.
	MCLR	ST		Master Clear with internal pull-up.
	VPP	ΗV	_	Programming voltage.
VDD	Vdd	Power	_	Positive supply.
Vss	Vss	Power	_	Ground reference.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output

OD = Open Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I²C[™] = Schmitt Trigger input with I²C HV = High Voltage XTAL = Crystal levels

Note 1: Pin function is selectable via the APFCON register.

2: PIC16F1933 devices only.

TABLE 3-3: PIC16(L)F1933 MEMORY MAP, BANKS 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	INDF0	080h	INDF0] 100h	INDF0	180h	INDF0	200h	INDF0	280h	INDF0	300h	INDF0	380h	INDF0
001h	INDF1	081h	INDF1	101h	INDF1	181h	INDF1	201h	INDF1	281h	INDF1	301h	INDF1	381h	INDF1
002h	PCL	082h	PCL	102h	PCL	182h	PCL	202h	PCL	282h	PCL	302h	PCL	382h	PCL
003h	STATUS	083h	STATUS	103h	STATUS	183h	STATUS	203h	STATUS	283h	STATUS	303h	STATUS	383h	STATUS
004h	FSR0L	084h	FSR0L	104h	FSR0L	184h	FSR0L	204h	FSR0L	284h	FSR0L	304h	FSR0L	384h	FSR0L
005h	FSR0H	085h	FSR0H	105h	FSR0H	185h	FSR0H	205h	FSR0H	285h	FSR0H	305h	FSR0H	385h	FSR0H
006h	FSR1L	086h	FSR1L	106h	FSR1L	186h	FSR1L	206h	FSR1L	286h	FSR1L	306h	FSR1L	386h	FSR1L
007h	FSR1H	087h	FSR1H	107h	FSR1H	187h	FSR1H	207h	FSR1H	287h	FSR1H	307h	FSR1H	387h	FSR1H
008h	BSR	088h	BSR	108h	BSR	188h	BSR	208h	BSR	288h	BSR	308h	BSR	388h	BSR
009h	WREG	089h	WREG	109h	WREG	189h	WREG	209h	WREG	289h	WREG	309h	WREG	389h	WREG
00Ah	PCLATH	08Ah	PCLATH	10Ah	PCLATH	18Ah	PCLATH	20Ah	PCLATH	28Ah	PCLATH	30Ah	PCLATH	38Ah	PCLATH
00Bh	INTCON	08Bh	INTCON	10Bh	INTCON	18Bh	INTCON	20Bh	INTCON	28Bh	INTCON	30Bh	INTCON	38Bh	INTCON
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch		28Ch		30Ch	—	38Ch	
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	—	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	_	20Eh		28Eh		30Eh	_	38Eh	
00Fh	_	08Fh		10Fh	_	18Fh	_	20Fh	_	28Fh	—	30Fh	—	38Fh	—
010h	PORTE	090h	TRISE	110h	_	190h	_	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSPBUF	291h	CCPR1L	311h	CCPR3L	391h	
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSPADD	292h	CCPR1H	312h	CCPR3H	392h	
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSPMSK	293h	CCP1CON	313h	CCP3CON	393h	
014h	_	094h		114h	CM2CON1	194h	EEDATH	214h	SSPSTAT	294h	PWM1CON	314h	PWM3CON	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSPCON1	295h	CCP1AS	315h	CCP3AS	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSPCON2	296h	PSTR1CON	316h	PSTR3CON	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	_	217h	SSPCON3	297h	—	317h	—	397h	—
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	_	218h	_	298h	CCPR2L	318h	CCPR4L	398h	—
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h		299h	CCPR2H	319h	CCPR4H	399h	
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah		29Ah	CCP2CON	31Ah	CCP4CON	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh		29Bh	PWM2CON	31Bh	_	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	SPBRGH	21Ch		29Ch	CCP2AS	31Ch	CCPR5L	39Ch	_
01Dh	_	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh		29Dh	PSTR2CON	31Dh	CCPR5H	39Dh	_
01Eh	CPSCON0	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh	_	29Eh	CCPTMRS0	31Eh	CCP5CON	39Eh	—
01Fh	CPSCON1	09Fh		11Fh	_	19Fh	BAUDCTR	21Fh	_	29Fh	CCPTMRS1	31Fh	—	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General		General		General										
	Purpose		Purpose		Purpose		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	Register		Register		Register		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'
	OU Dytes		OU Dytes		ou bytes										
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
			/011-/FN		/UII – /FN		/011 – / F11)	075	/011 – / FN		/011-/FN	075	/01-/FN	AFF!	/011-/FN
U/ED I		I UEED	1	i i/en l		ITEEDI		1 / (En		i zeen		i ⊰/⊢n		∖≺⊢⊢пі	

Legend: = Unimplemented data memory locations, read as '0'.

IADEE	00.01										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 7											
380h ⁽²⁾	INDF0	Addressing (not a phys	this location ical register)	uses contents	s of FSR0H/F	SR0L to addr	ess data mer	mory		XXXX XXXX	XXXX XXXX
381h ⁽²⁾	INDF1	Addressing (not a phys	this location ical register)	uses contents	s of FSR1H/F	SR1L to addr	ess data mer	nory		****	XXXX XXXX
382h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
383h ⁽²⁾	STATUS	_	_	—	TO	PD	Z	DC	С	1 1000	q quuu
384h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ac	ldress 0 Low	Pointer					0000 0000	uuuu uuuu
385h ⁽²⁾	FSR0H	Indirect Dat	ta Memory Ac	ldress 0 High	Pointer					0000 0000	0000 0000
386h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ac	dress 1 Low	Pointer					0000 0000	uuuu uuuu
387h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ac	ldress 1 High	Pointer					0000 0000	0000 0000
388h ⁽²⁾	BSR	—	—	—			BSR<4:0>			0 0000	0 0000
389h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
38Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	nter			-000 0000	-000 0000
38Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
38Ch	—	Unimpleme	ented							_	_
38Dh	—	Unimplemented								_	_
38Eh	—	Unimpleme	Unimplemented								_
38Fh	—	Unimpleme	ented							—	—
390h	—	Unimpleme	ented							—	—
391h	—	Unimpleme	ented							_	_
392h	—	Unimpleme	ented							_	_
393h	—	Unimpleme	ented							_	_
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
397h	_	Unimpleme	ented							_	—
398h	—	Unimpleme	ented							_	_
399h	—	Unimpleme	Unimplemented							_	_
39Ah	—	Unimpleme	Unimplemented							_	_
39Bh	—	Unimplemented —								_	_
39Ch	—	Unimpleme	Unimplemented								_
39Dh	—	Unimpleme	ented							_	_
39Eh	_	Unimpleme	ented							_	_
39Fh	—	Unimpleme	ented							-	—
											-

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Unimplemented, read as '1'.

FIGURE 5-7:	INTERNAL OSCILLATOR SWITCH TIMING
HFINTOSC/-+	LFINTOSC (FSCM and WDT disabled)
MFINTOSC	
HFINTOSC/ MFINTOSC	Start-up Time 2-cycle Sync Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
HFINTOSC/→ MFINTOSC	LFINTOSC (Either FSCM or WDT enabled)
HFINTOSC/ MFINTOSC	2-cycle Sync Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
LFINTOSC →	HFINTOSC/MFINTOSC
LFINTOSC	
	Start-up Time '2-cycle Sync ' Running
HFINTOSC/ MFINTOSC	
IRCF <3:0>	= 0 X ≠ 0
System Clock	

11.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The Data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the data memory block, EEDATL holds the 8-bit data for read/write, and EEADRL holds the address of the EEDATL location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block, the EEDATH:EEDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the EEADRL and EEADRH registers form a 2-byte word that holds the 15-bit address of the program memory location being read.

The EEPROM data memory allows byte read and write. An EEPROM byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the setting of the Flash Program Memory Self Write Enable bits WRT<1:0> of the Configuration Words, the device may or may not be able to write certain blocks of the program memory. However, reads from the program memory are always allowed.

When the device is code-protected, the device programmer can no longer access data or program memory. When code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory.

11.1 EEADRL and EEADRH Registers

The EEADRH:EEADRL register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 32K words of program memory.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a EEPROM address value, only the LSB of the address is written to the EEADRL register.

11.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, any subsequent operations will operate on the EEPROM memory. When set, any subsequent operations will operate on the program memory. On Reset, EEPROM is selected by default.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence. To enable writes, a specific pattern must be written to EECON2.

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:	L 11		1.1			(0)	
R = Readable	DIT	vv = Vvritable	DIT	U = Unimple	emented bit, read	as 'U'	thar Deasta
5 = Bit can one(1) = Bit is set	y de sei	x = Bit is unkl(0) = Bit is clo	arod	$-\Pi/\Pi = \text{Value}$	at POR and BO	R/Value at all 0	iner Reseis
I - DILIS SEL			aleu				
bit 7	EEPGD: Flas	h Program/Da	ta EEPROM M	emory Selec	t bit		
	1 = Accesses	s program spa	ce Flash memo	ry			
	0 = Accesses	s data EEPRO	M memory				
bit 6	CFGS: Flash	Program/Data	EEPROM or C		Select bit		
	1 = Accesses 0 = Accesses	s Configuration s Flash Progra	n, User ID and I m or data EEPI	ROM Memor	egisters rv		
bit 5	LWLO: Load	Write Latches	Only bit		5		
	<u> If CFGS = 1 (</u>	Configuration	<u>space)</u> OR <u>CFC</u>	GS = 0 and E	EEPGD = 1 (prog	<u>ram Flash)</u> :	
	1 = The	next WR com	mand does no	ot initiate a	write; only the p	rogram memor	y latches are
	0 = The	ated. next WR comr	nand writes a v	alue from EE	DATH:EEDATL	into program m	emorv latches
	and	initiates a write	e of all the data	stored in the	e program memo	ry latches.	,,
	If CEGS = 0 a	and EEPGD =	0. (Accessing o	lata EEPRO	M)		
	LWLO is igno	red. The next	<u>WR</u> command i	nitiates a wr	ite to the data EE	EPROM.	
bit 4	FREE: Progra	am Flash Eras	e Enable bit				
	<u> If CFGS = 1 (</u>	Configuration	space) OR <u>CFC</u>	<u>GS = 0 and E</u>	EPGD = 1 (proc	<u>ram Flash)</u> :	
	1 = Perf	orms an eras	e operation o	n the next	WR command	(cleared by h	ardware after
	0 = Perf	orms a write of	peration on the	next WR co	mmand.		
		and CECS -					
	FREE is ignor	red. The next \	<u>0.</u> (Accessing NR command v	vill initiate bo	oth a erase cycle	and a write cyc	sle.
bit 3	WRERR: EE	PROM Error FI	ag bit		,	,	
	1 = Condition	n indicates an	improper prog	ram or erase	e sequence atter	mpt or terminat	tion (bit is set
	automati	cally on any se	et attempt (write	e '1') of the V leted normal	VR bit).		
bit 2	WREN: Prog	ram/Frase Ena	ible bit		iy.		
	1 = Allows pr	rogram/erase c	cycles				
	0 = Inhibits p	orogramming/ei	rasing of progra	am Flash and	d data EEPROM		
bit 1	WR: Write Co	ontrol bit					
	1 = Initiates a	a program Flas	sh or data EEPF	ROM prograi	m/erase operatio	n. operation is co	mnlete
	The WR	bit can only be	set (not cleare	d) in softwar	e.		inpicte.
	0 = Program	/erase operatio	on to the Flash	or data EEP	ROM is complete	e and inactive.	
bit 0	RD: Read Co	ntrol bit	–				
	1 = Initiates	an program F	iash or data E an only be set (EPROM rea (not cleared)	ad. Read takes	one cycle. RD	is cleared in
	0 = Does not	t initiate a prog	ram Flash or da	ata EEPRON	/I data read.		

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
_	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0		
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 12-5: ANSELA: PORTA ANALOG SELECT REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **ANSA<5:0>**: Analog Select between Analog or Digital Function on pins RA<5:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- ADC positive reference
- Comparator positive input
- Digital-to-Analog Converter (DAC)
- · Capacitive Sensing (CPS) module
- · LCD bias generator

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators, DAC and CPS is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference Section 15.0 "Analog-to-Digital Converter (ADC) Module" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC, CPS and Comparator module. Reference Section 17.0 "Digital-to-Analog Converter (DAC) Module", Section 18.0 "Comparator Module" and Section 26.0 "Capacitive Sensing (CPS) Module" for additional information.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See in **Section 30.0 "Electrical Specifications**" for the minimum delay requirement.

TABLE 16-2:	SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVF	२<1:0>	118

Legend: Shaded cells are unused by the temperature indicator module.

22.0 TIMER2/4/6 MODULES

There are up to three identical Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).

Note:	The 'x' variable used in this section is
	used to designate Timer2, Timer4, or
	Timer6. For example, TxCON references
	T2CON, T4CON, or T6CON. PRx refer-
	ences PR2, PR4, or PR6.

The Timer2/4/6 modules incorporate the following features:

- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSP module (Timer2 only)

See Figure 22-1 for a block diagram of Timer2/4/6.

23.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register.

If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

FIGURE 23-15: PWM AUTO-SHUTDOWN WITH AUTO-RESTART (PXRSEN = 1)

FIGURE 24-8:

26.1 Analog MUX

The CPS module can monitor up to 16 inputs. The capacitive sensing inputs are defined as CPS<15:0>. To determine if a frequency change has occurred the user must:

- Select the appropriate CPS pin by setting the CPSCH<2:0> bits of the CPSCON1 register.
- Set the corresponding ANSEL bit.
- · Set the corresponding TRIS bit.
- Run the software algorithm.

Selection of the CPSx pin while the module is enabled will cause the capacitive sensing oscillator to be on the CPSx pin. Failure to set the corresponding ANSEL and TRIS bits can cause the capacitive sensing oscillator to stop, leading to false frequency readings.

26.2 Capacitive Sensing Oscillator

The capacitive sensing oscillator consists of a constant current source and a constant current sink, to produce a triangle waveform. The CPSOUT bit of the CPSCON0 register shows the status of the capacitive sensing oscillator, whether it is a sinking or sourcing current. The oscillator is designed to drive a capacitive load (single PCB pad) and at the same time, be a clock source to either Timer0 or Timer1. The oscillator has several different current settings as defined by CPSRNG<1:0> of the CPSCON0 register. The different current settings for the oscillator serve two purposes:

- Maximize the number of counts in a timer for a fixed time base.
- Maximize the count differential in the timer during a change in frequency.

26.3 Voltage Reference Modes

The capacitive sensing oscillator uses voltage references to provide two voltage thresholds for oscillation. The upper voltage threshold is referred to as Ref+ and the lower voltage threshold is referred to as Ref-.

The user can elect to use Fixed Voltage References, which are internal to the capacitive sensing oscillator, or variable voltage references, which are supplied by the Fixed Voltage Reference (FVR) module and the Digital-to-Analog Converter (DAC) module.

When the Fixed Voltage References are used, the Vss voltage determines the lower threshold level (Ref-) and the VDD voltage determines the upper threshold level (Ref+).

When the variable voltage references are used, the DAC voltage determines the lower threshold level (Ref-) and the FVR voltage determines the upper threshold level (Ref+). An advantage of using these reference sources is that oscillation frequency remains constant with changes in VDD.

Different oscillation frequencies can be obtained through the use of these variable voltage references. The more the upper voltage reference level is lowered and the more the lower voltage reference level is raised, the higher the capacitive sensing oscillator frequency becomes.

Selection between the voltage references is controlled by the CPSRM bit of the CPSCON0 register. Setting this bit selects the variable voltage references and clearing this bit selects the fixed voltage references.

Please see Section 14.0 "Fixed Voltage Reference (FVR)" and Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information on configuring the variable voltage levels.

27.13 Configuring the LCD Module

The following is the sequence of steps to configure the LCD module.

- 1. Select the frame clock prescale using bits LP<3:0> of the LCDPS register.
- 2. Configure the appropriate pins to function as segment drivers using the LCDSEn registers.
- 3. Configure the LCD module for the following using the LCDCON register:
 - Multiplex and bias mode, bits LMUX<1:0>
 - Timing source, bits CS<1:0>
 - Sleep mode, bit SLPEN
- 4. Write initial values to pixel data registers, LCDDATA0 through LCDDATA11.
- 5. Clear LCD Interrupt Flag, LCDIF bit of the PIR2 register and if desired, enable the interrupt by setting bit LCDIE of the PIE2 register.
- Configure bias voltages by setting the LCDRL, LCDREF and the associated ANSELx registers as needed.
- 7. Enable the LCD module by setting bit LCDEN of the LCDCON register.

27.14 Disabling the LCD Module

To disable the LCD module, write all '0's to the LCDCON register.

27.15 LCD Current Consumption

When using the LCD module the current consumption consists of the following three factors:

- Oscillator Selection
- · LCD Bias Source
- Capacitance of the LCD segments

The current consumption of just the LCD module can be considered negligible compared to these other factors.

27.15.1 OSCILLATOR SELECTION

The current consumed by the clock source selected must be considered when using the LCD module. See **Section 30.0 "Electrical Specifications"** for oscillator current consumption information.

27.15.2 LCD BIAS SOURCE

The LCD bias source, internal or external, can contribute significantly to the current consumption. Use the highest possible resistor values while maintaining contrast to minimize current.

27.15.3 CAPACITANCE OF THE LCD SEGMENTS

The LCD segments which can be modeled as capacitors which must be both charged and discharged every frame. The size of the LCD segment and its technology determines the segment's capacitance.

29.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description			
PC	Program Counter			
TO	Time-out bit			
С	Carry bit			
DC	Digit carry bit			
Z	Zero bit			
PD	Power-down bit			

30.2 DC Characteristics: Supply Currents (IDD) (Continued)

PIC16LF1933			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
PIC16F1933			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			tions (unl -40°C ≤ T⁄ -40°C ≤ T⁄	l ess otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended	
Param	Device	Min	Тур†	Max.	Units	Conditions		
No.	Characteristics	Min.				VDD	Note	
Supply Current (IDD) ^(1, 2)								
D013			60	90	μA	1.8	Fosc = 500 kHz	
		—	85	135	μA	3.0	EC Oscillator Low-Power mode	
D013		_	60	137	μA	1.8	Fosc = 500 kHz	
		—	85	194	μA	3.0	EC Oscillator Low-Power mode (Note 5)	
		—	95	230	μΑ	5.0		
D014		—	300	340	μΑ	1.8	Fosc = 4 MHz	
		—	400	650	μA	3.0	EC Oscillator mode Medium-Power mode	
D014		_	350	375	μA	1.8	Fosc = 4 MHz	
		—	550	700	μA	3.0	EC Oscillator mode (Note 5)	
		—	600	900	μΑ	5.0		
D015		—	3.7	4.2	mA	3.0	Fosc = 32 MHz	
		—	4.2	5.2	mA	3.6	EC Oscillator High-Power mode	
D015		_	3.7	4.2	mA	3.0	Fosc = 32 MHz	
		—	3.9	4.7	mA	5.0	EC Oscillator High-Power mode (Note 5)	
D016		_	4	10	μA	1.8	Fosc = 32 kHz	
		—	7	13	μΑ	3.0	LFINTOSC mode, 85°C	
D016		_	27	61	μΑ	1.8	Fosc = 32 kHz	
		_	33	74	μΑ	3.0	LFINTOSC mode, 85°C (Note 5)	
		—	34	76	μA	5.0		

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

- 4: FVR and BOR are disabled.
- 5: 0.1 μ F capacitor on VCAP.

6: 8 MHz crystal oscillator with 4x PLL enabled.

Program Memory	. 15
Map and Stack (PIC16F1933/LF1933,	
PIC16F1934/LF1934)	, 20
Map and Stack (PIC16F1936/LF1936,	
PIC16F1937/LF1937)16	, 20
Map and Stack (PIC16F1938/LF1938,	
PIC16F1939/LF1939)	. 20
Programming Mode Exit	. 72
Programming, Device Instructions	351
PSTRxCON Register	218
PWM (ECCP Module)	
PWM Steering	211
Steering Synchronization	212
PWM Mode. See Enhanced Capture/Compare/PWM	200
PWM Steering	211
PWMxCON Register	217

R

RCREG	282
RCREG Register	
RCSTA Register	28, 286
Reader Response	460
Read-Modify-Write Operations	351
Register	
RCREG Register	293
Registers	
ADCON0 (ADC Control 0)	143
ADCON1 (ADC Control 1)	144
ADRESH (ADC Result High) with ADFM = 0)	145
ADRESH (ADC Result High) with ADFM = 1)	146
ADRESL (ADC Result Low) with ADFM = 0)	145
ADRESL (ADC Result Low) with ADFM = 1)	146
ANSELA (PORTA Analog Select)	117
ANSELB (PORTB Analog Select)	122
APFCON (Alternate Pin Function Control)	114
BAUDCON (Baud Rate Control)	287
BORCON Brown-out Reset Control)	71
CCPTMRS0 (PWM Timer Selection Control 0)	215
CCPTMRS1 (PWM Timer Selection Control 1)	215
CCPxAS (CCPx Auto-Shutdown Control)	216
CCPxCON (ECCPx Control)	214
CMOUT (Comparator Output)	164
CMxCON0 (Cx Control)	163
CMxCON1 (Cx Control 1)	164
Configuration Word 1	
Configuration Word 2	
CPSCON0 (Capacitive Sensing Control Register	r 0) 311
CPSCON1 (Capacitive Sensing Control Register	r 1) 312
DACCON0	156
DACCON1	156
EEADRL (EEPROM Address)	110
EECON1 (EEPROM Control 1)	111
EECON2 (EEPROM Control 2)	112
EEDATH (EEPROM Data)	110
EEDATL (EEPROM Data)	110
FVRCON	135
IOCBF (Interrupt-on-Change Flag)	131
IOCBN (Interrupt-on-Change Negative Edge)	131
IOCBP (Interrupt-on-Change Positive Edge)	131
LATA (Data Latch PORTA)	116
LAIB (Data Latch PORIB)	121
LATC (Data Latch PORTC)	125
LCDCON (LCD Control)	315
LCDCST (LCD Contrast Control)	318

LCDDATAx (LCD Data)	. 319. 326
LCDPS (LCD Phase)	316
L CDREF (LCD Reference Voltage Control)	317
LCDRL (LCD Reference Voltage Control)	
LCDSEn (LCD Segment Enable)	319
	173
OSCCON (Oscillator Control)	
OSCULINE (Oscillator Tuning)	
PCON (Power Control Pogistor)	
PCON (Power Control)	
PLCIN (Power Control)	
PIET (Peripheral Interrupt Enable 1)	
PIE2 (Peripheral Interrupt Enable 2)	
PIE3 (Peripheral Interrupt Enable 3)	
PIR1 (Peripheral Interrupt Register 1)	
PIR2 (Peripheral Interrupt Request 2)	
PIR3 (Peripheral Interrupt Request 3)	
PORTA	116
PORTB	121
PORTC	125
PORTE	127
PSTRxCON (PWM Steering Control)	218
PWMxCON (Enhanced PWM Control)	217
RCSTA (Receive Status and Control)	286
Special Function, Summary	25
SRCON0 (SR Latch Control 0)	169
SRCON1 (SR Latch Control 1)	169
SSPADD (MSSP Address and Baud Rate,	
I ² C Mode)	273
SSPCON1 (MSSP Control 1)	269
SSPCON2 (SSP Control 2)	271
SSPCON3 (SSP Control 3)	272
SSPMSK (SSP Mask)	273
SSPSTAT (SSP Status)	
STATUS	
T1CON (Timer1 Control)	
T1GCON (Timer1 Gate Control)	
TRISA (Tri-State PORTA)	116
TRISB (Tri-State PORTB)	121
TRISC (Tri-State PORTC)	125
TRISE (Tri-State PORTE)	127
TXCON	189
TXSTA (Transmit Status and Control)	285
WDTCON (Watchdog Timer Control)	
WPLIB (Weak Pullup PORTR)	122
RESET	261
Pacat	JUI 60
Reset Instruction	
Desete	12
Accorded Desistors	
Associated Registers	
1001 1 115101 y	449
-	

S

Shoot-through Current	210
Software Simulator (MPLAB SIM)	435
SPBRG Register	27, 28
SPBRGH	288
SPBRGL	
Special Event Trigger	141
Special Function Registers (SFRs)	25
SPI Mode (MSSP)	
Associated Registers	229
SPI Clock	225
SR Latch	167
Associated registers w/ SR Latch	170
SRCON0 Register	169

NOTES: