

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1933-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (RC) mode circuits.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See Section 5.3 "Clock Switching" for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

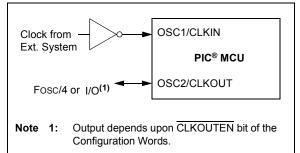
An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See **Section 5.3 "Clock Switching**" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.


EC mode has three power modes to select from through Configuration Words:

- High power, 4-32 MHz (FOSC = 111)
- Medium power, 0.5-4 MHz (FOSC = 110)
- Low power, 0-0.5 MHz (FOSC = 101)

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

EXTERNAL CLOCK (EC) MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

FIGURE 5-7:	INTERNAL OSCILLATOR SWITCH TIMING
HFINTOSC/-+	LFINTOSC (FSCM and WDT disabled)
MFINTOSC	
HFINTOSC/ MFINTOSC	Start-up Time 2-cycle Sync Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
HFINTOSC/→ MFINTOSC	LFINTOSC (Either FSCM or WDT enabled)
HFINTOSC/ MFINTOSC	2-cycle Sync Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
LFINTOSC →	HFINTOSC/MFINTOSC
	LFINTOSC turns off unless WDT or FSCM is enabled
LFINTOSC	
	Start-up Time 2-cycle Sync Running
HFINTOSC/ MFINTOSC	
IRCF <3:0>	= 0 X ≠ 0
System Clock	

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to the Section 9.0 "Power-Down Mode (Sleep)" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the Shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine (ISR), these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding Shadow register should be modified and the value will be restored when exiting the ISR. The Shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

12.4 PORTB Registers

12.4.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-7). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 12-6) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

12.4.2 DIRECTION CONTROL

The TRISB register (Register 12-7) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.4.3 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 12-10). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the WPUEN bit of the OPTION_REG register.

12.4.4 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:0> enable or disable the interrupt function for each pin. The interrupt-on-change feature is disabled on a Power-on Reset. Reference Section 13.0 "Interrupt-on-Change" for more information.

12.4.5 ANALOG CONTROL

The ANSELB register (Register 12-9) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode

will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

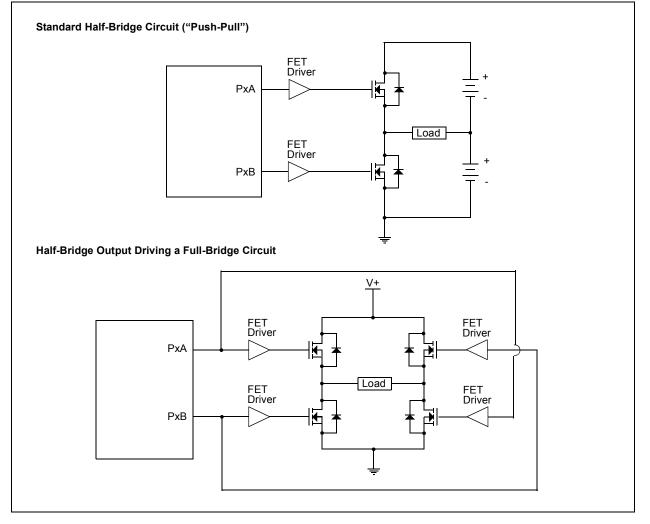
Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

15.3 Register Definitions: ADC Control

REGISTER 15-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			CHS<4:0>			GO/DONE	ADON
oit 7							bit
₋egend: R = Readabl	la hit	W = Writable	hit	II – Unimplon	nanted hit rea	vd oo 'O'	
		x = Bit is unki			nented bit, rea	OR/Value at all o	othor Donata
u = Bit is und 1' = Bit is se	•				at FOR and B	JR/ value at all t	
I = BIUS SE		'0' = Bit is cle	ared				
oit 7	Unimpleme	nted: Read as '	0'				
oit 6-2	CHS<4:0>:	Analog Channe	Select bits				
		R (Fixed Voltag	e Reference)	Buffer 1 Output	(2)		
	11110 = D A		(3)				
		mperature Indic eserved. No cha		d			
	• •	serveu. No cha	mer connecte	u.			
	•						
	•						
		eserved. No cha	nnel connecte	d.			
	01101 = AN	-					
	01100 = AN						
	01011 = AN 01010 = AN						
	01000 = AN						
	01000 = AN						
		served. No cha	nnel connecte	d.			
	00110 = Re	eserved. No cha	nnel connecte	d.			
	00101 = Re	eserved. No cha	nnel connecte	d.			
	00100 = AN	14					
	00011 = AN						
	00010 = AN						
	00001 = AN 00000 = AN						
oit 1		A/D Conversion	Status bit				
	1 = A/D conv	version cycle in	progress. Sett	ing this bit start	s an A/D conv	ersion cycle.	
	This bit is	s automatically	cleared by har	dware when the		ion has complet	ed.
	0 = A/D conv	version complet	ed/not in prog	ress			
oit 0	ADON: ADC	Enable bit					
	1 = ADC is e						
	0 = ADC is c	lisabled and co	nsumes no op	erating current			
	ee Section 17.0	-	-			information.	
2 : S	ee Section 14.0	0 "Fixed Voltag	e Reference	(FVR)" for more	e information.		
3: S	ee Section 16.0) "Temperature	Indicator Mo	dule" for more	information		

23.4.1 HALF-BRIDGE MODE


In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/PxA pin, while the complementary PWM output signal is output on the PxB pin (see Figure 23-9). This mode can be used for Half-Bridge applications, as shown in Figure 23-9, or for Full-Bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge mode, the programmable dead-band delay can be used to prevent shoot-through current in Half-Bridge power devices. The value of the PDC<6:0> bits of the PWMxCON register sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See Section 23.4.5 "Programmable Dead-Band Delay Mode" for more details of the dead-band delay operations. Since the PxA and PxB outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

FIGURE 23-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 23-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

REGISTER 24-3: SSPCON2: SSP CONTROL REGISTER 2

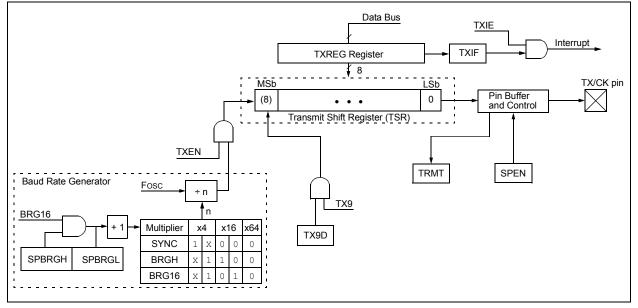
R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is cle	eared	HC = Cleared	d by hardware	S = User set	
bit 7	1 = Enable in	nterrupt when a	•	.,	or 00h) is receiv	red in the SSPS	SR
		call address di					
bit 6	1 = Acknowle	cknowledge Si edge was not r edge was recei		mode only)			
bit 5		-	ı bit (in I ² C moo	de only)			
	In Receive m	i <u>ode:</u> iitted when the iowledge	·	• •	le sequence at	the end of a re	ceive
bit 4	ACKEN: Ack	nowledge Seq	uence Enable	bit (in I ² C Mas	ter mode only)		
	In Master Re	ceive mode:		,			
	Automat	Acknowledge ically cleared b edge sequenc	y hardware.	SDA and S	CL pins, and	transmit ACF	KDT data bit
bit 3	RCEN: Rece	ive Enable bit	(in I ² C Master i	mode only)			
	RCEN: Receive Enable bit (in I ² C Master mode only) 1 = Enables Receive mode for I ² C 0 = Receive idle						
bit 2	PEN: Stop Co	ondition Enabl	e bit (in I ² C Ma	ster mode only	y)		
		Release Contro	_				
	0 = Stop cond	dition Idle			atically cleared		
bit 1					ster mode only)		
	 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle 						nardware.
bit 0	SEN: Start C	ondition Enabl	e/Stretch Enab	le bit			
	<u>In Master mo</u> 1 = Initiate St 0 = Start con	tart condition o	n SDA and SC	L pins. Autom	atically cleared	by hardware.	
				ave transmit ar	nd slave receive	e (stretch enab	led)
Note 1: Fo	or bits ACKEN, F	RCEN, PEN, R	SEN, SEN: If ti	he I ² C module	is not in the IdI	e mode, this bi	t may not be

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

25.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous system. Full-Duplex mode is useful for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:


- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 25-1 and Figure 25-2.

FIGURE 25-1: EUSART TRANSMIT BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
RCREG	EUSART F	Receive Dat	a Register						280*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL		BRG<7:0>					288*		
SPBRGH	BRG<15:8>					288*			
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

TABLE 25-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

FIGURE 25-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin	
SREN bit	<u>'0'</u>
RCIF bit (Interrupt) ———— Read RXREG ————	
	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

TABLE 25-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
RCREG	EUSART R	eceive Dat	a Register						280*
RCSTA	SPEN	SPEN RX9 SREN CREN ADDEN FERR OERR RX9D					286		
SPBRGL		BRG<7:0>					288*		
SPBRGH	BRG<15:8>					288*			
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

27.4 LCD Bias Voltage Generation

The LCD module can be configured for one of three bias types:

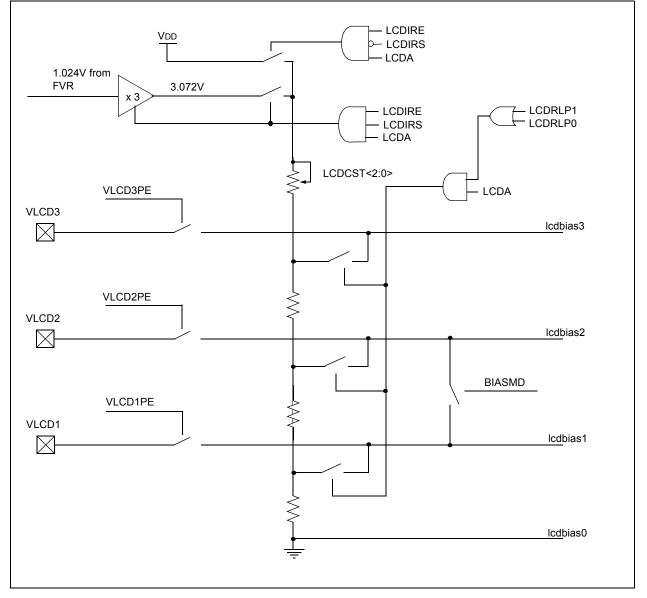

- Static Bias (two voltage levels: VSS and VLCD)
- + 1/2 Bias (three voltage levels: Vss, 1/2 VLcD and VLcD)
- 1/3 Bias (four voltage levels: VSS, 1/3 VLCD, 2/3 VLCD and VLCD)

TABLE 27-2: LCD BIAS VOLTAGES

	Static Bias	1/2 Bias	1/3 Bias
LCD Bias 0	Vss	Vss	Vss
LCD Bias 1	_	1/2 Vdd	1/3 Vdd
LCD Bias 2	_	1/2 Vdd	2/3 Vdd
LCD Bias 3	VLCD3	VLCD3	VLCD3

So that the user is not forced to place external components and use up to three pins for bias voltage generation, internal contrast control and an internal reference ladder are provided internally to the PIC16(L)F1933. Both of these features may be used in conjunction with the external VLCD<3:1> pins, to provide maximum flexibility. Refer to Figure 27-3.

FIGURE 27-3: LCD BIAS VOLTAGE GENERATION BLOCK DIAGRAM

27.6 LCD Multiplex Types

The LCD driver module can be configured into one of four multiplex types:

- Static (only COM0 is used)
- 1/2 multiplex (COM<1:0> are used)
- 1/3 multiplex (COM<2:0> are used)
- 1/4 multiplex (COM<3:0> are used)

The LMUX<1:0> bit setting of the LCDCON register decides which of the LCD common pins are used (see Table 27-4 for details).

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. If the pin is a COM drive, then the TRIS setting of that pin is overridden.

Multiplex	LMUX <1:0>	СОМЗ	COM2	COM1		
Static	00	Unused	Unused	Unused		
1/2	01	Unused	Unused	Active		
1/3	10	Unused	Active	Active		
1/4	11	Active	Active	Active		

TABLE 27-4: COMMON PIN USAGE

27.7 Segment Enables

The LCDSEn registers are used to select the pin function for each segment pin. The selection allows each pin to operate as either an LCD segment driver or as one of the pin's alternate functions. To configure the pin as a segment pin, the corresponding bits in the LCDSEn registers must be set to '1'.

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. Any bit set in the LCDSEn registers overrides any bit settings in the corresponding TRIS register.

Note: On a Power-on Reset, these pins are configured as normal I/O, not LCD pins.

27.8 Pixel Control

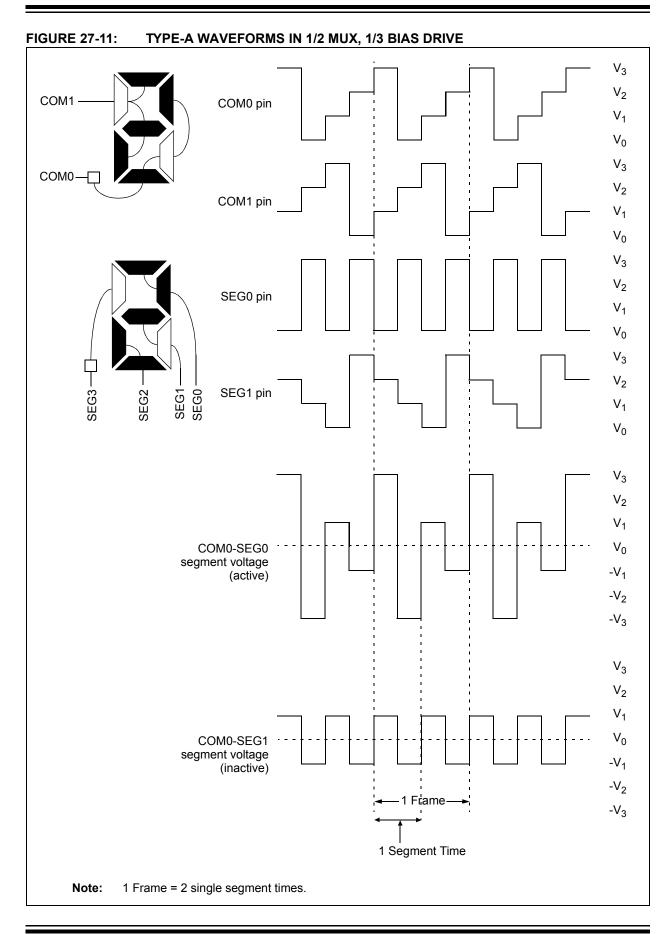
The LCDDATAx registers contain bits which define the state of each pixel. Each bit defines one unique pixel.

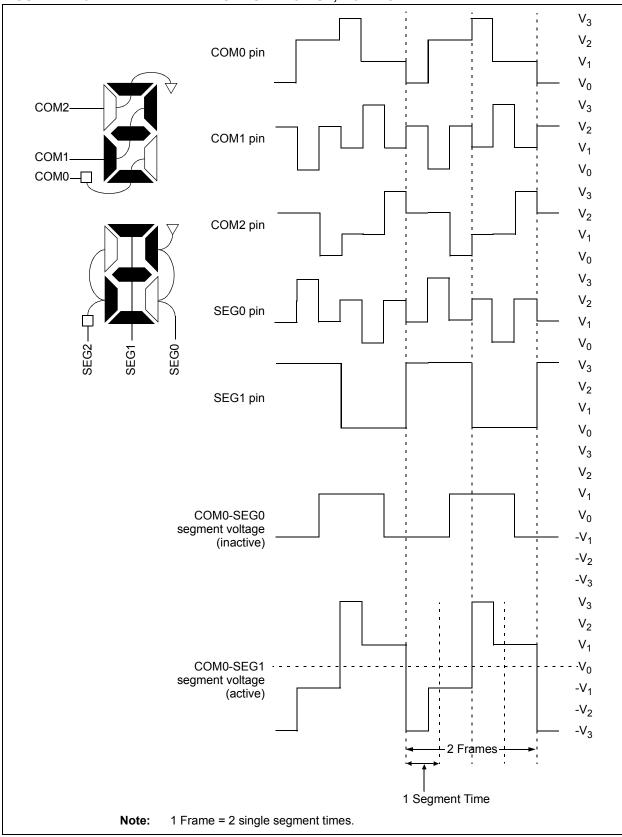
Register 27-6 shows the correlation of each bit in the LCDDATAx registers to the respective common and segment signals.

Any LCD pixel location not being used for display can be used as general purpose RAM.

27.9 LCD Frame Frequency

The rate at which the COM and SEG outputs change is called the LCD frame frequency.


TABLE 27-5: FRAME FREQUENCY FORMULAS


Multiplex	Frame Frequency =
Static	Clock source/(4 x 1 x (LCD Prescaler) x 32))
1/2	Clock source/(2 x 2 x (LCD Prescaler) x 32))
1/3	Clock source/(1 x 3 x (LCD Prescaler) x 32))
1/4	Clock source/(1 x 4 x (LCD Prescaler) x 32))

Note: Clock source is Fosc/256, T1OSC or LFINTOSC.

TABLE 27-6: APPROXIMATE FRAME FREQUENCY (IN Hz) USING Fosc @ 8 MHz, TIMER1 @ 32.768 kHz OR LFINTOSC

LP<3:0>	Static	1/2	1/3	1/4
2	122	122	162	122
3	81	81	108	81
4	61	61	81	61
5	49	49	65	49
6	41	41	54	41
7	35	35	47	35

29.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions recognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description			
PC	Program Counter			
TO	Time-out bit			
С	Carry bit			
DC	Digit carry bit			
Z	Zero bit			
PD	Power-down bit			

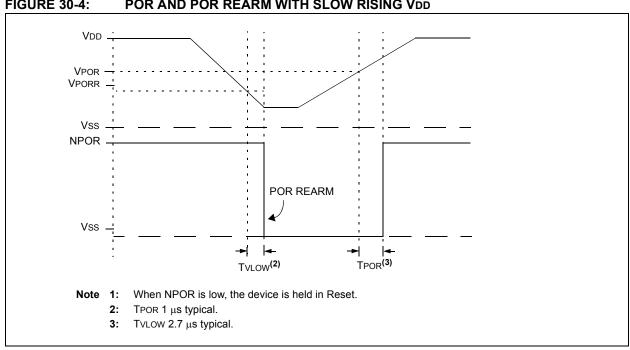


FIGURE 30-4: POR AND POR REARM WITH SLOW RISING VDD

30.3 DC Characteristics: Power-Down Currents (IPD) (Continued)

PIC16LF1933 PIC16F1933				Standard Operating Conc Operating temperature			ditions (unless otherwise stated) $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended		
				rd Operation ng temper	•	itions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param No.	Device Characteristics	Min.	Тур†	Max. +85°C	Max. +125°C	Units	Conditions		
							VDD	Note	
	Power-down Base Current	(IPD) ⁽²⁾							
D028			0.1	1	7	μA	1.8	A/D Current (Note 1, Note 3),	
		—	0.1	2	8	μA	3.0	no conversion in progress	
D028			16	56	70	μA	1.8	A/D Current (Note 1, Note 3), no conversion in progress	
		_	21	58	78	μA	3.0		
		—	25	61	88	μA	5.0		
D028A		_	250	_	—	μA	1.8	A/D Current (Note 1, Note 3), conversion in progress	
		—	250			μA	3.0		
D028A		_	280	_	_	μA	1.8	A/D Current (Note 1, Note 3, Note 4), conversion in progress	
		—	280	_	_	μA	3.0		
		—	280		_	μA	5.0		
D029		—	1.9	6	6	μA	1.8	Cap Sense, Low-Power mode CPSRM = 0, cpsrng = 01 (Note 1)	
		—	3.6	9	9	μΑ	3.0		
D029		_	20	61	76	μA	1.8	Cap Sense, Low-Power mode	
		—	24	64	79	μA	3.0	CPSRM = 0, cpsrng = 01	
		—	26	66	83	μA	5.0	(Note 1)	
D030		—	1	_	_	μA	3.0	LCD Bias Ladder, Low-power	
		—	10	_	_	μA	3.0	LCD Bias Ladder, Medium-power	
		—	75		—	μA	3.0	LCD Bias Ladder, High-power	
D030		_	1		—	μA	5.0	LCD Bias Ladder, Low-power	
		_	10	—	—	μA	5.0	LCD Bias Ladder, Medium-power	
		—	75	—	_	μA	5.0	LCD Bias Ladder, High-power	
D031			16	18	18	μΑ	1.8	Comparator, Low-Power mode	
		_	18	20	20	μA	3.0		
D031		_	27	65	81	μA	1.8	Comparator, Low-Power mode	
		_	30	75	94	μA	3.0		
		_	32	76	95	μA	5.0		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

4: 0.1 μF capacitor on VCAP.

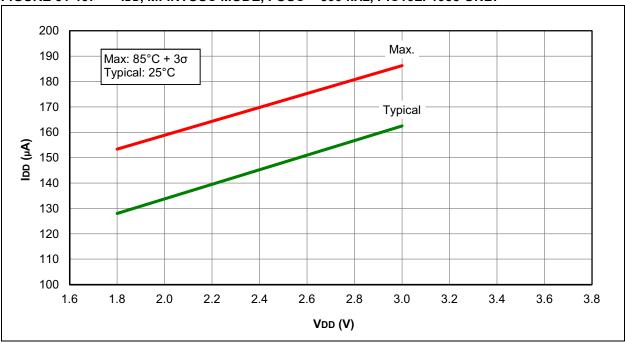
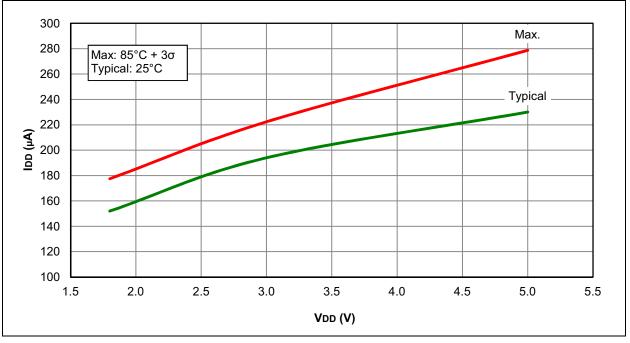
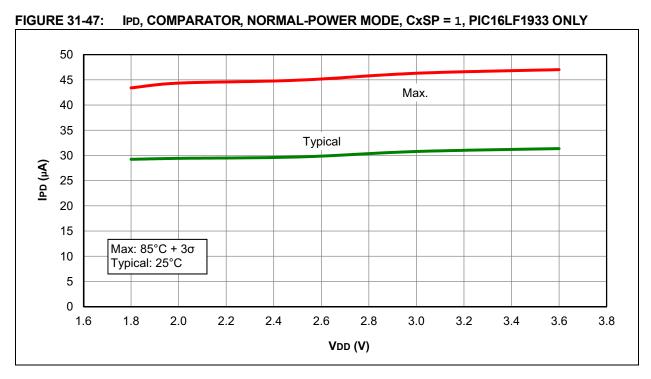
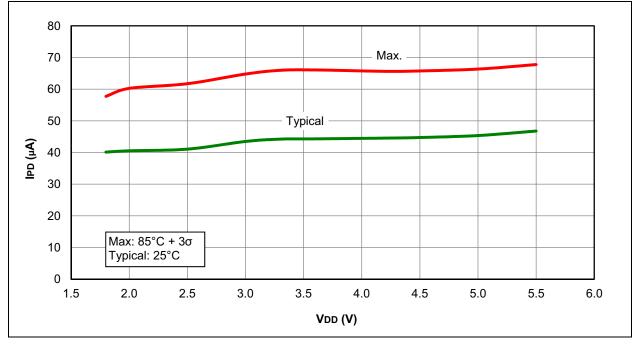
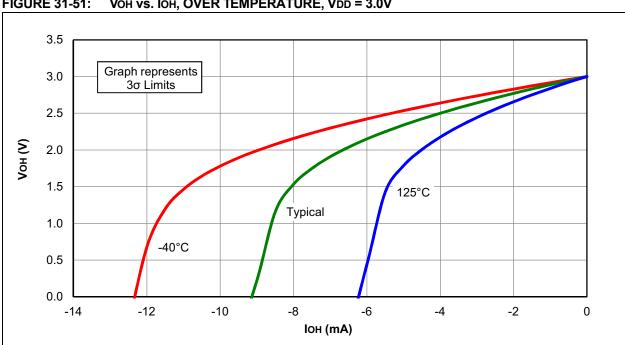
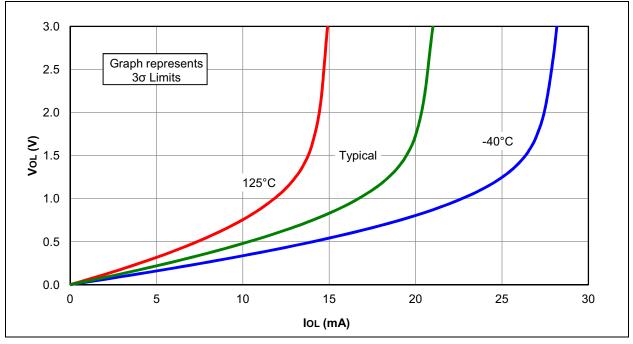



FIGURE 31-19: IDD, MFINTOSC MODE, FOSC = 500 kHz, PIC16LF1933 ONLY


FIGURE 31-48: IPD, COMPARATOR, NORMAL-POWER MODE, CxSP = 1, PIC16F1933 ONLY

