

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I²C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1933-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

-		•	1	•			1	•			1
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
000h ⁽²⁾	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								XXXX XXX	* **** ****
001h ⁽²⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								XXXX XXXX	* **** ****
002h ⁽²⁾	PCL	Program C	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
003h ⁽²⁾	STATUS	—	—	_	TO	PD	Z	DC	С	1 1000)q quuu
004h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ad	dress 0 Low	Pointer					0000 0000) uuuu uuuu
005h ⁽²⁾	FSR0H	Indirect Dat	ta Memory Ad	ddress 0 High	Pointer					0000 0000	0000 0000
006h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ad	ddress 1 Low	Pointer					0000 0000) uuuu uuuu
007h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ad	ddress 1 High	Pointer					0000 0000	0000 0000
008h ⁽²⁾	BSR	_	—	—			BSR<4:0>			0 0000)0 0000
009h ⁽²⁾	WREG	Working Re	egister		•					0000 0000) uuuu uuuu
00Ah ^(1, 2)	PCLATH	—	Write Buffer	for the upper	7 bits of the F	Program Cour	nter			-000 0000	0000 0000
00Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
00Ch	PORTA	PORTA Da	ta Latch wher	n written: POF	RTA pins whe	n read	•	•	•	XXXX XXXX	k uuuu uuuu
00Dh	PORTB	PORTB Data Latch when written: PORTB pins when read							XXXX XXXX	k uuuu uuuu	
00Eh	PORTC	PORTC Data Latch when written: PORTC pins when read							XXXX XXXX	k uuuu uuuu	
00Fh	_	Unimpleme	ented							_	_
010h	PORTE	_	—	_	_	RE3	_		_	x	u
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	0000 00-0	0000 00-0
013h	PIR3	_	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	-000 0-0-	000 0-0-
014h	_	Unimpleme	nted							_	-
015h	TMR0	Timer0 Mod	dule Register							XXXX XXXX	k uuuu uuuu
016h	TMR1L	Holding Re	gister for the	Least Signific	ant Byte of th	e 16-bit TMR	1 Register			XXXX XXXX	k uuuu uuuu
017h	TMR1H	Holding Re	gister for the	Most Significa	ant Byte of the	e 16-bit TMR1	Register			XXXX XXXX	k uuuu uuuu
018h	T1CON	TMR10	CS<1:0>	T1CKP	'S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0) uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	0000 0x00) uuuu uxuu
01Ah	TMR2	Timer 2 Mo	dule Register	r	•	•	•	•		0000 0000	0000 0000
01Bh	PR2	Timer 2 Period Register							1111 1111	1111 1111	
01Ch	T2CON	_		T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	-000 0000	0000 0000
01Dh	-	Unimpleme	nted							—	_
01Eh	CPSCON0	CPSON	CPSRM	_	—	CPSRNG1	CPSRNG0	CPSOUT	TOXCS	00 0000	00 0000
01Fh	CPSCON1	—	—	—	—	—	(CPSCH<2:0	>	000)000

TADLE 2 A.	CDECIAL	FUNCTION DECICTED	
TABLE 3-9:	SPELIAL	FUNCTION REGISTER 3	

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are 1: transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

3: Unimplemented, read as '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 8											
400h ⁽²⁾	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								XXXX XXXX	XXXX XXXX
401h ⁽²⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)							XXXX XXXX	XXXX XXXX	
402h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa.	nt Byte					0000 0000	0000 0000
403h ⁽²⁾	STATUS	—	—	—	TO	PD	Z	DC	С	1 1000	q quuu
404h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ad	ddress 0 Low	Pointer					0000 0000	uuuu uuuu
405h ⁽²⁾	FSR0H	Indirect Dat	ta Memory Ad	ddress 0 High	Pointer					0000 0000	0000 0000
406h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ad	ddress 1 Low	Pointer					0000 0000	uuuu uuuu
407h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ad	ddress 1 High	Pointer					0000 0000	0000 0000
408h ⁽²⁾	BSR	—	—	—			BSR<4:0>			0 0000	0 0000
409h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
40Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	nter			-000 0000	-000 0000
40Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
40Ch	—	Unimpleme	ented							_	_
40Dh	—	Unimplemented							_	_	
40Eh	—	Unimpleme	ented							—	—
40Fh	—	Unimpleme	ented							_	—
410h	—	Unimpleme	ented							_	_
411h	—	Unimpleme	ented							_	_
412h	—	Unimpleme	Unimplemented							_	_
413h	—	Unimpleme	Unimplemented							_	_
414h	—	Unimpleme	ented							_	_
415h	TMR4	Timer 4 Mo	dule Register	r						0000 0000	0000 0000
416h	PR4	Timer 4 Per	riod Register							1111 1111	1111 1111
417h	T4CON	_		T4OUTI	PS<3:0>		TMR4ON	T4CKP	S<1:0>	-000 0000	-000 0000
418h	—	Unimpleme	ented							_	_
419h	—	Unimplemented						_	_		
41Ah	—	Unimplemented						_	_		
41Bh	—	Unimplemented						_	_		
41Ch	TMR6	Timer 6 Module Register						0000 0000	0000 0000		
41Dh	PR6	Timer 6 Per	riod Register							1111 1111	1111 1111
41Eh	T6CON	_		T6OUTI	PS<3:0>		TMR6ON	T6CKP	S<1:0>	-000 0000	-000 0000
41Fh	_	Unimpleme	ented							_	_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-9**:

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

These registers can be addressed from any bank. 2:

3: Unimplemented, read as '1'.

FIGURE 5-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

5.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Words
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<2:0> bits in the Configuration Words.
- When the SCS bits of the OSCCON register = 01, the system clock source is the Timer1 oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

Note:	Any automatic clock switch, which may
	occur from Two-Speed Start-up or
	Fail-Safe Clock Monitor, does not update
	the SCS bits of the OSCCON register. The
	user can monitor the OSTS bit of the
	OSCSTAT register to determine the current
	system clock source.

When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

5.3.2 OSCILLATOR START-UP TIMER STATUS (OSTS) BIT

The Oscillator Start-up Timer Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has counted 1024 clock cycles for LP, XT or HS modes. The OST does not reflect the status of the Timer1 oscillator.

5.3.3 TIMER1 OSCILLATOR

The Timer1 oscillator is a separate crystal oscillator associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1OSO and T1OSI device pins.

The Timer1 oscillator is enabled using the T1OSCEN control bit in the T1CON register. See Section 21.0 "Timer1 Module with Gate Control" for more information about the Timer1 peripheral.

5.3.4 TIMER1 OSCILLATOR READY (T1OSCR) BIT

The user must ensure that the Timer1 oscillator is ready to be used before it is selected as a system clock source. The Timer1 Oscillator Ready (T1OSCR) bit of the OSCSTAT register indicates whether the Timer1 oscillator is ready to be used. After the T1OSCR bit is set, the SCS bits can be configured to select the Timer1 oscillator.

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	—	—	—	—	—	—	BORRDY
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit
	If BOREN <1:0> in Configuration Words ≠ 01:
	SBOREN is read/write, but has no effect on the BOR.
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	
bit 7							bit 0	
Legend:								
R = Readable	= Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 12-9: ANSELB: PORTB ANALOG SELECT REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **ANSB<5:0>**: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function.

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 12-10: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 15.2.6 "A/D Conver-
	sion Procedure".

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

15.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx/ECCPX module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 15-2: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx	
PIC16(L)F1933	CCP5	

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to **Section 23.0 "Capture/Compare/PWM Modules**" for more information.

15.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/\overline{DONE} bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 15.4 "A/D Acquisition Requirements".

EXAMPLE 15-1: A/D CONVERSION

```
; This code block configures the ADC
; for polling, Vdd and Vss references, Frc
; clock and ANO input.
;Conversion start & polling for completion
; are included.
BANKSEL ADCON1
MOVLW B'11110000' ;Right justify, Frc
                   ;clock
MOVWF
       ADCON1
                  ;Vdd and Vss Vref
BANKSEL TRISA
                  ;
BSF
       TRISA,0 ;Set RAO to input
BANKSEL ANSEL
                  ;
        ANSEL,0 ;Set RAO to analog
BSF
BANKSEL
        ADCON0
                    ;
        B'00000001' ;Select channel ANO
MOVLW
MOVWF
        ADCON0
                   ;Turn ADC On
CALL
        SampleTime ;Acquisiton delay
       ADCON0, ADGO ; Start conversion
BSF
BTFSC ADCON0, ADGO ; Is conversion done?
GOTO
        $-1
                 ;No, test again
BANKSEL ADRESH
                  ;
MOVF
        ADRESH,W ;Read upper 2 bits
        RESULTHI ;store in GPR space
MOVWF
BANKSEL
        ADRESL
                    ;
        ADRESL,W
MOVF
                   ;Read lower 8 bits
        RESULTLO ;Store in GPR space
MOVWE
```

18.11 Register Definitions: Comparator Control

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
CxON	CxOUT	CxOE	CxPOL	_	CxSP	CxHYS	CxSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	CxON: Comp 1 = Compara 0 = Compara	parator Enable tor is enabled a tor is disabled	bit and consumes	no active pov	ver		
bit 6	6 CxOUT: Comparator Output bit <u>If CxPOL = 1 (inverted polarity):</u> 1 = CxVP < CxVN 0 = CxVP > CxVN <u>If CxPOL = 0 (non-inverted polarity):</u> 1 = CxVP > CxVN 0 = CxVP > CxVN						
bit 5 CxOE: Comparator Output Enable bit 1 = CxOUT is present on the CxOUT pin. Requires that the associated TRIS bit be cleared to actual drive the pin. Not affected by CxON.						red to actually	
bit 4	CxPOL: Com	nparator Output	Polarity Selec	t bit			
	0 = Compara	tor output is no	t inverted				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	CxSP: Comp	arator Speed/P	ower Select bi	it			
	1 = Compara 0 = Compara	tor operates in tor operates in	normal power, low-power, lov	higher speed	l mode e		
bit 1	CxHYS: Com	nparator Hyster	esis Enable bit	t			
	1 = Compara 0 = Compara	ator hysteresis ator hysteresis	enabled disabled				
bit 0	CxSYNC: Co 1 = Compara Output u 0 = Compara	omparator Outp ator output to 1 pdated on the 1 ator output to T	ut Synchronou Timer1 and I/O Falling edge of Timer1 and I/O	s Mode bit pin is synch Timer1 clock pin is asynchi	ronous to chang source. onous	ges on Timer1	clock source.

REGISTER 18-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

23.2.5 COMPARE DURING SLEEP

The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

23.2.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	114
CCPxCON	PxM<	1:0> ⁽¹⁾	DCxB	<1:0>		CCPxM<	:3:0>		214
CCPRxL	Capture/Co	mpare/PWM	Register x l	Low Byte (LS	SB)				192
CCPRxH	Capture/Co	mpare/PWM	Register x I	High Byte (M	ISB)				192
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	84
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	85
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	_	CCP2IF	87
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF		TMR4IF	—	88
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N	183
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GS	S<1:0>	184
TMR1L	R1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register							179	
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							179	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	116
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	121
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125

TABLE 23-4: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Compare mode.

Note 1: Applies to ECCP modules only.

I²C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1) **FIGURE 24-19:** Stop condition Master sends ___ ACK D7/D6/D5/D4/D3/D2/D1/D0/ Master's <u>ACK</u> response is copied to SSPSTAT cleared after 8th falling edge of SCL CKP not cleared Transmitting Data after not ACK BF is automatically Automatic D7/D6/D5/D4/D3/D2/D1/D0/ACK 6 Transmitting Data Cleared by software Data to transmit is loaded into SSPBUF Set by software, releases SCL -ACKTIM is cleared on 9th rising edge of SCL Automatic Master releases SDA to slave for ACK sequence ACK 6 When R/W = 1; CKP is always cleared after ACK R/<u>W</u> = ⊥ <u>1</u>234566778 Slave clears ACKDT to ACK address is read from SSPBUF A7\ A6\ A5\ A4\ A3\ A2\ A1 Received address ACKTIM is set on 8th falling edge of SCL Receiving Address When AHEN = 1; CKP is cleared by hardware -after receiving matching address. S D/A RW СKР SDA ВΓ ACKDT SSPIF ACKSTAT ACKTIM SCL

PIC16(L)F1933

25.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See Section 5.2.2 "Internal Clock Sources" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see Section 25.4.1 "Auto-Baud Detect"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-x/x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	SPEN: Serial	Port Enable bi	t				
	1 = Serial po	rt enabled (cor	figures RX/D	T and TX/CK p	oins as serial por	t pins)	
	0 = Serial po	rt disabled (hel	d in Reset)				
bit 6	RX9: 9-bit Re	ceive Enable b	oit				
	1 = Selects 9 0 = Selects 8	-bit reception					
bit 5	SREN: Single	e Receive Fnat	ole bit				
5.00	Asvnchronou	s mode:					
	Don't care						
	Synchronous	mode – Maste	<u>r</u> :				
	1 = Enables	single receive					
	0 = Disables	single receive	ntion is compl	oto			
	Svnchronous	mode – Slave		ele.			
	Don't care						
bit 4	CREN: Contin	nuous Receive	Enable bit				
	Asynchronou	<u>s mode</u> :					
	1 = Enables	receiver					
	0 = Disables	receiver					
	Synchronous	<u>mode</u> :					
	1 = Enables 0 = Disables	continuous rec continuous rec	eive until enal ceive	DIE DIT CREN IS	s cleared (CREN	I overrides SRI	EN)
bit 3	ADDEN: Add	ress Detect En	able bit				
	Asynchronou	<u>s mode 9-bit (F</u>	<u> X9 = 1)</u> :				
	1 = Enables	address detect	ion, enable in	terrupt and loa	d the receive bu	ffer when RSR	<8> is set
	0 = Disables	address detec	tion, all bytes	are received a	ind ninth bit can	be used as par	rity bit
	Asynchronous	<u>s mode 8-dit (F</u>	(X9 = 0):				
h it 0		na Emanhit					
DIL 2	1 = Eroming	ng Error bit	ndatad by rac		register and read	aivo povt volid	buto)
	1 = Fraining 0 = No framing	ng error	pualeu by lea		register and rece		byte)
bit 1	OERR: Overr	un Error bit					
	1 = Overrun	error (can be c	leared by clea	ring bit CREN)		
	0 = No overr	un error					
bit 0	RX9D: Ninth	bit of Received	Data				
	This can be a	ddress/data bit	or a parity bit	and must be	calculated by us	er firmware.	

REGISTER 25-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

TABLE 25-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	-	SCKP	BRG16	—	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL	BRG<7:0>							288*	
SPBRGH	BRG<15:8>						288*		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125
TXREG	EUSART Transmit Data Register							277*	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.4 "MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6 pin, 6 connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.

FIGURE 28-3: PICkit[™] PROGRAMMER STYLE CONNECTOR INTERFACE

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

32.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	Units		MILLIMETERS	3
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	К	0.20	_	_

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (05/2011)

Initial release.

Revision B (06/2012)

Update to Electrical Specifications.

Revision C (09/2012)

Updated Note 1 in Register 23-1; Updated Table 26-1; Updated the Electrical Specifications section; Updated Figure 31-37; Other minor corrections.

APPENDIX B: MIGRATING FROM OTHER PIC® DEVICES

This discusses some of the issues in migrating from other $\text{PIC}^{\textcircled{B}}$ devices to the PIC16(L)F1933 family of devices.

B.1 PIC16F917 to PIC16(L)F1933

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F917	PIC16F1933
Max. Operating Speed	20 MHz	32 MHz
Max. Program Memory (Words)	8K	8K
Max. SRAM (Bytes)	368	512
A/D Resolution	10-bit	10-bit
Timers (8/16-bit)	2/1	4/1
Oscillator Modes	4	8
Brown-out Reset	Y	Y
Internal Pull-ups	RB<7:0>	RB<7:0>
Interrupt-on-change	RB<7:4>	RB<7:0>
Comparator	2	2
AUSART/EUSART	1/0	0/1
Extended WDT	Y	Y
Software Control Option of WDT/BOR	N	Y
INTOSC Frequencies	30 kHz - 8 MHz	500 kHz - 32 MHz
Clock Switching	Y	Y
Capacitive Sensing	N	Y
CCP/ECCP	2/0	2/3
Enhanced PIC16 CPU	N	Y
MSSP/SSP	0/1	1/0
LCD	Y	Y