

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1933-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-5: PIC16(L)F1933 MEMORY MAP, BANKS 16-23

	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h	INDF0	880h	INDF0	900h	INDF0	980h	INDF0	A00h	INDF0	A80h	INDF0	B00h	INDF0	B80h	INDF0
801h	INDF1	881h	INDF1	901h	INDF1	981h	INDF1	A01h	INDF1	A81h	INDF1	B01h	INDF1	B81h	INDF1
802h	PCL	882h	PCL	902h	PCL	982h	PCL	A02h	PCL	A82h	PCL	B02h	PCL	B82h	PCL
803h	STATUS	883h	STATUS	903h	STATUS	983h	STATUS	A03h	STATUS	A83h	STATUS	B03h	STATUS	B83h	STATUS
804h	FSR0L	884h	FSR0L	904h	FSR0L	984h	FSR0L	A04h	FSR0L	A84h	FSR0L	B04h	FSR0L	B84h	FSR0L
805h	FSR0H	885h	FSR0H	905h	FSR0H	985h	FSR0H	A05h	FSR0H	A85h	FSR0H	B05h	FSR0H	B85h	FSR0H
806h	FSR1L	886h	FSR1L	906h	FSR1L	986h	FSR1L	A06h	FSR1L	A86h	FSR1L	B06h	FSR1L	B86h	FSR1L
807h	FSR1H	887h	FSR1H	907h	FSR1H	987h	FSR1H	A07h	FSR1H	A87h	FSR1H	B07h	FSR1H	B87h	FSR1H
808h	BSR	888h	BSR	908h	BSR	988h	BSR	A08h	BSR	A88h	BSR	B08h	BSR	B88h	BSR
809h	WREG	889h	WREG	909h	WREG	989h	WREG	A09h	WREG	A89h	WREG	B09h	WREG	B89h	WREG
80Ah	PCLATH	88Ah	PCLATH	90Ah	PCLATH	98Ah	PCLATH	A0Ah	PCLATH	A8Ah	PCLATH	B0Ah	PCLATH	B8Ah	PCLATH
80Bh	INTCON	88Bh	INTCON	90Bh	INTCON	98Bh	INTCON	A0Bh	INTCON	A8Bh	INTCON	B0Bh	INTCON	B8Bh	INTCON
80Ch	_	88Ch	—	90Ch	—	98Ch	—	A0Ch	—	A8Ch	—	B0Ch	—	B8Ch	—
80Dh	—	88Dh	_	90Dh		98Dh		A0Dh		A8Dh	—	B0Dh		B8Dh	
80Eh	—	88Eh	—	90Eh	—	98Eh	—	A0Eh	—	A8Eh	—	B0Eh	—	B8Eh	—
80Fh	—	88Fh	_	90Fh	—	98Fh	—	A0Fh	—	A8Fh	—	B0Fh	—	B8Fh	—
810h	—	890h	_	910h	—	990h	—	A10h	—	A90h	—	B10h	—	B90h	—
811h	—	891h	—	911h	—	991h	—	A11h	—	A91h	—	B11h	—	B91h	—
812h	—	892h	—	912h	—	992h	—	A12h	—	A92h	—	B12h	—	B92h	—
813h	—	893h	—	913h	—	993h	—	A13h	—	A93h	—	B13h	—	B93h	—
814h	—	894h	—	914h	—	994h	—	A14h	—	A94h	—	B14h	—	B94h	—
815h	—	895h	_	915h	_	995h		A15h		A95h	_	B15h		B95h	
816h	—	896h	—	916h	—	996h	—	A16h	—	A96h	—	B16h	—	B96h	—
817h	_	897h	_	917h	_	997h		A17h	_	A97h	_	B17h	_	B97h	_
818h	—	898h	_	918h		998h		A18h		A98h		B18h		B98h	
819h	—	899h	_	919h	_	999h		A19h		A99h	_	B19h		B99h	
81Ah	—	89Ah	_	91Ah	—	99Ah	_	A1Ah	—	A9Ah	_	B1Ah	—	B9Ah	—
81Bh	_	89Bh	_	91Bh	_	99Bh		A1Bh	_	A9Bh	_	B1Bh	_	B9Bh	_
81Ch	_	89Ch	_	91Ch	_	99Ch		A1Ch	_	A9Ch	_	B1Ch	_	B9Ch	_
81Dh	_	89Dh	_	91Dh	_	99Dh	_	A1Dh	—	A9Dh	_	B1Dh	—	B9Dh	—
81Eh	_	89Eh	_	91Eh	_	99Eh	_	A1Eh	—	A9Eh	_	B1Eh	—	B9Eh	—
81Fh	_	89Fh	_	91Fh	_	99Fh	_	A1Fh	_	A9Fh	_	B1Fh	_	B9Fh	_
820n		8A0n		920n		9A0h		A20h		AAUN		B200		BAUN	
	Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented		Unimplemented
	iteau as 0		Neau as 0		iteau as 0		iteau as 0		iteau as 0		iteau as 0		iteau as 0		iteau as 0
				0.05						A		DOF			
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFN		B6Fh		BELL	
8701	Accesses	9LAU	Accesses	970h	Accesses	9FUN	Accesses	Arun	Accesses	Arun	Accesses	BINN	Accesses	BEON	Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
97Eh	/ 0.11 / 1.11	QEEh		07Eb	7011 1111	OFEN		47Eb		AEEh		D7Ch		DECH	
01 F11		0661		9/ - 11		9661				AFEU		DIFI		וודדט	

Legend: = Unimplemented data memory locations, read as '0'.

TABLE 3-6: PIC16(L)F1933 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	—	C8Ch	—	D0Ch	—	D8Ch	—	E0Ch	—	E8Ch	—	F0Ch	—	F8Ch	
C0Dh	—	C8Dh	—	D0Dh	—	D8Dh	—	E0Dh	—	E8Dh		F0Dh	—	F8Dh	
C0Eh	—	C8Eh	—	D0Eh	—	D8Eh	_	E0Eh	_	E8Eh	_	F0Eh	—	F8Eh	
C0Fh	—	C8Fh	—	D0Fh	—	D8Fh	_	E0Fh	_	E8Fh	_	F0Fh	—	F8Fh	
C10h	—	C90h	—	D10h	—	D90h	_	E10h	_	E90h	_	F10h	—	F90h	
C11h	—	C91h	_	D11h	_	D91h	_	E11h	_	E91h		F11h	—	F91h	
C12h	—	C92h	—	D12h	—	D92h	—	E12h	—	E92h		F12h	—	F92h	
C13h	—	C93h	_	D13h	_	D93h	_	E13h	_	E93h	_	F13h	_	F93h	
C14h	_	C94h	_	D14h	_	D94h	_	E14h	_	E94h	_	F14h	_	F94h	
C15h	_	C95h	_	D15h	_	D95h	_	E15h	_	E95h	_	F15h	—	F95h	
C16h	_	C96h	_	D16h	_	D96h	_	E16h	_	E96h	_	F16h	—	F96h	
C17h	_	C97h	_	D17h	—	D97h	—	E17h	—	E97h	_	F17h	—	F97h	
C18h	_	C98h	_	D18h	—	D98h	—	E18h	—	E98h	_	F18h	—	F98h	See Table 3-8
C19h	—	C99h	_	D19h	—	D99h	—	E19h	_	E99h	_	F19h	—	F99h	
C1Ah	_	C9Ah		D1Ah	_	D9Ah	_	E1Ah	_	E9Ah		F1Ah		F9Ah	
C1Bh	_	C9Bh		D1Bh	_	D9Bh	_	E1Bh	_	E9Bh		F1Bh		F9Bh	
C1Ch	_	C9Ch	—	D1Ch	—	D9Ch	—	E1Ch	—	E9Ch		F1Ch	—	F9Ch	
C1Dh	—	C9Dh	_	D1Dh	_	D9Dh	_	E1Dh	_	E9Dh	_	F1Dh	_	F9Dh	
C1Eh	_	C9Eh	_	D1Eh	_	D9Eh	_	E1Eh	_	E9Eh		F1Eh		F9Eh	
C1Fh C20h	_	C9Fh	_	D1Fh	_	D9Fh	_	E1Fh	_	E9Fh		F1Fh F20h		F9Fh	
02011		CAUIT		D2011		DAUII		E2011		EAUII		FZUII		FAUI	
	l la incala no entre d										l luciona la constante el		l la incale accente al		
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		
CGEh		CEEh		DEEN		DEEh		EGEN		EEEh		EGEN		EEEb	
C70b		CEON						E0FII		FEOR		F70h		FE0h	
07011	Accesses	51 011	Accesses	DION	Accesses	51 011	Accesses		Accesses		Accesses	1 / 0/1	Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
CEEb		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	
0111		2													

Legend: = Unimplemented data memory locations, read as '0'.

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 (CONTINUED)

- bit 4-3 **WDTE<1:0>:** Watchdog Timer Enable bit
 - 11 = WDT enabled
 - 10 = WDT enabled while running and disabled in Sleep
 - 01 = WDT controlled by the SWDTEN bit in the WDTCON register
 - 00 = WDT disabled

bit 2-0 FOSC<2:0>: Oscillator Selection bits

- 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
- 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
- 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
- 100 = INTOSC oscillator: I/O function on CLKIN pin
- 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
- 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
- 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
- 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
- **Note 1:** Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire data EEPROM will be erased when the code protection is turned off during
 - 3: The entire program memory will be erased when the code protection is turned off.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_			TUN	<5:0>		
bit 7		-					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5-0	TUN<5:0>: F	Frequency Tunir	ng bits				
	100000 = N	1inimum frequer	псу				
	•						
	•						
	111111 =						
	000000 = C	scillator module	e is running at	the factory-calil	orated frequen	су	
	000001 =						
	•						
	•						
	011110 =						
	011111 = N	laximum freque	ncy				

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
OSCCON	SPLLEN		IRCF	-<3:0>		—	SCS	66		
OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	67	
OSCTUNE	_	-		TUN<5:0>						
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	-	CCP2IE	84	
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	-	CCP2IF	87	
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC	_	TMR10N	183	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	40
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	<1:0>		FOSC<2:0>		40
	13:8			LVP	DEBUG	—	BORV	STVREN	PLLEN	40
CONFIG2	7:0	_	_	VCAPEN	N<1:0> ⁽¹⁾	_		WRT	<1:0>	48

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F1933 only.

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0				
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD				
bit 7							bit 0				
Legend:	L 11		1.1			(0)					
R = Readable	DIT	vv = Vvritable	DIT	U = U = U = U = U = U = U = U = U = U =							
5 = Bit can one(1) = Bit is set	y de sei	x = Bit is unkl(0) = Bit is clo	arod	-1000 - 1000 at FOR and DOR/Value at all other Resets							
I - DILIS SEL			aleu								
bit 7	EEPGD: Flas	h Program/Da	ta EEPROM M	emory Selec	t bit						
	1 = Accesses	s program spa	ce Flash memo	ry							
	0 = Accesses	s data EEPRO	M memory								
bit 6	CFGS: Flash	Program/Data	EEPROM or C		Select bit						
	1 = Accesses 0 = Accesses	s Configuration s Flash Progra	n, User ID and I m or data EEPI	ROM Memor	egisters rv						
bit 5	LWLO: Load	Write Latches	Only bit		5						
	<u> If CFGS = 1 (</u>	Configuration	<u>space)</u> OR <u>CFC</u>	GS = 0 and E	EEPGD = 1 (prog	<u>ram Flash)</u> :					
	1 = The	next WR com	mand does no	ot initiate a	write; only the p	rogram memor	y latches are				
	0 = The	ated. next WR comr	nand writes a v	alue from EE	DATH:EEDATL	into program m	emorv latches				
	and	initiates a write	e of all the data	stored in the	e program memo	ry latches.	,,				
	If CEGS = 0 a	and EEPGD =	0. (Accessing o	lata EEPRO	M)						
	LWLO is igno	red. The next	<u>WR</u> command i	nitiates a wr	ite to the data EE	EPROM.					
bit 4	FREE: Progra	am Flash Eras	e Enable bit								
	<u> If CFGS = 1 (</u>	Configuration	space) OR <u>CFC</u>	<u>GS = 0 and E</u>	EPGD = 1 (proc	<u>ram Flash)</u> :					
	1 = Perf	orms an eras	e operation o	n the next	WR command	(cleared by h	ardware after				
	0 = Perf	orms a write of	peration on the	next WR co	mmand.						
		and CECS -									
	FREE is ignor	red. The next \	<u>0.</u> (Accessing NR command v	vill initiate bo	oth a erase cycle	and a write cyc	sle.				
bit 3	WRERR: EE	PROM Error FI	ag bit		,	,					
	1 = Condition	n indicates an	improper prog	ram or erase	e sequence atter	mpt or terminat	tion (bit is set				
	automati	cally on any se	et attempt (write	e '1') of the V leted normal	VR bit).						
bit 2	WREN: Prog	ram/Frase Ena	ible bit		iy.						
	1 = Allows pr	rogram/erase c	cycles								
	0 = Inhibits p	orogramming/ei	rasing of progra	am Flash and	d data EEPROM						
bit 1	WR: Write Co	ontrol bit									
	1 = Initiates a	a program Flas	sh or data EEPF	ROM prograi	m/erase operatio	n. operation is co	mnlete				
	The WR	bit can only be	set (not cleare	d) in softwar	e.		inpicte.				
	0 = Program	/erase operatio	on to the Flash	or data EEP	ROM is complete	e and inactive.					
bit 0	RD: Read Co	ntrol bit	–								
	1 = Initiates	an program F	iash or data E an only be set (EPROM rea (not cleared)	ad. Read takes	one cycle. RD	is cleared in				
	0 = Does not	t initiate a prog	ram Flash or da	ata EEPRON	/I data read.						

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

REGISTER 12-2: PC	ORTA: PORTA	REGISTER
-------------------	-------------	----------

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-0	RA<7:0>: PC	ORTA I/O Value	bits ⁽¹⁾							

1 = Port pin is > VIH

0 = Port pin is < VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISA<7:0>: PORTA Tri-State Control bits

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

15.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V VDD$
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$
 $= 2\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - I}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] V_{CHOLD} charge response to V_{APPLIED} \\V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{APPLIED}\left(1 - \frac{1}{(2^{n+1}) - I}\right) \qquad ;combining [1] and [2]$$

Note: Where n = number *of bits of the ADC.*

Solving for TC:

$$Tc = -C_{HOLD}(RIC + RSS + RS) \ln(1/2047)$$

= -13.5pF(1k\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)
= 1.20\mus

Therefore:

$$TACQ = 5\mu s + 1.20\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 7.45\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CM1CON0	C10N	C10UT	C10E	C1POL		C1SP	C1HYS	C1SYNC	163
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2SYNC	163
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	—	—	C1NCI	H<1:0>	164
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	—	—	C2NCI	H<1:0>	164
CMOUT	_	_	_	—	—	—	MC2OUT	MC10UT	164
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	135
DACCON0	DACEN	DACLPS	DACOE	—	DACPS	S<1:0>	—	DACNSS	156
DACCON1	_	_	_			DACR<4:0>			156
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE	84
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF	87
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	116
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	121
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	117
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	122

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

19.4 Register Definitions: SR Latch Control

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/S-0/0 R/S-0/0 SRLEN SRCLK<2:0> SRQEN SRNQEN SRPS SRPR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared S = Bit is set only bit 7 SRLEN: SR Latch Enable bit 1 = SR latch is enabled 0 = SR latch is disabled bit 6-4 SRCLK<2:0>: SR Latch Clock Divider bits 111 = Generates a 1 Fosc wide pulse every 512th Fosc cycle clock 110 = Generates a 1 Fosc wide pulse every 256th Fosc cycle clock 101 = Generates a 1 Fosc wide pulse every 128th Fosc cycle clock 100 = Generates a 1 Fosc wide pulse every 64th Fosc cycle clock 011 = Generates a 1 Fosc wide pulse every 32nd Fosc cycle clock 010 = Generates a 1 Fosc wide pulse every 16th Fosc cycle clock 001 = Generates a 1 Fosc wide pulse every 8th Fosc cycle clock 000 = Generates a 1 Fosc wide pulse every 4th Fosc cycle clock bit 3 SRQEN: SR Latch Q Output Enable bit If SRLEN = 1: 1 = Q is present on the SRQ pin 0 = External Q output is disabled If SRLEN = 0: SR latch is disabled bit 2 **SRNQEN:** SR Latch Q Output Enable bit If SRLEN = 1: $1 = \overline{Q}$ is present on the SRnQ pin $0 = \text{External } \overline{\mathbf{Q}} \text{ output is disabled}$ If SRLEN = 0: SR latch is disabled SRPS: Pulse Set Input of the SR Latch bit⁽¹⁾ bit 1 1 = Pulse set input for 1 Q-clock period 0 = No effect on set input. bit 0 SRPR: Pulse Reset Input of the SR Latch bit⁽¹⁾ 1 = Pulse reset input for 1 Q-clock period 0 = No effect on reset input.

REGISTER 19-1: SRCON0: SR LATCH CONTROL 0 REGISTER

Note 1: Set only, always reads back '0'.

REGISTER 19-2: SRCON1: SR LATCH CONTROL 1 REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SRSPE | SRSCKE | SRSC2E | SRSC1E | SRRPE | SRRCKE | SRRC2E | SRRC1E |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets

21.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

21.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

21.9 ECCP/CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For more information, see Section 12.0 "I/O Ports".

21.10 ECCP/CCP Special Event Trigger

When any of the CCP's are configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.

For more information, see **Section 15.2.5** "Special **Event Trigger**".

FIGURE 21-2: TIMER1 INCREMENTING EDGE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPxCON	PxM<	PxM<1:0> ⁽¹⁾ DCxB<1:0>					214		
CCPxAS	CCPxASE	(CCPxAS<2:0	CPxAS<2:0>		PSSxAC<1:0>		PSSxBD<1:0>	
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	EL<1:0>	C1TSE	:L<1:0>	215
CCPTMRS1	—	_	—	_	_	—	C5TSE	:L<1:0>	215
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	84
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	85
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF		CCP2IF	87
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	88
PRx	Timer2/4/6 F	Period Registe	er						187*
PSTRxCON	—	—	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA	218
PWMxCON	PxRSEN				PxDC<6:0>				217
TxCON	—	TxOUTPS<3:0> TMRxON TxCKPS<:0>1						'S<:0>1	189
TMRx	Timer2/4/6 Module Register						187		
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	116
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	121
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125

TABLE 23-10: SUMMARY OF REGISTERS ASSOCIATED WITH ENHANCED PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Note 1: Applies to ECCP modules only.

* Page provides register information.

24.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- · Master mode (SCK is the clock output)
- · Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSPCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCONx registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDI must have corresponding TRIS bit set
- · SDO must have corresponding TRIS bit cleared
- SCK (Master mode) must have corresponding TRIS bit cleared
- SCK (Slave mode) must have corresponding
 TRIS bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value. The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Detect bit, BF of the SSPSTAT register, and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register durina transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF of the SSPSTAT register, indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSPSTAT register indicates the various Status conditions.

FIGURE 24-5: SPI MASTER/SLAVE CONNECTION

25.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a '1' data bit, and a VOL space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 25-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

25.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 25-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

25.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note 1: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

25.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

25.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See Section 25.5.1.2 "Clock Polarity".

25.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

REGISTER 27-5: LCDSEn: LCD SEGMENT ENABLE REGISTERS

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SEn	SEn	SEn	SEn	SEn	SEn	SEn	SEn
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared			ared				

bit 7-0 SEn: Segment Enable bits 1 = Segment function of the pin is enabled 0 = I/O function of the pin is enabled

REGISTER 27-6: LCDDATAn: LCD DATA REGISTERS

| R/W-x/u |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SEGx-COMy |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SEGx-COMy: Pixel On bits

1 = Pixel on (dark)

0 = Pixel off (clear)

FIGURE 31-43: IPD, CAPACITIVE SENSING (CPS) MODULE, HIGH-CURRENT RANGE, CPSRM = 0, CPSRNG = 11, PIC16LF1933 ONLY

FIGURE 31-44: IPD, CAPACITIVE SENSING (CPS) MODULE, HIGH-CURRENT RANGE, CPSRM = 0, CPSRNG = 11, PIC16F1933 ONLY

