

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1933-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1933

REGISTE	R 4-2: CON	FIG2: CONF	IGURATION				
		R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1
		LVP ⁽¹⁾	DEBUG ⁽³⁾	_	BORV	STVREN	PLLEN
		bit 13				· · · · · · · · · · · · · · · · · · ·	bit 8
U-1	U-1	R/P-1	R/P-1	U-1	U-1	R/P-1	R/P-1
	_	VCAPE	N<1:0> ⁽²⁾	—	_	WRT	<1:0>
bit 7							bit 0
Legend:							
R = Reada	able bit	P = Program	mable bit	U = Unimplen	nented bit, rea	d as '1'	
'0' = Bit is	cleared	'1' = Bit is se		-n = Value wh	en blank or af	ter Bulk Erase	
bit 13	1 = Low-volta	age programm	iming Enable bi ing enabled must be used fe		3		
bit 12	DEBUG: In-O 1 = In-Circuit	Circuit Debugg Debugger dis	er Mode bit ⁽³⁾ abled, ICSPCLł	K and ICSPDAT	are general p	ourpose I/O pins I to the debugge	
bit 11		nted: Read as					
bit 10	1 = Brown-ou	ut Reset voltag	oltage Selection le (Vbor), low tri le (Vbor), high t	ip point selected			
bit 9	1 = Stack Ov	erflow or Unde	Inderflow Rese orflow will cause orflow will not ca	e a Reset			
bit 8	PLLEN: PLL 1 = 4xPLL er 0 = 4xPLL di	nabled					
bit 7-5	Unimplemer	nted: Read as	'1'				
bit 4	VCAPEN: VC 00 = VCAP ft 01 = VCAP ft 10 = VCAP ft	oltage Regulate unctionality is e unctionality is e	or Capacitor En enabled on RA0 enabled on RA5 enabled on RA6				
bit 3-2	Unimplemer	nted: Read as	'1'				
bit 1-0	00 = VCAP fu 01 = VCAP fu 10 = VCAP fu	unctionality is e unctionality is e	Self-Write Prote enabled on RA0 enabled on RA5 enabled on RA6 pin				
Note 1: 2: 3: 4:	The LVP bit can Reads as '11' or The DEBUG bit i debuggers and p See Vbor parame	n PIC16LF1932 n Configuratio programmers. I	K only. n Words is man For normal devi	aged automatic ce operation, th	cally by device	development to	

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2

EXAMPLE 11-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG ADDR HI: PROG ADDR LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   BANKSELEEADRL; Select Bank for EEPROM registersMOVLWPROG_ADDR_LO;MOVWFEEADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWLEEADRH; Store MSB of address
            EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
            EECON1,CFGS
    BSF
              INTCON,GIE ; Disable interrupts
    BCF
                                ; Initiate read
    BSF
              EECON1,RD
    NOP
                                  ; Executed (Figure 11-1)
   NOP
                                  ; Ignored (Figure 11-1)
    BSF
             INTCON, GIE
                                ; Restore interrupts
             EEDATL,W
    MOVF
                                ; Get LSB of word
    MOVWF
           PROG_DATA_LO ; Store in user location
            EEDATH,W ; Get MSB of word
PROG_DATA_HI ; Store in user location
    MOVE
    MOVWF
```

EXAMPLE 11-5: WRITING TO FLASH PROGRAM MEMORY

	LE 11-5:		
		tine assumes the f	
	-		ded, starting at the address in DATA_ADDR
			ten is made up of two adjacent bytes in DATA_ADDR,
		ittle endian forma	
		-	e least significant bits = 000) is loaded in ADDRH:ADDRL
; 4. Al	DDRH and AI	DDRL are located 1	in shared data memory 0x70 - 0x7F (common RAM)
,	BCF	INTCON, GIE	; Disable ints so required sequences will execute properly
	BANKSEL	EEADRH	; Bank 3
	MOVF	ADDRH,W	; Load initial address
	MOVWF	EEADRH	;
	MOVF	ADDRL,W	;
	MOVWF	EEADRL	;
	MOVLW	LOW DATA ADDR	; Load initial data address
	MOVWF	FSROL	;
	MOVLW	HIGH DATA_ADDR	; Load initial data address
	MOVWF	FSROH	;
	BSF		; Point to program memory
	BCF		; Not configuration space
	BSF		; Enable writes
	BSF	EECON1,LWLO	; Only Load Write Latches
LOOP	MOUTE		
	MOVIW	FSR0++	; Load first data byte into lower
	MOVWF	EEDATL	;
	MOVIW	FSR0++	; Load second data byte into upper
	MOVWF	EEDATH	;
	MOVF	EEADRL,W	; Check if lower bits of address are '000'
	XORLW	0x07	; Check if we're on the last of 8 addresses
	ANDLW	0x07	;
	BTFSC	STATUS,Z	; Exit if last of eight words,
	GOTO	START_WRITE	;
	MOVLW	55h	; Start of required write sequence:
	MOVWF	EECON2	; Write 55h
_ 0	MOVLW	0AAh	;
red	MOVWF	EECON2	; Write AAh
Required Sequence	BSF	EECON1,WR	; Set WR bit to begin write
Sec	NOP		; Any instructions here are ignored as processor
			; halts to begin write sequence
	NOP		; Processor will stop here and wait for write to complete.
			; After write processor continues with 3rd instruction.
	INCF	EEADRL,F	; Still loading latches Increment address
	GOTO	LOOP	; Write next latches
	ייח ד מני		
START_V	BCF	EECON1,LWLO	; No more loading latches - Actually start Flash program
	DOI	LICONT, INIO	; memory write
			,
	MOVLW	55h	; Start of required write sequence:
	MOVWF	EECON2	; Write 55h
8 9	MOVLW	0AAh	;
Required Sequence	MOVWF	EECON2	; Write AAh
ibe:	BSF	EECON1,WR	; Set WR bit to begin write
ч	NOP		; Any instructions here are ignored as processor
			; halts to begin write sequence
	NOP		; Processor will stop here and wait for write complete.
			; after write processor continues with 3rd instruction
	BCF	EECON1,WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts

11.7 Register Definitions: Data EEPROM Control

REGISTER 11-1: EEDATL: EEPROM DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			EEDA	T<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit U = Unimplemented bit, read as '0'					
u = Bit is unchanged	d	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets				esets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0 EEDAT<7:0>: Read/Write Value for EEPROM Data Byte or Least Significant bits of Program Memory

REGISTER 11-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
—	—		EEDAT<13:8>						
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented:	Read as '0'

bit 5-0 EEDAT<13:8>: Read/Write Value for Most Significant bits of Program Memory

REGISTER 11-3: EEADRL: EEPROM ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
EEADR<7:0>									
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

EEADR<7:0>: Specifies the Least Significant bits for Program Memory Address or EEPROM Address

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				EEADR<14:8>	>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for Program Memory Address or EEPROM Address

Note 1: Unimplemented, read as '1'.

23.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMRx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

23.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

23.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

23.3.10 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	CCP3SEL	T1GSEL	P2BSEL	SRNQSEL	C2OUTSEL	SSSEL	CCP2SEL	114
CCPxCON	PxM<	1:0> ⁽¹⁾	DCxB	<1:0>		CCPxN	/<3:0>		214
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	EL<1:0>	C1TSE	EL<1:0>	215
CCPTMRS1	—	—	—	—	—	—	C5TSE	:L<1:0>	215
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	—	CCP2IE	84
PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	85
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF	87
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	88
PRx	Timer2/4/6 P	eriod Registe	er						187*
TxCON	—		TxOUT	PS<3:0>		TMRxON	TxCKP	'S<:0>1	189
TMRx	Timer2/4/6 M	Iodule Regist	er						187
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	116
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	121
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125

TABLE 23-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Note 1: Applies to ECCP modules only.

Page provides register information.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
C4TSEL<1:0> C3TSEL<1:0>		L<1:0>	C2TSE	L<1:0>	C1TSE	:L<1:0>		
bit 7							bit C	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'		
u = Bit is unc	hanged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-6	C4TSEL<1:0	>: CCP4 Timer	Selection					
	11 = Reserve	Reserved						
		10 = CCP4 is based off Timer6 in PWM mode						
		based off Timer4 in PWM mode						
		based off Time		ode				
bit 5-4	C3TSEL<1:0	CCP3 Timer	Selection					
		11 = Reserved						
		is based off Timer6 in PWM mode						
		based off Time						
		s based off Time		ode				
bit 3-2		>: CCP2 Timer	Selection					
	11 = Reserve							
	10 = CCP2 is based off Timer6 in PWM mode							
		01 = CCP2 is based off Timer4 in PWM mode 00 = CCP2 is based off Timer2 in PWM mode						
			oue					
bit 1-0			Selection					
	11 = Reserve	ed s based off Time	re in DW/M m	odo				
		s based off Time						
		based off Time						

REGISTER 23-2: CCPTMRS0: PWM TIMER SELECTION CONTROL REGISTER 0

REGISTER 23-3: CCPTMRS1: PWM TIMER SELECTION CONTROL REGISTER 1

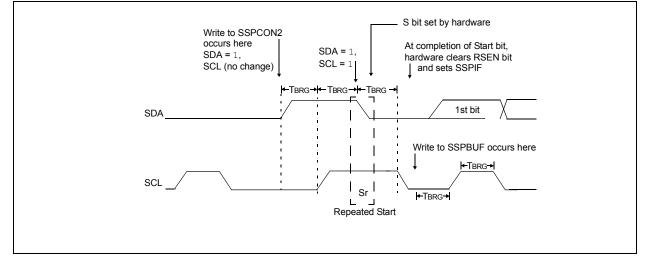
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	—	—	_	C5TSE	L<1:0>
bit 7							bit 0

Legend:			
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unch	nanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	
bit 7-2 Unimplemented: Read as '0'			
bit 1-0	C5TSEL<1	I:0>: CCP5 Timer Selection	bits

11 = Reserved

10 = CCP5 is based off Timer6 in PWM mode

01 = CCP5 is based off Timer4 in PWM mode


00 = CCP5 is based off Timer2 in PWM mode

24.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 24-27) occurs when the RSEN bit of the SSPCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 24-27: REPEAT START CONDITION WAVEFORM

FIGURE 25-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin	
SREN bit	<u>'0'</u>
RCIF bit (Interrupt) ———— Read RXREG ————	
	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

TABLE 25-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
RCREG	EUSART R	EUSART Receive Data Register					280*		
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL	BRG<7:0>					288*			
SPBRGH				BRG<	:15:8>				288*
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

27.1 LCD Registers

The module contains the following registers:

- LCD Control register (LCDCON)
- LCD Phase register (LCDPS)
- LCD Reference Ladder register (LCDRL)
- LCD Contrast Control register (LCDCST)
- LCD Reference Voltage Control register (LCDREF)
- Up to 3 LCD Segment Enable registers (LCDSEn)
- Up to 12 LCD data registers (LCDDATAn)

TABLE 27-1: LCD SEGMENT AND DATA REGISTERS

	# of LCD	Registers
Device	Segment Enable	Data
PIC16(L)F1933	2	8

The LCDCON register (Register 27-1) controls the operation of the LCD driver module. The LCDPS register (Register 27-2) configures the LCD clock source prescaler and the type of waveform; Type-A or Type-B. The LCDSEn registers (Register 27-5) configure the functions of the port pins.

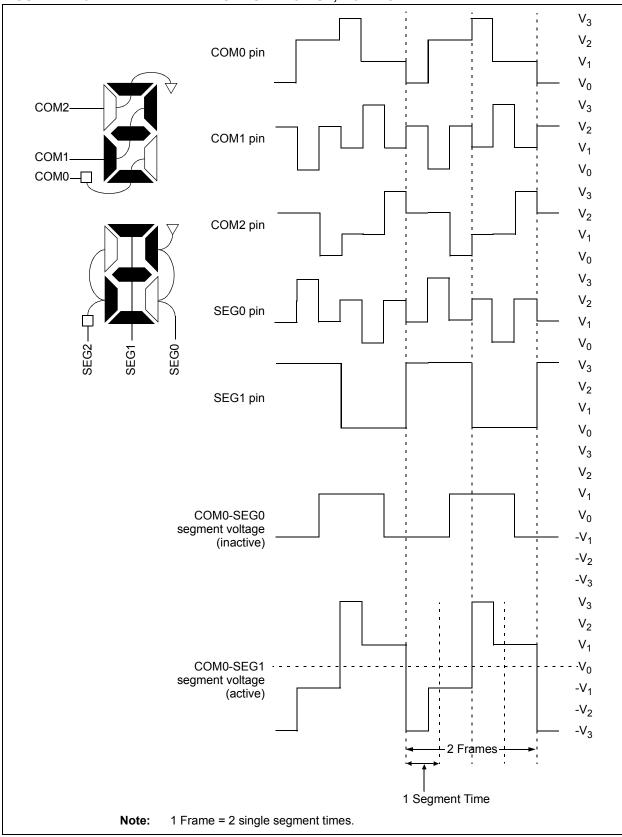
The following LCDSEn registers are available:

- LCDSE0 SE<7:0>
- LCDSE1 SE<15:8>

Once the module is initialized for the LCD panel, the individual bits of the LCDDATAn registers are cleared/set to represent a clear/dark pixel, respectively:

- LCDDATA0 SEG<7:0>COM0
- LCDDATA1 SEG<15:8>COM0
- LCDDATA3 SEG<7:0>COM1
- LCDDATA4 SEG<15:8>COM1
- LCDDATA6 SEG<7:0>COM2
- LCDDATA7 SEG<15:8>COM2
- LCDDATA9 SEG<7:0>COM3
- LCDDATA10 SEG<15:8>COM3

As an example, LCDDATAn is detailed in Register 27-6.


Once the module is configured, the LCDEN bit of the LCDCON register is used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN bit of the LCDCON register.

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	
LCDIRE	LCDIRS	LCDIRI		VLCD3PE	VLCD2PE	VLCD1PE	_	
bit 7							bit (
Legend:								
R = Readable		W = Writable		•	nented bit, read			
u = Bit is unch	nanged	x = Bit is unkr				R/Value at all ot	her Resets	
'1' = Bit is set		'0' = Bit is clea	ared	C = Only clea	rable bit			
bit 7	-	D Internal Refe						
		LCD Reference LCD Reference		and connected to	the Internal Co	ontrast Control o	circuit	
bit 6		D Internal Refe	rence Source	e bit				
	<u>If LCDIRE =</u>		aat Control is	nowarad by Va				
				s powered by VD s powered by a 3		f the FVR		
	If LCDIRE =	0:						
				ected. LCD banc	lgap buffer is di	sabled.		
bit 5	_	D Internal Refere						
	Allows the Internal FVR buffer to shut down when the LCD Reference Ladder is in power mode 'B' 1 = When the LCD Reference Ladder is in power mode 'B', the LCD Internal FVR buffer is disable 0 = The LCD Internal FVR Buffer ignores the LCD Reference Ladder power mode							
bit 4	Unimplemer	nted: Read as '	0'					
bit 3	VLCD3PE: V	/LCD3 Pin Enat	ole bit					
		CD3 pin is conne CD3 pin is not ce		nternal bias volt	age LCDBIAS3	(1)		
bit 2	VLCD2PE: VLCD2 Pin Enable bit							
		CD2 pin is conne CD2 pin is not ce		nternal bias volt	age LCDBIAS2	(1)		
bit 1	VLCD1PE: V	LCD1 Pin Enat	ole bit					
		CD1 pin is conne	ected to the i	nternal bias volt	age LCDBIAS1	(1)		
	0 = The VLC	CD1 pin is not c	onnected					

REGISTER 27-3: LCDREF: LCD REFERENCE VOLTAGE CONTROL REGISTER

Note 1: Normal pin controls of TRISx and ANSELx are unaffected.

PIC16(L)F1933

27.12 Operation During Sleep

The LCD module can operate during Sleep. The selection is controlled by bit SLPEN of the LCDCON register. Setting the SLPEN bit allows the LCD module to go to Sleep. Clearing the SLPEN bit allows the module to continue to operate during Sleep.

If a SLEEP instruction is executed and SLPEN = 1, the LCD module will cease all functions and go into a very low-current consumption mode. The module will stop operation immediately and drive the minimum LCD voltage on both segment and common lines. Figure 27-20 shows this operation.

The LCD module can be configured to operate during Sleep. The selection is controlled by bit SLPEN of the LCDCON register. Clearing SLPEN and correctly configuring the LCD module clock will allow the LCD module to operate during Sleep. Setting SLPEN and correctly executing the LCD module shutdown will disable the LCD module during Sleep and save power.

If a SLEEP instruction is executed and SLPEN = 1, the LCD module will immediately cease all functions, drive the outputs to Vss and go into a very low-current mode. The SLEEP instruction should only be executed after the LCD module has been disabled and the current cycle completed, thus ensuring that there are no DC voltages on the glass. To disable the LCD module, clear the LCDEN bit. The LCD module will complete the disabling process after the current frame, clear the LCDA bit and optionally cause an interrupt.

The steps required to properly enter Sleep with the LCD disabled are:

- Clear LCDEN
- Wait for LCDA = 0 either by polling or by interrupt
- Execute SLEEP

If SLPEN = 0 and SLEEP is executed while the LCD module clock source is FOSC/4, then the LCD module will halt with the pin driving the last LCD voltage pattern. Prolonged exposure to a fixed LCD voltage pattern will cause damage to the LCD glass. To prevent LCD glass damage, either perform the proper LCD module shutdown prior to Sleep, or change the LCD module clock to allow the LCD module to continue operation during Sleep.

If a SLEEP instruction is executed and SLPEN = 0 and the LCD module clock is either T1OSC or LFINTOSC, the module will continue to display the current contents of the LCDDATA registers. While in Sleep, the LCD data cannot be changed. If the LCDIE bit is set, the device will wake from Sleep on the next LCD frame boundary. The LCD module current consumption will not decrease in this mode; however, the overall device power consumption will be lower due to the shutdown of the CPU and other peripherals. Table 27-8 shows the status of the LCD module during a Sleep while using each of the three available clock sources.

Note:	When the LCDEN bit is cleared, the LCD
	module will be disabled at the completion
	of frame. At this time, the port pins will
	revert to digital functionality. To minimize
	power consumption due to floating digital
	inputs, the LCD pins should be driven low
	using the PORT and TRIS registers.

If a SLEEP instruction is executed and SLPEN = 0, the module will continue to display the current contents of the LCDDATA registers. To allow the module to continue operation while in Sleep, the clock source must be either the LFINTOSC or T1OSC external oscillator. While in Sleep, the LCD data cannot be changed. The LCD module current consumption will not decrease in this mode; however, the overall consumption of the device will be lower due to shut down of the core and other peripheral functions.

Table 27-8 shows the status of the LCD module during Sleep while using each of the three available clock sources:

TABLE 27-8:	LCD MODULE STATUS
	DURING SLEEP

Clock Source	SLPEN	Operational During Sleep
T1OSC	0	Yes
11030	1	No
LFINTOSC	0	Yes
LEINTOSC	1	No
Fosc/4	0	No
F05C/4	1	No

Note: The LFINTOSC or external T1OSC oscillator must be used to operate the LCD module during Sleep.

If LCD interrupts are being generated (Type-B waveform with a multiplex mode not static) and LCDIE = 1, the device will awaken from Sleep on the next frame boundary.

Instruction Descriptions 29.2

ADDFSR	Add Literal to FSRn
Syntax:	[label]ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FOR is limited to the second OOOOk

FSRn is limited to the range 0000h -FFFFh. Moving beyond these bounds will cause the FSR to wrap-around.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

ADDLW	Add literal and W	
Syntax:	[<i>label</i>] ADDLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	$(W) + k \to (W)$	
Status Affected:	C, DC, Z	
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.	

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f	
Syntax:	[<i>label</i>] ADDWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(W) + (f) \rightarrow (destination)	
Status Affected:	C, DC, Z	
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.	

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>]ASRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in reg-

ister 'f'.

►	register f	→	С	

ADDWFC	ADD W and CARRY bit to f
Syntax:	[<i>label</i>] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

PIC16(L)F1933

MOVWI	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	 W → INDFn Effective address is determined by FSR + 1 (preincrement) FSR - 1 (predecrement) FSR + k (relative offset) After the Move, the FSR value will be either: FSR + 1 (all increments) FSR - 1 (all decrements) Unchanged
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

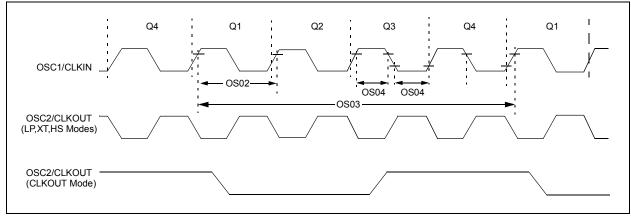
Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.


No Operation

Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the \overline{RI} flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

30.8 AC Characteristics: PIC16(L)F1933-I/E

FIGURE 30-6: CLOCK TIMING

TABLE 30-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	0.5	MHz	EC Oscillator mode (low)	
			DC	_	4	MHz	EC Oscillator mode (medium)	
			DC	—	20	MHz	EC Oscillator mode (high)	
		Oscillator Frequency ⁽¹⁾	—	32.768	_	kHz	LP Oscillator mode	
			0.1	_	4	MHz	XT Oscillator mode	
	1 — 4 MH		MHz	HS Oscillator mode				
			1	_	20	MHz	HS Oscillator mode, VDD > 2.7V	
			DC	_	4	MHz	RC Oscillator mode, VDD > 2.0V	
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	~	μs	LP Oscillator mode	
			250	—	∞	ns	XT Oscillator mode	
			50	—	∞	ns	HS Oscillator mode	
			50	—	∞	ns	EC Oscillator mode	
		Oscillator Period ⁽¹⁾	—	30.5	_	μs	LP Oscillator mode	
			250	—	10,000	ns	XT Oscillator mode	
			50	—	1,000	ns	HS Oscillator mode	
			250	—	—	ns	RC Oscillator mode	
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	TCY	DC	ns	Tcy = 4/Fosc	
OS04*	TosH,	External CLKIN High,	2	—	—	μS	LP oscillator	
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator	
			20	—	—	ns	HS oscillator	
OS05*	TosR,	External CLKIN Rise,	0	—	∞	ns	LP oscillator	
	TosF	External CLKIN Fall	0	—	∞	ns	XT oscillator	
			0	—	∞	ns	HS oscillator	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

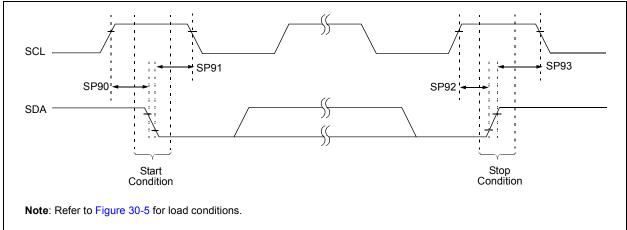

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 30-14:	SPI MODE REQUIREMENTS
--------------	-----------------------

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	\overline{SS} to SCK \downarrow or SCK \uparrow input		Тсү	—	—	ns	
SP71*	TscH	SCK input high time (Slave mod	e)	Tcy + 20		_	ns	
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20		_	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to S	100	_	—	ns		
SP74*	TscH2dlL, TscL2dlL	Hold time of SDI data input to SO	of SDI data input to SCK edge		_	—	ns	
SP75*	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns	
			1.8-5.5V	—	25	50	ns	
SP76*	TDOF	SDO data output fall time		—	10	25	ns	
SP77*	TssH2doZ	SS↑ to SDO output high-impedance		10	_	50	ns	
SP78*	TscR	SCK output rise time (Master mode)	3.0-5.5V	—	10	25	ns	
			1.8-5.5V	—	25	50	ns	
SP79*	TscF	SCK output fall time (Master mo	de)	—	10	25	ns	
SP80*	TscH2doV, TscL2doV	<i>'</i>	3.0-5.5V	_		50	ns	
			1.8-5.5V	—	_	145	ns	
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge		Тсу	—	_	ns	
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_		50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	_	—	ns	

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

FIGURE 30-20: I²C[™] BUS START/STOP BITS TIMING

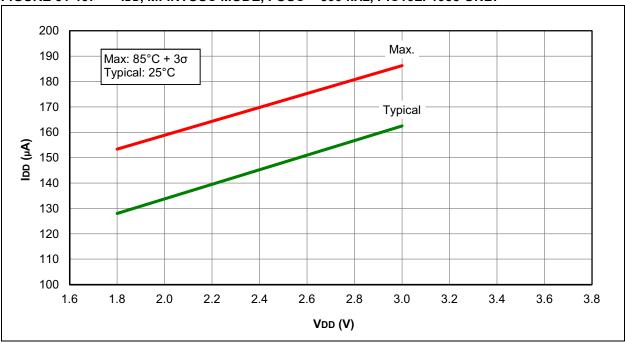
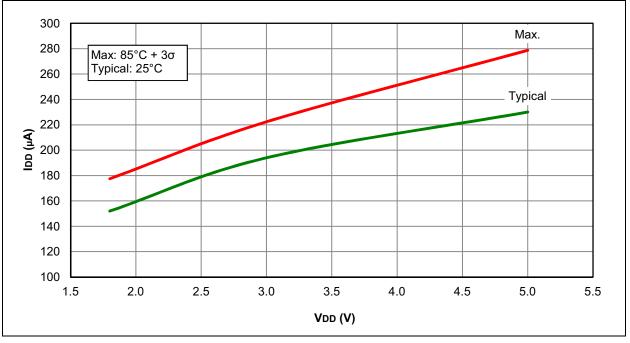



FIGURE 31-19: IDD, MFINTOSC MODE, FOSC = 500 kHz, PIC16LF1933 ONLY

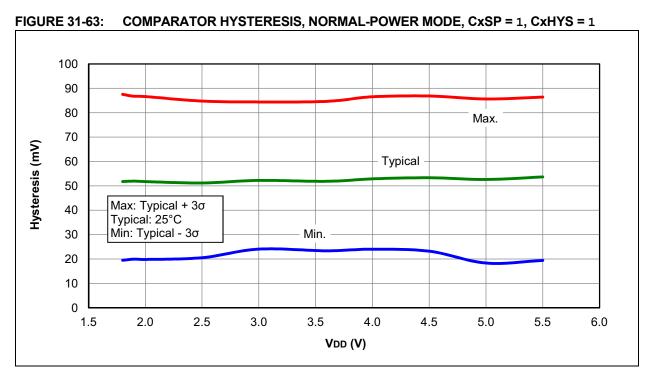
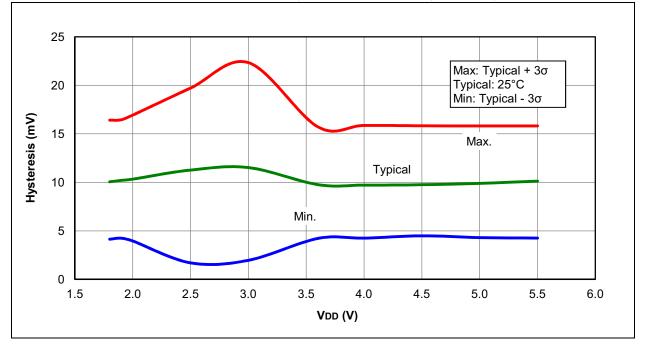
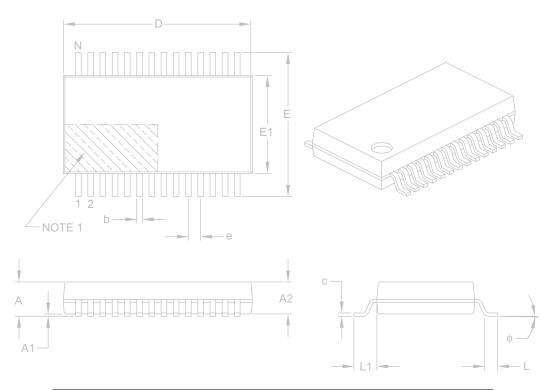




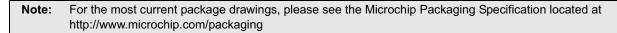
FIGURE 31-64: COMPARATOR HYSTERESIS, LOW-POWER MODE, CxSP = 0, CxHYS = 1

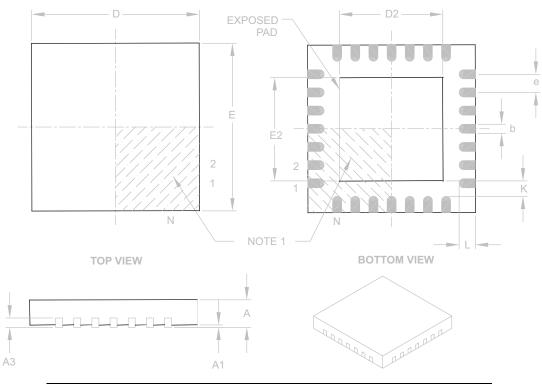
For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	_
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	с	0.09	-	0.25
Foot Angle	ф	0°	4°	8°
Lead Width	b	0.22	-	0.38


Notes:


Note:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - $\label{eq:BSC:Basic Dimension.} Theoretically exact value shown without tolerances.$
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	MILLIMETERS					
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		0.65 BSC			
Overall Height	А	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E		6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20		
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20		
Contact Width	b	0.23	0.30	0.35		
Contact Length	L	0.50	0.55	0.70		
Contact-to-Exposed Pad	К	0.20	-	_		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B