

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1933t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-6: PIC16(L)F1933 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	—	C8Ch	—	D0Ch	—	D8Ch	—	E0Ch	—	E8Ch	—	F0Ch	—	F8Ch	
C0Dh	—	C8Dh	—	D0Dh	—	D8Dh	—	E0Dh	—	E8Dh		F0Dh	—	F8Dh	
C0Eh	—	C8Eh	—	D0Eh	—	D8Eh	_	E0Eh	_	E8Eh	_	F0Eh	—	F8Eh	
C0Fh	—	C8Fh	—	D0Fh	—	D8Fh	_	E0Fh	_	E8Fh	_	F0Fh	—	F8Fh	
C10h	—	C90h	—	D10h	—	D90h	_	E10h	_	E90h	_	F10h	—	F90h	
C11h	—	C91h	_	D11h	_	D91h	_	E11h	_	E91h		F11h	—	F91h	
C12h	—	C92h	—	D12h	—	D92h	—	E12h	—	E92h		F12h	—	F92h	
C13h	—	C93h	_	D13h	_	D93h	_	E13h	_	E93h	_	F13h	_	F93h	
C14h	_	C94h	_	D14h	_	D94h	_	E14h	_	E94h	_	F14h	—	F94h	
C15h	_	C95h	_	D15h	_	D95h	_	E15h	_	E95h	_	F15h	—	F95h	
C16h	_	C96h	_	D16h	_	D96h	_	E16h	_	E96h	_	F16h	—	F96h	
C17h	_	C97h	_	D17h	—	D97h	—	E17h	—	E97h	_	F17h	—	F97h	
C18h	_	C98h	_	D18h	—	D98h	—	E18h	—	E98h	_	F18h	—	F98h	See Table 3-8
C19h	—	C99h	_	D19h	—	D99h	—	E19h	_	E99h	_	F19h	—	F99h	
C1Ah	_	C9Ah		D1Ah	_	D9Ah	_	E1Ah	_	E9Ah		F1Ah		F9Ah	
C1Bh	_	C9Bh		D1Bh	_	D9Bh	_	E1Bh	_	E9Bh		F1Bh		F9Bh	
C1Ch	_	C9Ch	—	D1Ch	—	D9Ch	—	E1Ch	—	E9Ch		F1Ch	—	F9Ch	
C1Dh	—	C9Dh	_	D1Dh	_	D9Dh	_	E1Dh	_	E9Dh	_	F1Dh	_	F9Dh	
C1Eh	_	C9Eh	_	D1Eh	_	D9Eh	_	E1Eh	_	E9Eh		F1Eh		F9Eh	
C1Fh C20h	_	C9Fh	_	D1Fh	_	D9Fh	_	E1Fh	_	E9Fh		F1Fh F20h		F9Fh	
02011		CAUIT		D2011		DAUII		E2011		EAUII		FZUII		FAUI	
	l la incala no entre d										l luciona la constante el		l la incale accente al		
	Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		Read as '0'		
CGEh		CEEh		DEEN		DEEh		EGEN		EEEh		EGEN		EEEb	
C70b		CEON						E0FII		FEOR		F70h		FEON	
07011	Accesses	51 011	Accesses	DION	Accesses	51 011	Accesses		Accesses		Accesses	1 / 0/1	Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
CEEb		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	
0111		2													

Legend: = Unimplemented data memory locations, read as '0'.

FIGURE 5-6: EXTERNAL RC MODES

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	_			TUN	<5:0>		
bit 7		-					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5-0	TUN<5:0>: F	Frequency Tunir	ng bits				
	100000 = N	1inimum frequer	псу				
	•						
	•						
	111111 =						
	000000 = C	scillator module	e is running at	the factory-calil	orated frequen	су	
	000001 =						
	•						
	•						
	011110 =						
	011111 = N	laximum freque	ncy				

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
OSCCON	SPLLEN		IRCF	-<3:0>		—	SCS	66				
OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	67			
OSCTUNE	_	-		TUN<5:0>								
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	-	CCP2IE	84			
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	-	CCP2IF	87			
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T10SCEN	T1SYNC	_	TMR10N	183			

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	40
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE	<1:0> FOSC<2:0>		FOSC<2:0>		40
	13:8			LVP	DEBUG	—	BORV	STVREN	PLLEN	40
CONFIG2	7:0	_	_	VCAPEN	N<1:0> ⁽¹⁾	_		WRT	<1:0>	48

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16F1933 only.

REGISTER 12-16: WPUE: WEAK PULL-UP PORTE REGISTER

U-0	U-0	U-0	U-0	R/W-1/1	U-0	U-0	U-0				
_	—	_	—	WPUE3	—	_	_				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets				
'1' = Bit is set	I.	'0' = Bit is clea	ared								
bit 7-4	Unimplemen	ted: Read as '	0'								
bit 3	WPUE3: Wea 1 = Pull-up er	ak Pull-up Regi nabled	ster bit								

0 = Pull-up disabled

bit 2-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

TABLE 12-9: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ADCON0				CHS<4:0>			GO/DONE	ADON	143	
CCPxCON	PxM•	<1:0>	DCxB	<1:0>		CCPxM<3:0>				
LCDCON	LCDEN	SLPEN	WERR	—	CS<1:0>		LMUX<1:0>		315	
LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	319	
PORTE	—	—	—	—	RE3	RE3 —		_	127	
TRISE	_	_	_	_	(3)		_	_	127	
WPUE					WPUE3			_	128	

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: Unimplemented, read as '1'.

FIGURE 14-1: VOLTAGE REFERENCE BLOCK DIAGRAM

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined										
	as a digital input may cause the input										
	buffer to conduct excess current.										

15.1.2 CHANNEL SELECTION

There are 14 channel selections available:

- AN<13:8, 4:0> pins
- Temperature Indicator
- DAC_output
- FVR (Fixed Voltage Reference) Output

Refer to Section 16.0 "Temperature Indicator Module", Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 15.2 "ADC Operation**" for more information.

15.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd

The ADNREF bits of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See Section 14.0 "Fixed Voltage Reference (FVR)" for more details on the fixed voltage reference.

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in **Section 30.0 "Electrical Specifications"** for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

TABLE 15-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)	Device Frequency (Fosc) Device Frequency (Fosc)									
ADC Clock Source ADCS<2:0>		32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz				
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs				
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs				
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾				
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾				
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾				
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾				
FRC	x11	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)	1.0-6.0 μs ^(1,4)				

Legend: Shaded cells are outside of recommended range.

Note 1: The FRC source has a typical TAD time of 1.6 μ s for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

T <u>cy - Tad T</u>		2 TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	Tad9	TAD10	TAD11		
À ↑ ↑	b) b8	b7	b6	b5	b4	b3	b2	b1	b0		
Co	onversion	starts										
Holding	capacitor	is discon	nected	from a	inalog i	nput (t	ypically	[,] 100 n	is)			
 Set GO bi	it										l	
	it.			C)n tha f		a cycle					
				A	DRES	H:ADR	ESL is	loadeo	d, GO b	oit is cle	eared,	
				А	DIF bit	is set,	holding	g capa	citor is	connec	cted to analo	g inpu

15.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/\overline{DONE} bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 15.4 "A/D Acquisition Requirements".

EXAMPLE 15-1: A/D CONVERSION

```
; This code block configures the ADC
; for polling, Vdd and Vss references, Frc
; clock and ANO input.
;Conversion start & polling for completion
; are included.
BANKSEL ADCON1
MOVLW B'11110000' ;Right justify, Frc
                   ;clock
MOVWF
       ADCON1
                  ;Vdd and Vss Vref
BANKSEL TRISA
                  ;
BSF
       TRISA,0 ;Set RAO to input
BANKSEL ANSEL
                  ;
        ANSEL,0 ;Set RAO to analog
BSF
BANKSEL
        ADCON0
                    ;
        B'00000001' ;Select channel ANO
MOVLW
MOVWF
        ADCON0
                   ;Turn ADC On
CALL
        SampleTime ;Acquisiton delay
       ADCON0, ADGO ; Start conversion
BSF
BTFSC ADCON0, ADGO ; Is conversion done?
GOTO
        $-1
                 ;No, test again
BANKSEL ADRESH
                  ;
MOVF
        ADRESH,W ;Read upper 2 bits
        RESULTHI ;store in GPR space
MOVWF
BANKSEL
        ADRESL
                    ;
        ADRESL,W
MOVF
                   ;Read lower 8 bits
        RESULTLO ;Store in GPR space
MOVWE
```

					520
ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES TABLE 23-9

Note 1: PWM Steering enables outputs in Single mode.

EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH **FIGURE 23-6:** STATE)

PxM<1	1:0>	Signal	0	Pulse Width	•	PRX+1
			-		Period	
00	(Single Output)	PxA Modulated				Į
		PxA Modulated		y ►		
10	(Half-Bridge)	PxB Modulated	i			
		PxA Active			· · ·	
01	(Full-Bridge, Forward)	PxB Inactive			1 1 1	1 1 1
01		PxC Inactive			1 1 	
		PxD Modulated			-i	
		PxA Inactive			1 1 1	1 1 1
11	(Full-Bridge, Reverse)	PxB Modulated				
		PxC Active -	;		· · ·	
		PxD Inactive —	'		1 1	

Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

TABLE 25-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL	BRG<7:0>						288*		
SPBRGH	BRG<15:8>						288*		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125
TXREG	EUSART Transmit Data Register							277*	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

* Page provides register information.

FIGURE 25-12:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)
RX/DT pin TX/CK pin (SCKP = 0)	bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin	
SREN bit	<u>'0'</u>
RCIF bit (Interrupt)	
Note: Timing dia	agram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0 .

TABLE 25-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	287
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
RCREG	EUSART Receive Data Register						280*		
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	286
SPBRGL	BRG<7:0>						288*		
SPBRGH	BRG<15:8>						288*		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	285

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

26.4 Current Ranges

The capacitive sensing oscillator can operate within different current ranges, depending on the voltage reference mode and current range selections.

Within each of the two voltage reference modes, there are four current ranges. Selection between the voltage reference modes is controlled by the CPSRM bit of the CPSCON0 register. Clearing this bit selects the fixed voltage references provided by the capacitive sensing oscillator module. Setting this bit selects the variable voltage references supplied by the Fixed Voltage Reference (FVR) module and the Digital-to-Analog Converter (DAC) module. See Section Section 26.3 "Voltage Reference Modes" for more information on configuring the voltage references.

Selecting the current range within the voltage reference mode is controlled by configuring the CPSRNG<1:0> bits in the CPSCON0 register. See Table 26-1 for proper current mode selection. The Noise Detection mode is unique in that it disables the constant current source associated with the selected input pin, but leaves the rest of the oscillator circuitry and pin structure active. This eliminates the oscillation frequency on the analog pin and greatly reduces the current consumed by the oscillator module. When noise is introduced onto the pin, the oscillator is driven at the frequency determined by the noise. This produces a detectable signal at the comparator stage, indicating the presence of activity on the pin.

Figure 26-2 shows a more detailed drawing of the constant current sources and comparators associated with the oscillator and input pin.

CPSRM	Voltage Reference Mode	CPSRNG<1:0>	Current Range ⁽¹⁾
		00	Noise Detection
1	Variable	01	Low
	valiable	10	Medium
		11	High
		00	Off
0	Fixed	01	Low
U	Fixed	10	Medium
		11	High

 TABLE 26-1:
 CURRENT RANGE MODE SELECTION

Note 1: See Power-Down Currents (IPD) in Section 30.0 "Electrical Specifications" for more information.

27.2 Register Definitions: Liquid Crystal Display (LCD) Control

REGISTER 27-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER

			11.0				A 14	
K/W-0/0	K/W-0/0	R/C-0/0	U-U	K/VV-0/0	K/W-0/0	N K/W	-1/1	R/W-1/1
LCDEN	SLPEN	WERR	—	CS<	:1:0>		LMUX	<<1:0>
bit 7								bit 0
Legend:								
R = Readable	e bit	W = Writable b	it	U = Unimplem	nented bit, r	read as '0'		
u = Bit is unch	hanged	x = Bit is unkno	own	-n/n = Value a	t POR and	BOR/Value	at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	red	C = Only clea	rable bit			
bit 7	LCDEN: LCD	Driver Enable b	oit					
	1 = LCD drive	er module is ena	bled					
	0 = LCD drive	er module is disa	abled					
bit 6	SLPEN: LCD	Driver Enable in	n Sleep Moo	de bit				
	1 = LCD drive	er module is disa	abled in Slee	ep mode				
	0 = LCD drive	er module is ena	hled in Slee	n mode				
				p mode				
bit 5	WERR: LCD	Write Failed Erro	or bit	p mode				
bit 5	WERR: LCD 1 = LCDDAT	Write Failed Err An register writ	or bit ten while th	he WA bit of the	e LCDPS r	egister = 0	(must	be cleared in
bit 5	WERR: LCD 1 = LCDDAT software 0 = No LCD	Write Failed Ern An register writ	or bit ten while th	e WA bit of the	e LCDPS r	egister = 0	(must	be cleared in
bit 5	WERR: LCD 1 = LCDDAT software 0 = No LCD v	Write Failed Err An register writ) write error	or bit ten while th	ne WA bit of the	e LCDPS r	egister = 0	(must	be cleared in
bit 5 bit 4	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen	Write Failed Erro An register writ vrite error nted: Read as '0	or bit ten while th	ne WA bit of the	e LCDPS r	egister = 0	(must	be cleared in
bit 5 bit 4 bit 3-2	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplement CS<1:0>: Clc 00 = 5000/25	Write Failed Erro An register writ write error Med: Read as '0 ock Source Selec	or bit ten while th , ct bits	e WA bit of the	e LCDPS n	egister = 0	(must	be cleared in
bit 5 bit 4 bit 3-2	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplement CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC	Write Failed Err An register writ) write error I ted: Read as '0 ock Source Select (Timer1)	or bit ten while th , ct bits	he WA bit of the	e LCDPS n	egister = 0	(must	be cleared in
bit 5 bit 4 bit 3-2	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO	Write Failed Err An register writ write error t ed: Read as '0 ock Source Selec 66 (Timer1) SC (31 kHz)	or bit ten while th , ct bits	e WA bit of the	e LCDPS r	egister = 0	(must	be cleared in
bit 5 bit 4 bit 3-2 bit 1-0	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplement CS<1:0>: Clo 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	Write Failed Erro An register writ write error Ited: Read as '0 ock Source Selec 66 (Timer1) SC (31 kHz) Commons Selec	or bit ten while th , ct bits ct bits	he WA bit of the	e LCDPS n	egister = 0	(must	be cleared in
bit 5 bit 4 bit 3-2 bit 1-0	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>:	Write Failed Erro An register writ write error ted: Read as '0 ock Source Selec (6 (Timer1) SC (31 kHz) Commons Selec	ct bits	ne WA bit of the	e LCDPS r	egister = 0	(must	be cleared in
bit 5 bit 4 bit 3-2 bit 1-0	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplement CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>: LMUX<1:0>	Write Failed Erro An register writ write error ock Source Selec (Timer1) SC (31 kHz) Commons Selec Multiplex	ct bits	num Number of	ELCDPS r	egister = 0 Bias	(must	be cleared in
bit 5 bit 4 bit 3-2 bit 1-0	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplement CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>: LMUX<1:0>	Write Failed Err An register writ write error Ited: Read as '0 ock Source Selec (Timer1) SC (31 kHz) Commons Selec Multiplex	ct bits	ne WA bit of the num Number of PIC16(L)F1933	Pixels	egister = 0 Bias	(must	be cleared in
bit 5 bit 4 bit 3-2 bit 1-0	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplement CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>: 00	Write Failed Err An register writ write error Ited: Read as '0 ock Source Selec (Timer1) SC (31 kHz) Commons Sele Multiplex Static (COM0)	ct bits	ne WA bit of the num Number of PIC16(L)F1933	Pixels	egister = 0 Bias	(must	be cleared in
bit 5 bit 4 bit 3-2 bit 1-0	WERR: LCD 1 = LCDDAT software 0 = No LCD v Unimplemen CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>: 00 01	Write Failed Erro An register writ write error ited: Read as '0 ock Source Selec (Timer1) SC (31 kHz) Commons Selec Multiplex Static (COM0) 1/2 (COM<1:0>	ct bits Maxin Maxin	num Number of PIC16(L)F1933	E LCDPS r	egister = 0 Bias Static 1/2 or 1/3	(must	be cleared in
bit 5 bit 4 bit 3-2 bit 1-0	WERR: LCD 1 = LCDDAT software 0 = No LCD w Unimplement CS<1:0>: Clc 00 = Fosc/25 01 = T1OSC 1x = LFINTO LMUX<1:0>: 00 01 10	Write Failed Err An register writ) write error ock Source Selec (Timer1) SC (31 kHz) Commons Selec Multiplex Static (COM0) 1/2 (COM<1:0>	ct bits Maxin)	num Number of PIC16(L)F1933 16 32 48	Pixels	egister = 0 Bias Static 1/2 or 1/3 1/2 or 1/3	(must	be cleared in

Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.

LSLF	Logical Left Shift
Syntax:	[<i>label</i>]LSLF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(f < 7 >) \rightarrow C$ $(f < 6:0 >) \rightarrow dest < 7:1 >$ $0 \rightarrow dest < 0 >$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	C ← register f ← 0

LSRF	Logical Right Shift
Syntax:	[<i>label</i>]LSRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

NOTES:

FIGURE 31-6: IDD MAXIMUM, XT AND EXTRC OSCILLATOR, PIC16F1933 ONLY

FIGURE 31-66: COMPARATOR RESPONSE TIME OVER TEMPERATURE, NORMAL-POWER MODE, CxSP = 1

