

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1933t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADEE	00.01										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 7											
380h ⁽²⁾	INDF0	Addressing (not a phys	this location ical register)	uses contents	s of FSR0H/F	SR0L to addr	ess data mer	mory		XXXX XXXX	XXXX XXXX
381h ⁽²⁾	INDF1	Addressing (not a phys	this location ical register)		****	XXXX XXXX					
382h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
383h ⁽²⁾	STATUS	_	_	—	TO	PD	Z	DC	С	1 1000	q quuu
384h ⁽²⁾	FSR0L	Indirect Dat	ta Memory Ac	ldress 0 Low	Pointer					0000 0000	uuuu uuuu
385h ⁽²⁾	FSR0H	Indirect Dat	ta Memory Ac	ldress 0 High	Pointer					0000 0000	0000 0000
386h ⁽²⁾	FSR1L	Indirect Dat	ta Memory Ac	dress 1 Low	Pointer					0000 0000	uuuu uuuu
387h ⁽²⁾	FSR1H	Indirect Dat	ta Memory Ac	ldress 1 High	Pointer					0000 0000	0000 0000
388h ⁽²⁾	BSR	—	—	—			BSR<4:0>			0 0000	0 0000
389h ⁽²⁾	WREG	Working Re	egister							0000 0000	uuuu uuuu
38Ah ^(1, 2)	PCLATH	_	Write Buffer	for the upper	7 bits of the F	Program Cour	nter			-000 0000	-000 0000
38Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000
38Ch	—	Unimpleme	ented							_	_
38Dh	—	Unimpleme	ented							_	_
38Eh	—	Unimpleme	ented							_	_
38Fh	—	Unimpleme	ented							—	—
390h	—	Unimpleme	ented							—	—
391h	—	Unimpleme	ented							_	_
392h	—	Unimpleme	ented							_	_
393h	—	Unimpleme	ented							_	_
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
397h	_	Unimpleme	ented							_	—
398h	—	Unimpleme	ented							_	_
399h	—	Unimpleme	ented							_	_
39Ah	—	Unimpleme	ented							_	_
39Bh	—	Unimpleme	ented							_	_
39Ch	—	Unimpleme	ented							_	_
39Dh	—	Unimpleme	ented							_	_
39Eh	_	Unimpleme	ented							_	_
39Fh	—	Unimpleme	ented							-	—
											-

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Unimplemented, read as '1'.

7.6.1 PIE1 REGISTER

REGISTER 7-2:	PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1
---------------	--

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	TMR1GIE: T	imer1 Gate Inte	rrupt Enable I	oit			
	1 = Enables 1	the Timer1 Gat	e Acquisition i	nterrupt			
L:1 0		the limer'i Gai		Interrupt			
DIT 6	ADIE: A/D C	onverter (ADC)	Interrupt Ena	DIE DIT			
	0 = Disables	the ADC interru	ipi Jot				
bit 5	RCIE: USAR	T Receive Inter	rupt Enable b	it			
	1 = Enables f	the USART rec	eive interrupt				
	0 = Disables	the USART rec	eive interrupt				
bit 4	TXIE: USAR	T Transmit Inte	rrupt Enable b	bit			
	1 = Enables f 0 = Disables	the USART trar the USART tra	nsmit interrupt nsmit interrup	t			
bit 3	SSPIE: Sync	hronous Serial	Port (MSSP)	Interrupt Enabl	e bit		
	1 = Enables 1 0 = Disables	the MSSP inter the MSSP inter	rupt rrupt				
bit 2	CCP1IE: CC	P1 Interrupt En	able bit				
	1 = Enables f	the CCP1 inter	rupt				
	0 = Disables	the CCP1 inter	rupt				
bit 1	TMR2IE: TM	R2 to PR2 Mate	ch Interrupt E	nable bit			
	1 = Enables 1 0 = Disables	the Timer2 to P the Timer2 to F	R2 match inte R2 match inte	errupt errupt			
bit 0	TMR1IE: Tim	ner1 Overflow Ir	nterrupt Enabl	e bit			
	1 = Enables f	the Timer1 over	flow interrupt				
	0 = Disables	the limer1 ove	rtiow interrupt	I			
Note: Bit	PEIE of the IN	ITCON register	must be				

set to enable any peripheral interrupt.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
OPTION_REG	WPUEN	INTEDG	TMROCS	TMROSE	PSA	PS<2:0>			173
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	_	CCP2IE	84
PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	85
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF		CCP2IF	87
PIR3	_	CCP5IF	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	88

 TABLE 7-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Interrupts.

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 15.2.6 "A/D Conver-
	sion Procedure".

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

15.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx/ECCPX module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 15-2: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16(L)F1933	CCP5

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to **Section 23.0 "Capture/Compare/PWM Modules**" for more information.

21.6.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 21-4:TIMER1 GATE SOURCES

T1GSS	Timer1 Gate Source
00	Timer1 Gate Pin
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)
10	Comparator 1 Output sync_C1OUT (optionally Timer1 synchronized output)
11	Comparator 2 Output sync_C2OUT (optionally Timer1 synchronized output)

21.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

21.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

21.6.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for Timer1 gate control. The Comparator 1 output (sync_C1OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see Section 18.4.1 "Comparator Output Synchronization".

21.6.2.4 Comparator C2 Gate Operation

The output resulting from a Comparator 2 operation can be selected as a source for Timer1 gate control. The Comparator 2 output (sync_C2OUT) can be synchronized to the Timer1 clock or left asynchronous. For more information see Section 18.4.1 "Comparator Output Synchronization".

21.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 21-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note:	Enabling Toggle mode at the same time					
	as changing the gate polarity may result in					
	indeterminate operation.					

21.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single-pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 21-5 for timing details.

If the Single-Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 21-6 for timing details.

21.6.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

21.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

23.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 23-3 shows a typical waveform of the PWM signal.

23.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for CCP modules ECCP1, ECCP2, ECCP3, CCP4 and CCP5.

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- PRx registers
- TxCON registers
- · CCPRxL registers
- · CCPxCON registers

Figure 23-4 shows a simplified block diagram of PWM operation.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the CCPx pin.
 - 2: Clearing the CCPxCON register will relinquish control of the CCPx pin.

FIGURE 23-3: CCP PWM OUTPUT SIGNAL

SIMPLIFIED PWM BLOCK DIAGRAM

23.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register.

If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the CCPxASE bit will be cleared via hardware and normal operation will resume.

FIGURE 23-15: PWM AUTO-SHUTDOWN WITH AUTO-RESTART (PXRSEN = 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCPxCON	PxM<	1:0> (1)	DCxE	8<1:0>		CCPx	//<3:0>		214
CCPxAS	CCPxASE	(CCPxAS<2:0>		PSSxAC<1:0>		PSSxB	216	
CCPTMRS0	C4TSE	L<1:0>	C3TSE	EL<1:0>	C2TSE	L<1:0>	C1TSE	:L<1:0>	215
CCPTMRS1	—	—	—	_	_	—	C5TSE	:L<1:0>	215
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	82
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	83
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	— CCP2IE		84
PIE3	_	CCP5IE	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	85
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	86
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	-	CCP2IF	87
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	88
PRx	Timer2/4/6 F	Period Registe	er						187*
PSTRxCON	—	—	—	STRxSYNC	STRxD	STRxC	STRxB	STRxA	218
PWMxCON	PxRSEN				PxDC<6:0>				217
TxCON	—		TxOUT	PS<3:0>		TMRxON	TxCKP	'S<:0>1	189
TMRx	Timer2/4/6 N	Iodule Regist	er						187
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA1 TRISA0	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	121
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125

TABLE 23-10: SUMMARY OF REGISTERS ASSOCIATED WITH ENHANCED PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Note 1: Applies to ECCP modules only.

* Page provides register information.

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
u = Bit is ur	nchanged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is s	et	'0' = Bit is cle	ared					
bit 7		(nourladae Tim	a Statua hit //	C mada anlu)	(3)			
DIL 7	1 = Indicates	the I ² C bus is	e Status bit (i⁻ in an Acknowl		e set on 8 TH fall	ling edge of SC	`l_clock	
	0 = Not an Ac	cknowledge se	quence, cleare	ed on 9 [™] risin	g edge of SCL c	lock	CIOCK	
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit	(I ² C mode only	y)			
	1 = Enable in	terrupt on dete	ction of Stop	condition				
	0 = Stop dete	ction interrupts	are disabled	(2)				
bit 5	SCIE: Start C	ondition Interru	upt Enable bit	(I ² C mode only	y)			
	1 = Enable in 0 = Start dete	ction interrupt	s are disabled	or Restart cond (2)	aitions			
bit 4	BOEN: Buffer	r Overwrite En	able bit					
	In SPI Slave r	<u>mode:</u> (1)						
	1 = SSPI	BUF updates e	very time that	a new data by	/te is shifted in ig	pnoring the BF	bit	
	0 = If ne SSP(w byte is rece	ived with BF I is set and the	bit of the SSP:	SIAI register al	ready set, SSI	OV bit of the	
	In I ² C Master	and SPI Master	er mode:		pulleu			
	This bit is	ignored.						
	<u>In I^eC Slave n</u> 1 = SSPF	<u>node:</u> RLIE is undated	and \overline{ACK} is of	enerated for a l	received address	s/data byte_ion	oring the state	
	of the	e SSPOV bit only if the BF bit = 0.						
	0 = SSPE	BUF is only up	dated when S	SPOV is clear				
bit 3	SDAHT: SDA	Hold Time Se	lection bit (I ² C	mode only)				
	1 = Minimum	of 300 ns hold	time on SDA	after the falling	g edge of SCL			
bit 2	SBCDE: Slav	e Mode Bus C	ollision Detect	t Enable bit (I ²	C Slave mode o	nlv)		
5.12	If on the rising	edge of SCI	SDA is sample	ed low when th	e module is outp	utting a high st	ate the BCLIE	
	bit of the PIR2	2 register is se	t, and bus goe	es idle		atting a night at		
	1 = Enable sla	ave bus collisio	on interrupts					
	0 = Slave bus	s collision inter	rupts are disal	bled				
bit 1	AHEN: Addre	ess Hold Enabl	e bit (I ² C Slav	e mode only)				
	1 = Following	g the 8th fallin	ig edge of SC	CL for a matcl	hing received a	ddress byte; C	KP bit of the	
	0 = Address h	nolding is disat	bled					
bit 0	DHEN: Data I	Hold Enable bi	t (I ² C Slave m	ode only)				
	1 = Following	the 8th falling	edge of SCL	for a received	data byte; slave	hardware clea	rs the CKP bit	
	of the SS	SPCON1 regist	er and SCL is	held low.				
	U = Data hold	ing is disabled						
Note 1: F	For daisy-chained when a new byte is	SPI operation; s received and	allows the use BF = 1, but ha	er to ignore all ardware contin	but the last rece ues to write the i	ived byte. SSP most recent by	OV is still set te to SSPBUF.	

REGISTER 24-4: SSPCON3: SSP CONTROL REGISTER 3

- 2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.
- 3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

NOTES:

25.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data, but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

25.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

25.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

25.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

25.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

- 25.5.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 25.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

FIGURE 26-2: CAPACITIVE SENSING OSCILLATOR BLOCK DIAGRAM

Mnemonic,		Description	Cycles		14-Bit	Opcode)	Status	Notoo
Ореі	rands	Description		MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED SKIP (OPERATIO	ONS				1	1
DECESZ	f. d	Decrement f. Skip if 0	1(2)	00	1011	dfff	ffff		1.2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
	1	BIT-ORIENTED FILE REGIST		RATION	IS			1	
RCE	f. b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSE	f. b	Bit Set f	1	01	01bb	bfff	ffff		2
501	, -			-		-			
		BIT-ORIENTED SKIP O	PERATIO	NS				n	1
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL	OPERATIO	NS	•					r	
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
							-		

TABLE 29-3: PIC16(L)F1933 INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

TABLE 29-3:	PIC16(L)F1933 INSTRUCTION SET ((CONTINUED)
-------------	---------------------------------	-------------

Mnemonic, Operands		Description Cy	Cycles		14-Bit Opcode			Status	Natas
			Cycles	MSb			LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0 k k k	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	TIONS						
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	-	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	-	Software device Reset	1	00	0000	0000	0001		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	Onkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

ΜΟΥΨΙ	Move W to INDFn				
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]				
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31				
Operation:	$\label{eq:W} \begin{split} W &\rightarrow \text{INDFn} \\ \text{Effective address is determined by} \\ \bullet \ \text{FSR} + 1 \ (\text{preincrement}) \\ \bullet \ \text{FSR} - 1 \ (\text{predecrement}) \\ \bullet \ \text{FSR} + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will be} \\ \text{either:} \\ \bullet \ \text{FSR} + 1 \ (\text{all increments}) \\ \bullet \ \text{FSR} - 1 \ (\text{all decrements}) \\ \text{Unchanged} \end{split}$				
Status Affected:	None				

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	
-----	--

No Operation

Syntax:	[<i>label</i>] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \to OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[<i>label</i>] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the RI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

32.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

32.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

32.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

32.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility