

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	CANbus, EBI/EMI, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	151
Program Memory Size	4MB (4M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192K x 8
Voltage - Supply (Vcc/Vdd)	1.14V ~ 5.25V
Data Converters	A/D 40x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	324-BBGA
Supplier Device Package	324-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5644af0mvz1r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document Overview

This document provides electrical specifications, pin assignments, and package diagrams for the MPC5644A series of microcontroller units (MCUs). For functional characteristics, refer to the MPC5644A Microcontroller Reference Manual.

1.2 Description

The microcontroller's e200z4 host processor core is built on Power Architecture[®] technology and designed specifically for embedded applications. In addition to the Power Architecture technology, this core supports instructions for digital signal processing (DSP).

The MPC5644A has two levels of memory hierarchy consisting of 8 KB of instruction cache, backed by 192 KB on-chip SRAM and 4 MB of internal flash memory. The MPC5644A includes an external bus interface, and also a calibration bus that is only accessible when using the Freescale VertiCal Calibration System.

This document describes the features of the MPC5644A and highlights important electrical and physical characteristics of the device.

etc. Each bit in the frame may be configured to serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI can be configured to serialize data to an external device that implements the Microsecond Bus protocol. There are three identical DSPI blocks on the MPC5644A MCU. The DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) to improve high speed operation.

DSPI module features include:

- Selectable LVDS pads working at 40 MHZ for SOUT and SCK pins for DSPI_B and DSPI_C
- 3 sources of serialized data: eTPU_A, eMIOS output channels and memory-mapped register in the DSPI
- 4 destinations for deserialized data: eTPU_A and eMIOS input channels, SIU external Interrupt input request, memory-mapped register in the DSPI
- 32-bit DSI and TSB modes require 32 PCR registers, 32 GPO and GPI registers in the SIU to select either GPIO, eTPU or eMIOS bits for serialization
- The DSPI Module can generate and check parity in a serial frame

1.4.15 eSCI

Three enhanced serial communications interface (eSCI) modules provide asynchronous serial communications with peripheral devices and other MCUs, and include support to interface to Local Interconnect Network (LIN) slave devices. Each eSCI block provides the following features:

- Full-duplex operation
- Standard mark/space non-return-to-zero (NRZ) format
- 13-bit baud rate selection
- Programmable 8-bit or 9-bit, data format
- Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support the Microsecond bus standard
- Automatic parity generation
- LIN support
 - Autonomous transmission of entire frames
 - Configurable to support all revisions of the LIN standard
 - Automatic parity bit generation
 - Double stop bit after bit error
 - 10- or 13-bit break support
- Separately enabled transmitter and receiver
- Programmable transmitter output parity
- 2 receiver wake-up methods:
 - Idle line wake-up
 - Address mark wake-up
- Interrupt-driven operation with flags
- Receiver framing error detection
- Hardware parity checking
- 1/16 bit-time noise detection
- DMA support for both transmit and receive data
 - Global error bit stored with receive data in system RAM to allow post processing of errors

1.4.16 FlexCAN

The MPC5644A MCU includes three controller area network (FlexCAN) blocks. The FlexCAN module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to

- 1 receive FIFO per channel
- Up to 255 entries for each FIFO
- ECC support

1.4.18 System timers

The system timers include two distinct types of system timer:

- Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT)
- Operating system task monitors using the System Timer Module (STM)

1.4.18.1 Periodic interrupt timer (PIT)

The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic triggers. The PIT has no external input or output pins and is intended to provide system 'tick' signals to the operating system, as well as periodic triggers for eQADC queues. Of the five channels in the PIT, four are clocked by the system clock and one is clocked by the crystal clock. This one channel is also referred to as Real-Time Interrupt (RTI) and is used to wake up the device from low power stop mode.

The following features are implemented in the PIT:

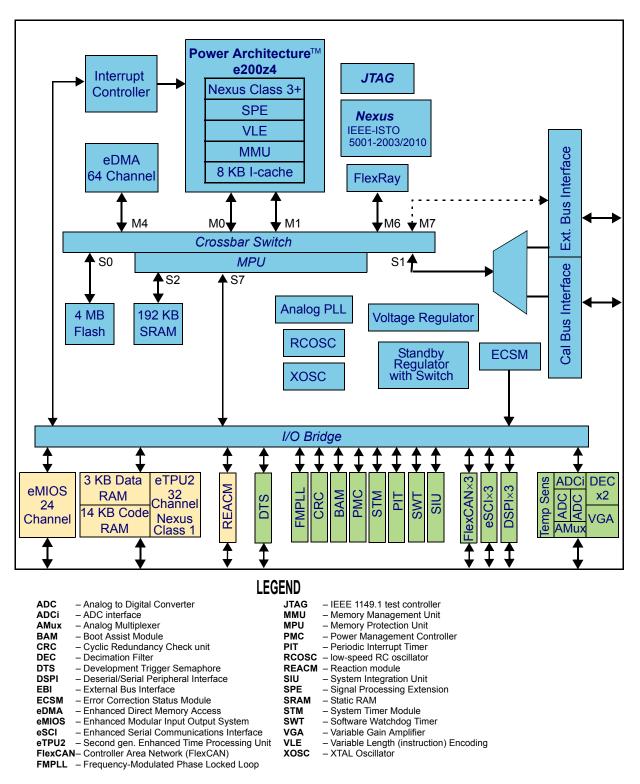
- 5 independent timer channels
- Each channel includes 32-bit wide down counter with automatic reload
- 4 channels clocked from system clock
- 1 channel clocked from crystal clock (wake-up timer)
- Wake-up timer remains active when System STOP mode is entered; used to restart system clock after predefined time-out period
- Each channel optionally able to generate an interrupt request or a trigger event (to trigger eQADC queues) when timer reaches zero

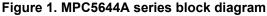
1.4.18.2 System timer module (STM)

The System Timer Module (STM) is designed to implement the software task monitor as defined by AUTOSAR¹. It consists of a single 32-bit counter, clocked by the system clock, and four independent timer comparators. These comparators produce a CPU interrupt when the timer exceeds the programmed value.

The following features are implemented in the STM:

- One 32-bit up counter with 8-bit prescaler
- Four 32-bit compare channels
- Independent interrupt source for each channel
- Counter can be stopped in debug mode


1.4.19 Software watchdog timer (SWT)


The Software Watchdog Timer (SWT) is a second watchdog module to complement the standard Power Architecture watchdog integrated in the CPU core. The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can provide a system reset or interrupt request when the correct software key is not written within the required time window.

The following features are implemented:

- 32-bit modulus counter
- Clocked by system clock or crystal clock

1.AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org)

2 Pinout and signal description

This section contains the pinouts for all production packages for the MPC5644A family of devices.

CAUTION

Any pins labeled "NC" are to be left unconnected. Any connection to an external circuit or voltage may cause unpredictable device behavior or damage.

М	VDDEH6AB	NC	NC	VRC33					VSS	VSS	VSS
Ν	NC	VSS	SCI_A_TX	NC					VSS	VSS	VSS
Ρ	RSTCFG	RSTOUT	SCI_A_RX	CAN_C_TX					VSS	VSS	VSS
R	RESET	NC	NC	NC							
т	VSS	VSS ¹	BOOTCFG0	VSS							
U	EXTAL	BOOTCFG1	PLLCFG1	VDDEH6AB							
V	XTAL	PLLREF	CAN_C_RX	SCI_C_RX							
w	VDDPLL	CAN_B_RX	VDD	SCI_C_TX	EMIOS23	EMIOS16	EMIOS15	EMIOS8	VDDEH4AB	EMIOS1	ETPUA1
Y	CAN_B_TX	VDD	VSS	CAN_A_RX	EMIOS22	EMIOS17	EMIOS14	EMIOS9	EMIOS5	EMIOS2	ETPUA0
AA	VDD	VSS	WKPCFG	VDDEH4AB	EMIOS21	EMIOS18	EMIOS13	EMIOS10	EMIOS6	EMIOS3	EMIOS0
AB	VSS	SCI_B_TX	SCI_B_RX	CAN_A_TX	EMIOS20	EMIOS19	EMIOS12	EMIOS11	EMIOS7	EMIOS4	TCRCLKA
	22	21	20	19	18	17	16	15	14	13	12

¹ This pin (T21) should be tied low.

Figure 7. 324-pin TEPBGA package ballmap (southeast, viewed from above)

Table 3. MPC5644A signal properties (continued)

		Р	PCR		I/O	Voltage ⁵ /	Sta	itus ⁷	Package pin #		
Name	Function ¹	A G ²	PA Field ³	PCR ⁴	1/О Туре	Pad Type ⁶	During Reset	After Reset	176	208	324
BOOTCFG[1] IRQ[3] ETRIG3 GPIO[212]	Boot Config. Input External Interrupt Request eQADC Trigger Input GPIO	P A1 A2 G	001 010 100 000	212	 /0	VDDEH6 Slow	— / Down	BOOTCFG[1] / Down	85	M15	U21
WKPCFG NMI DSPI_B_SOUT GPIO[213]	Weak Pull Config. Input Non-Maskable Interrupt DSPI D data output GPIO	P A1 A2 G	001 010 100 000	213	 /0	VDDEH6 Medium	— / Up	WKPCFG / Up	86	L15	AA20
				Ext	ernal B	us Interface					•
CS[0] ADDR[8] GPIO[0]	External chip selects External address bus GPIO	P A1 G	01 10 00	0	0 I/O I/O	VDDE2 Fast	— / Up	— / Up	_	_	G1
CS[1] ADDR9 GPIO[1]	External chip selectsP011External address busA110GPIOG00		1	0 I/O I/O	VDDE2 Fast	— / Up	— / Up	-	-	H1	
CS[2] ADDR10 WE[2]/BE[2] CAL_WE[2]/BE[2] GPI0[2]	External chip selects External address bus Write/byte enable Cal. bus write/byte enable GPIO	P A1 A2 A3 G	0001 0010 0100 1000 0000	2	0 I/O 0 I/O	VDDE2 Fast	— / Up	— / Up	-	_	H2
CS[3] ADDR11 WE[3]/BE[3] CAL_WE[3]/BE[3] GPI0[3]	External chip selects P 0001 3 O VDDE2 — / Up External address bus A1 0010 I/O Fast — / Up Write/byte enable A2 0100 O O — / Up Cal bus write/byte enable A3 1000 O — — / Up		— / Up	— / Up	-	_	H4				
ADDR12 GPIO[8]	External address bus GPIO	P G	01 00	8	I/O I/O	VDDE3 Fast	— / Up	— / Up	—	—	N2
ADDR13 WE[2] GPIO[9]	External address bus F Write/byte enable A GPIO C		001 100 000	9	I/O O I/O	VDDE3 Fast	— / Up	— / Up	_	—	N1
ADDR14 WE[3] GPIO[10]	External address bus Write/byte enables GPIO	P A2 G	001 100 000	10	I/O O I/O	VDDE3 Fast	— / Up	— / Up	_	_	P1
ADDR15 GPIO[11]	External address bus GPIO	P G	01 00	11	I/O I/O	VDDE3 Fast	— / Up	— / Up	—	—	P2

Table 3. MPC5644A signal properties (continued)

			PCR		I/O	Voltage ⁵ /	Sta	tus ⁷	Package pin #		
Name	Function ¹	A G ²	PA Field ³	PCR ⁴	і/О Туре	Pad Type ⁶	During Reset	After Reset	176	208	324
ADDR16 FR_A_TX DATA16 GPIO[12]	External address bus Flexray TX data channel A External data bus GPIO	P A1 A2 G	001 010 100 000	12	I/O O I/O I/O	VDDE-EH Medium	— / Up	— / Up	-	-	P3
ADDR17 FR_A_TX_EN DATA17 GPIO[13]	External address bus FlexRay ch. A TX data enable External data bus GPIO	P A1 A2 G	001 010 100 000	13	I/O O I/O I/O	VDDE-EH Medium	— / Up	— / Up	-	_	P4
ADDR18 FR_A_RX DATA18 GPIO[14]	External address bus Flexray RX data ch. A External data bus GPIO	P A1 A2 G	001 010 100 000	14	I/O I I/O I/O	VDDE-EH Medium	— / Up	— / Up	-	_	R1
ADDR19 FR_B_TX DATA19 GPIO[15]	External address bus Flexray TX data ch. B External data bus GPIO	P A1 A2 G	001 010 100 000	15	I/O O I/O I/O	VDDE-EH Medium	— / Up	— / Up	-	_	R2
ADDR20 FR_B_TX_EN DATA20 GPIO[16]	External address bus Flexray TX data enable for ch. B External data bus GPIO	P A1 A2 G	001 010 100 000	16	I/O O I/O I/O	VDDE-EH Medium	— / Up	— / Up	-	_	R4
ADDR21 FR_B_RX DATA21 GPIO[17]	External address bus Flexray RX data channel B External data bus GPIO	P A1 A2 G	001 010 100 000	17	I/O I I/O I/O	VDDE-EH Medium	— / Up	— / Up	-	_	T1
ADDR22 DATA22 GPIO[18]	External address bus External data bus GPIO	P A2 G	001 100 000	18	1/0 1/0 1/0	VDDE-EH Medium	— / Up	— / Up	—	—	T2
ADDR23 DATA23 GPIO[19]	External address bus External data bus GPIO		001 100 000	19	I/O I/O I/O	VDDE-EH Medium	— / Up	— / Up	—	—	Т3
ADDR24 DATA24 GPIO[20]	External address bus External data bus GPIO	P A2 G	001 100 000	20	I/O I/O I/O	VDDE-EH Medium	— / Up	— / Up	—	_	T4
ADDR25 DATA25 GPIO[21]	External address bus External data bus GPIO	P A2 G	001 100 000	21	I/O I/O I/O	VDDE-EH Medium	— / Up	— / Up	—	_	U1

Table 3. MPC5644A signal properties (continued)

		Р	PCR		I/O	Voltage ⁵ /	Sta	tus ⁷	Package pin #		
Name	Function ¹	A G ²	PA Field ³	PCR ⁴	7уре	Pad Type ⁶	During Reset	After Reset	176	208	324
					eQ	ADC	·				
AN0 ¹⁸ DAN0+	Single Ended Analog Input Positive Terminal Diff. Input	Р	_	_	l	VDDA Analog	I / —	AN[0] / —	172	B5	C6
AN1 ¹⁸ DAN0-	Single Ended Analog Input Negative Terminal Diff. Input	Р	—	—	l	VDDA Analog	I/—	AN[1] / —	171	A6	C7
AN2 ¹⁸ DAN1+	Single Ended Analog Input Positive Terminal Diff. Input	Р	—	—	l	VDDA Analog	I / —	AN[2] / —	170	D6	D7
AN3 ¹⁸ DAN1-	Single Ended Analog Input Negative Terminal Diff. Input	Р	—	—	l	VDDA Analog	I / —	AN[3] / —	169	C7	D8
AN4 ¹⁸ DAN2+	Single Ended Analog Input P — I VDDA I / — AN[4] / — Positive Terminal Diff. Input I I Analog I I I		AN[4] / —	168	B6	B7					
AN5 ¹⁸ DAN2-	Single Ended Analog Input Negative Terminal Diff. Input	Р	—	—	l	VDDA Analog	I / —	AN[5] / —	167	A7	B8
AN6 ¹⁸ DAN3+	Single Ended Analog Input Positive Terminal Diff. Input	Р	—	—	l	VDDA Analog	I / —	AN[6] / —	166	D7	C8
AN7 ¹⁸ DAN3-	Single Ended Analog Input Negative Terminal Diff. Input	Р	—	—	l	VDDA Analog	I / —	AN[7] / —	165	C8	C9
AN8 ANW	Single-ended Analog Input Multiplexed Analog Input	Р	01	_	I	VDDA Analog	I/—	AN[8] / —	9	B3	E1
AN9 ANX	Single-ended Analog Input External Multiplexed Analog Input	Р	01	_	l	VDDA Analog	I / —	AN[9] / —	5	A2	C2
AN10 ANY	Single-ended Analog Input Multiplexed Analog Input	Р	01	_	I	VDDA Analog	I <i>/</i> —	AN[10] / —	-	_	D1
AN11 ANZ	Single-ended Analog Input Multiplexed Analog Input	Р	01	—	I	VDDA Analog	I/—	AN[11] / —	4	A3	C1
AN12 - SDS MA0 ETPUA19_O ⁸ SDS	Single-ended Analog Input MUX Address 0 eTPU A channel (output only) eQADC Serial Data Select	P A1 A2 G	001 010 100 000	215	 0 /0	VDDEH7 ¹⁹ Medium	I / —	AN[12] / —	148	A12	C13
AN13 - SDO MA1 ETPUA21_O ⁸ SDO	Single-ended Analog Input MUX Address 1 eTPU A channel (output only) eQADC Serial Data Out	P A1 A2 G	001 010 100 000	216	 0 0	VDDEH7 ¹⁹ Medium	1/—	AN[13] / —	147	B12	B13

Table 4. Pad types

Pad Type	Name	I/O Voltage Range
Slow	pad_ssr_hv	3.0V - 5.5 V
Medium	pad_msr_hv	3.0 V - 5.5 V
Fast	pad_fc	3.0 V - 3.6 V
MultiV ^{1,2}	pad_multv_hv	3.0 V - 5.5 V (high swing mode) 3.0 V - 3.6 V (low swing mode)
Analog	pad_ae_hv	0.0 - 5.5 V
LVDS	pad_lo_lv	—

¹ Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function is selected, otherwise they are high swing.

² VDDEH7 supply cannot be below 4.5 V when in low-swing mode.

2.5 Signal details

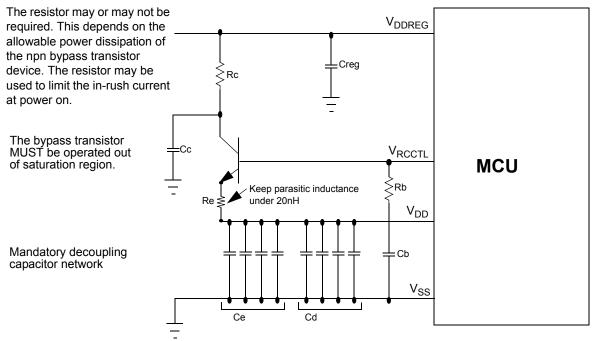

Signal	Module or Function	Description
CLKOUT	Clock Generation	MPC5644A clock output for the external/calibration bus interface
ENGCLK	Clock Generation	Clock for external ASIC devices
EXTAL	Clock Generation	Input pin for an external crystal oscillator or an external clock source based on the value driven on the PLLREF pin at reset.
PLLREF	Clock Generation Reset/Configuration	PLLREF is used to select whether the oscillator operates in xtal mode or external reference mode from reset. PLLREF=0 selects external reference mode. On the 324BGA package, PLLREF is bonded to the ball used for PLLCFG[0] for compatibility with MPC55xx devices .
		For the 176-pin QFP and 208-ball BGA packages: 0: External reference clock is selected. 1: XTAL oscillator mode is selected
		For the 324 ball BGA package: If RSTCFG is 0: 0: External reference clock is selected. 1: XTAL oscillator mode is selected.
		If RSTCFG is 1, XTAL oscillator mode is selected.
XTAL	Clock Generation	Crystal oscillator input
DSPI_B_SCK_LVDS- DSPI_B_SCK_LVDS+	DSPI	LVDS pair used for DSPI_B TSB mode transmission
DSPI_B_SOUT_LVDS- DSPI_B_SOUT_LVDS+	DSPI	LVDS pair used for DSPI_B TSB mode transmission
DSPI_C_SCK_LVDS- DSPI_C_SCK_LVDS+	DSPI	LVDS pair used for DSPI_C TSB mode transmission

Table 5. Signal details

- ² BETA represents the worst-case external transistor. It is measured on a per-part basis and calculated as $(I_{DD} \div I_{VRCCTL})$.
- ³ Refer to Table 52 for the maximum operating frequency.
- 4 Values are based on I_{DD} from high-use applications as explained in the I_{DD} Electrical Specification.

3.6.2 Regulator Example

In designs where the MPC5644A microcontroller's internal regulators are used, a ballast is required for generation of the 1.2 V internal supply. No ballast is required when an external 1.2 V supply is used.

VRCCTL capacitor and resistor is required

Figure 8. Core voltage regulator controller external components preferred configuration

Table 17. MPC5644A External network specification

External Network Parameter	Min	Тур	Мах	Comment
T1				NJD2873 or BCP68 only
Cb	1.1 μF	2.2µF	2.97μF	X7R,-50%/+35%
Се	3*2.35μF+5μF	3*4.7μF+10μF	3*6.35μF+13.5μF	X7R, -50%/+35%
Equivalent ESR of Ce capacitors	5mΩ		50mΩ	
Cd	4*50nF	4*100nF	4*135nF	X7R, -50%/+35%
Rb	9Ω	10Ω	11Ω	+/-10%

V _{DDEH}	V _{DD}	Pad State
LOW	Х	LOW
V _{DDEH}	LOW	HIGH IMPEDANCE
V _{DDEH}	V _{DD}	FUNCTIONAL

 Table 20. Power sequence pin states (medium, slow, and multi-voltage pads)

3.8 DC electrical specifications

Cumhal	1	с	Parameter	Conditions		Value		Unit
Symbol		C	Parameter	Conditions	min	typ	max	Onit
V _{DD}	SR		Core supply voltage	_	1.14		1.32	V
V _{DDE}	SR	_	I/O supply voltage	_	1.62		3.6	V
V _{DDEH}	SR	_	I/O supply voltage	_	3.0		5.25	V
V _{DDE-EH}	SR	_	I/O supply voltage	_	3.0		5.25	V
V _{RC33}	SR		3.3 V regulated voltage ¹	_	3.0	_	3.6	V
V _{DDA}	SR	_	Analog supply voltage	_	4.75 ²		5.25	V
V _{INDC}	SR	_	Analog input voltage	_	V _{SSA} -0.3	_	V _{DDA} +0.3	V
$V_{SS} - V_{SSA}$	SR		V _{SS} differential voltage	—	-100	_	100	mV
V _{RL}	SR		Analog reference low voltage	—	V _{SSA}	_	V _{SSA} +0.1	V
V _{RL} – V _{SSA}	SR	_	VRL differential voltage	_	-100		100	mV
V _{RH}	SR	_	Analog reference high voltage	_	V _{DDA} -0.1		V _{DDA}	V
V _{RH} – V _{RL}	SR	_	V _{REF} differential voltage	_	4.75		5.25	V
V _{DDF}	SR		Flash operating voltage ³	_	1.14		1.32	V
V _{FLASH} ⁴	SR	_	Flash read voltage	_	3.0		3.6	V
V _{STBY}	SR	_	SRAM standby voltage	Unregulated mode	0.95	_	1.2	V
			Keep-out Range: 1.2V–2V	Regulated mode	2.0	_	5.5	

#	Symb	ol	С	Characteristic	Min. Value	Max. Value	Unit
11	t _{NTDIS}	CC	D	TDI Data Setup Time	5	—	ns
12	t _{NTDIH}	CC	D	TDI Data Hold Time	25	—	ns
13	t _{NTMSS}	CC	D	TMS Data Setup Time	5	—	ns
14	t _{NTMSH}	CC	D	TMS Data Hold Time	25	—	ns
15	_	CC	D	TDO propagation delay from falling edge of TCK	_	19.5	ns
16	—	CC	D	TDO hold time with respect to TCK falling edge (minimum TDO propagation delay)	5.25	_	ns

Table 39. Nexus debug port timing¹ (continued)

¹ All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at V_{DD} = 1.14 V to 1.32 V, V_{DDEH} = 4.5 V to 5.5 V with multi-voltage pads programmed to Low-Swing mode, T_A = T_L to T_H , and C_L = 30 pF with DSC = 0b10.

² Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum setting (NPC_PCR[MCKO_DIV] depending on the actual system frequency being used.

³ This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute minimum MCKO period specification.

⁴ This may require setting the MCO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending on the actual system frequency being used.

⁵ MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.

⁶ Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used.

⁷ This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the Absolute minimum TCK period specification.

⁸ This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used.

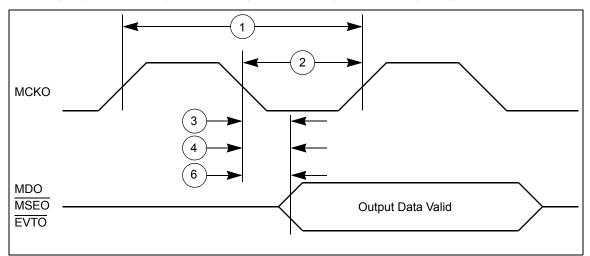


Figure 15. Nexus output timing

		Nexus Routing	I	Max. Operating		
Package	Nexus Width		MDO[0:3]	MDO[4:11]	CAL_MDO[4:1 1]	Frequency
176 LQFP 208 BGA	Reduced port mode ¹	Route to MDO ²	Nexus Data Out [0:3]	GPIO	GPIO	40 MHz ³
324 BGA	Full port mode ⁴	Route to MDO ²	Nexus Data Out [0:3]	Nexus Data Out [4:11]	GPIO	40 MHz ^{5,6}
496 CSP	Reduced port mode ¹	Route to MDO ²	Nexus Data Out [0:3]	GPIO	GPIO	40 MHz ³
	Full port mode ⁴	Route to MDO ²	Nexus Data Out [0:3]	Nexus Data Out [4:11]	GPIO	40 MHz ^{5,6}
		Route to CAL_MDO ⁷	Cal Nexus Data Out [0:3]	GPIO	Cal Nexus Data Out [4:11]	40 MHz ³

Table 40. Nexus debug port operating frequency

¹ NPC_PCR[FPM] = 0

² NPC_PCR[NEXCFG] = 0

³ The Nexus AUX port runs up to 40 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is greater than 40 MHz.

⁴ NPC_PCR[FPM] = 1

⁵ Set the NPC_PCR[MCKO_DIV] to divide by two if the system frequency is between 40 MHz and 80 MHz inclusive. Set the NPC_PCR[MCKO_DIV] to divide by four if the system frequency is greater than 80 MHz.

⁶ Pad restrictions limit the Maximum Operation Frequency in these configurations

⁷ NPC_PCR[NEXCFG] = 1

"			~		66 MHz (ext. bus) ²	l lucit	Netze	
#	Symb	bol C		Characteristic	Min	Max	Unit	Notes	
6	t _{cov}	COV CC E		CLKOUT Posedge to Output Signal Valid (Output Delay) ADDR[8:31] CS[0:3] DATA[0:31] OE RD_WR TS WE[0:3]/BE[0:3]	_	9	ns		
7	t _{CIS}	СС	D	Input Signal Valid to CLKOUT Posedge (Setup Time) DATA[0:31]	6.0		ns		
8	t _{CIH}	CC	D	CLKOUT Posedge to Input Signal Invalid (Hold Time) DATA[0:31]	1.0	_	ns		
9	t _{APW}	CC	D	ALE Pulse Width ⁴	6.5	—	ns		
10	t _{AAI}	AI CC D ALE Negated to Address Invalid ⁴		1.5 ⁵		ns			

Table 43. External bus interface (EBI) and calibration bus operation timing ¹ (continued)

¹ External Bus and Calibration bus timing specified at f_{SYS} = 150 MHz and 100 MHz, V_{DD} = 1.14 V to 1.32 V, V_{DDE} = 3 V to 3.6 V (unless stated otherwise), T_A = T_L to T_H , and C_L = 30 pF with DSC = 0b10.

² The external bus is limited to half the speed of the internal bus. The maximum external bus frequency is 66 MHz for 16-bit muxed mode and 33 MHz for non-muxed mode. For The EBI division factor should be set accordingly based on the internal frequency being used.

³ Refer to Fast Pad timing in Table 35 and Table 36 (different values for 1.8 V vs. 3.3 V).

⁴ Measured at 50% of ALE.

⁵ When CAL_TS pad is used for CAL_ALE function the hold time is 1 ns instead of 1.5 ns.

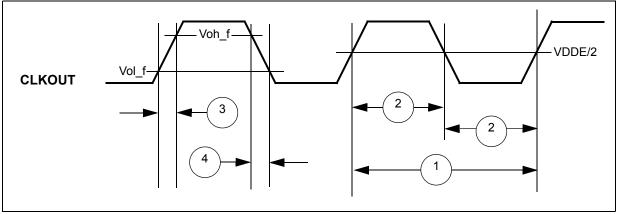


Figure 18. CLKOUT timing

#	Syml	bol	С	Characteristic	Condition	Min.	Max.	Unit
9				Data	Setup Time for Inputs			
			D	Master (MTFE = 0)	V _{DDEH} =4.5–5.5 V	20		ns
			D		V _{DDEH} =3–3.6 V	23.5	_	
			D	Slave		2	_	
			D	Master (MTFE = 1, CPHA = 0) ¹²		8	_	
			D	Master (MTFE = 1, CPHA = 1)	V _{DDEH} =4.5–5.5 V	20	_	
			D		V _{DDEH} =3–3.6 V	23.5	_	
10	t _{HI}	СС		Data	Hold Time for Inputs			
			D	Master (MTFE = 0)		-4		ns
			D	Slave		7	_	
			D	Master (MTFE = 1, CPHA = 0) ¹²		21	_	
			D	Master (MTFE = 1, CPHA = 1)		-4	_	
11	t _{suo}	CC	Data Valid (after SCK edge)					
			D	Master (MTFE = 0)	V _{DDEH} =4.5–5.5 V	_	5	ns
			D		V _{DDEH} =3–3.6 V	_	6.3	
			D	Slave	V _{DDEH} =4.5–5.5 V	_	25	
			D		V _{DDEH} =3–3.6 V	_	27	
			D	Master (MTFE = 1, CPHA = 0)		_	21	
			D	Master (MTFE = 1, CPHA = 1)	V _{DDEH} =4.5–5.5 V	_	5	
			D		V _{DDEH} =3–3.6 V	_	6.3	
12	t _{HO}	CC		Data H	lold Time for Outputs			
			D	Master (MTFE = 0)	V _{DDEH} =4.5–5.5 V	-5		ns
			D		V _{DDEH} =3 –3.6 V	-7.5	_	1
			D	Slave		5.5	_	1
			D	Master (MTFE = 1, CPHA = 0)		3	—	1
			D	Master (MTFE = 1, CPHA = 1)	V _{DDEH} =4.5–5.5 V	-5		1
			D		V _{DDEH} =3–3.6 V	-7.5	—	1

Table 48.	DSPI	timing ^{1,2}	(continued)
-----------	------	-----------------------	-------------

¹ All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on medium-speed pads. DSPI signals using slow pads have an additional delay based on the slew rate. DSPI timing is specified at V_{DDEH} = 3 to 3.6 V and V_{DDEH} = 4.5 to 5.5 V, T_A = T_L to T_H , and C_L = 50 pF with SRC = 0b11.

² Data is verified at f_{SYS} = 102 MHz and 153 MHz (100 MHz and 150 MHz + 2% frequency modulation).

³ The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated based on two MPC5644A devices communicating over a DSPI link.

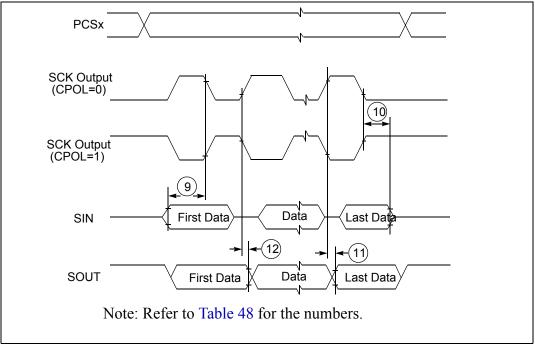


Figure 24. DSPI classic SPI timing — master, CPHA = 1

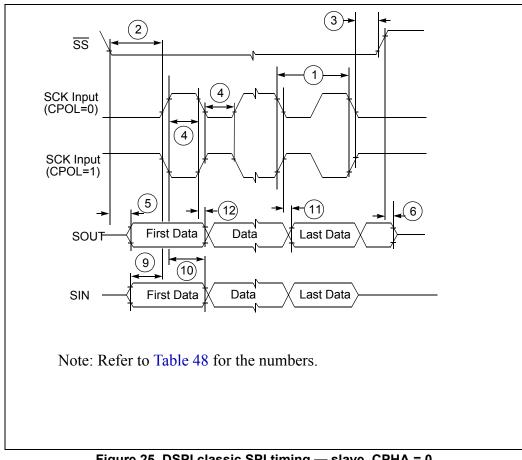
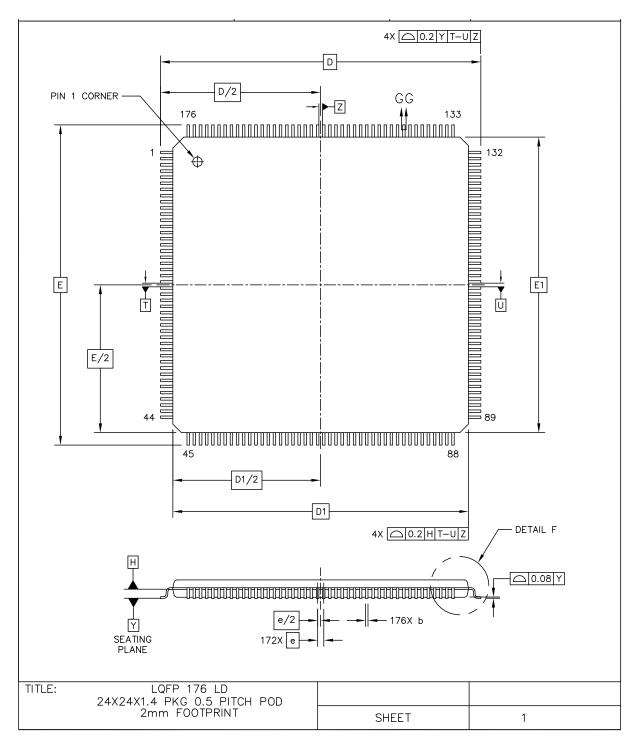



Figure 25. DSPI classic SPI timing — slave, CPHA = 0

4 Packages

4.1 Package mechanical data

4.1.1 176 LQFP

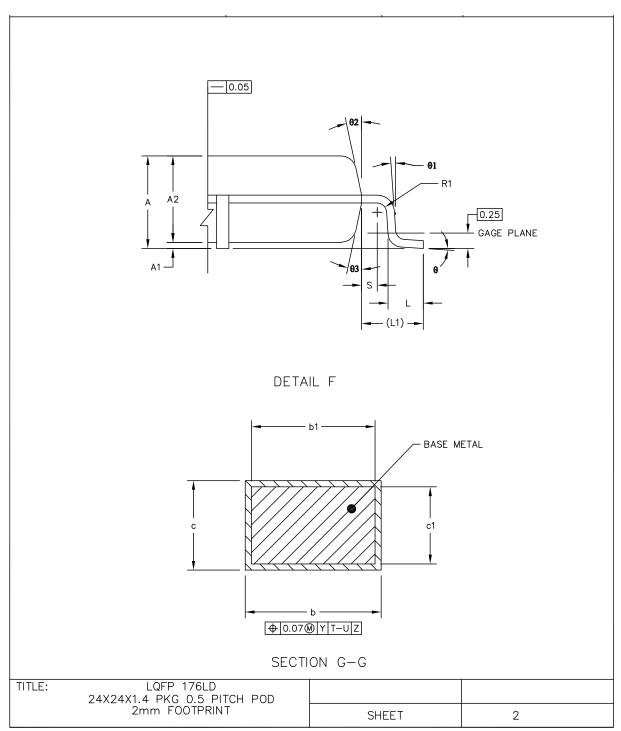


Figure 33. 176 LQFP package mechanical drawing (part 1)

Figure 34. 176 LQFP package mechanical drawing (part 2)

	MECHANICAL	L OUTLINES	DOCUMENT NO: 98ASS23840W						
		NARY	PAGE:	1158					
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRCTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	D					
NOTES: 1. ALL DIMENSIONS IN MILLIME 2. DIMENSIONING AND TOLERAI 3. MAXIMUM SOLDER BALL DIA	NCING PER ASME		ATUM A.						
4. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.									
OF PACKAGE.									
TITLE: PBGA, 324	1/0,	CASE NUMBER: 1	158-03	-03					
23 X 23 P	KG,	STANDARD: JEDEC MS-034 AAJ-1							
1 MM PITCH (C	MPAC)	PACKAGE CODE:	5241	SHEET:	2				

Figure 39. 324 BGA package mechanical drawing (part 2)