

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2331-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

PIC18LF2431

- PIC18F2331 PIC18LF2331
- PIC18F2431
- PIC18F4331 PIC18LF4331
- PIC18F4431 PIC18LF4431

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price, with the addition of high-endurance enhanced Flash program memory and a high-speed 10-bit A/D Converter. On top of these features, the PIC18F2331/2431/4331/4431 family introduces design enhancements that make these micro-controllers a logical choice for many high-performance, power control and motor control applications. These special peripherals include:

- 14-Bit Resolution Power Control PWM module (PCPWM) with Programmable Dead-Time Insertion
- Motion Feedback Module (MFM), including a 3-Channel Input Capture (IC) module and Quadrature Encoder Interface (QEI)
- High-Speed 10-Bit A/D Converter (HSADC)

The PCPWM can generate up to eight complementary PWM outputs with dead-band time insertion. Overdrive current is detected by off-chip analog comparators or the digital Fault inputs (FLTA, FLTB).

The MFM Quadrature Encoder Interface provides precise rotor position feedback and/or velocity measurement. The MFM 3x input capture or external interrupts can be used to detect the rotor state for electrically commutated motor applications using Hall sensor feedback, such as BLDC motor drives.

PIC18F2331/2431/4331/4431 devices also feature Flash program memory and an internal RC oscillator with built-in LP modes.

1.1 New Core Features

1.1.1 nanoWatt Technology

All of the devices in the PIC18F2331/2431/4331/4431 family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the Timer1 source or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- **Multiple Idle Modes:** The controller can also run with its CPU core disabled, but the peripherals are still active. In these states, power consumption can be reduced even further, to as little as 4% of normal operation requirements.

- On-the-Fly Mode Switching: The powermanaged modes are invoked by user code during operation, allowing the user to incorporate power-saving ideas into their application's software design.
- Lower Consumption in Key Modules: The power requirements for both Timer1 and the Watchdog Timer have been reduced by up to 80%, with typical values of 1.1 and 2.1 μ A, respectively.

1.1.2 MULTIPLE OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC18F2331/2431/4331/4431 family offer nine different oscillator options, allowing users a wide range of choices in developing application hardware. These include:

- Four Crystal modes, using crystals or ceramic resonators.
- Two External Clock modes, offering the option of using two pins (oscillator input and a divide-by-4 clock output) or one pin (oscillator input, with the second pin reassigned as general I/O).
- Two External RC Oscillator modes, with the same pin options as the External Clock modes.
- An internal oscillator block, which provides an 8 MHz clock and an INTRC source (approximately 31 kHz, stable over temperature and VDD), as well as a range of 6 user-selectable clock frequencies (from 125 kHz to 4 MHz) for a total of 8 clock frequencies.
- A Phase Lock Loop (PLL) frequency multiplier, available to both the High-Speed Crystal and Internal Oscillator modes, which allows clock speeds of up to 40 MHz. Used with the internal oscillator, the PLL gives users a complete selection of clock speeds, from 31 kHz to 32 MHz – all without using an external crystal or clock circuit.
- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the internal oscillator. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued low-speed operation or a safe application shutdown.
- **Two-Speed Start-up:** This option allows the internal oscillator to serve as the clock source from Power-on Reset, or wake-up from Sleep mode, until the primary clock source is available.

6.5.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 6-1 and Table 6-2.

The SFRs can be classified into two sets: those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature.

The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations will be unimplemented and read as '0's.

TABLE 6-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F2331/2431/4331/4431 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1	F7Fh	PTCON0
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	CCPR1L	F9Eh	PIR1	F7Eh	PTCON1
FFDh	TOSL	FDDh	POSTDEC2(1)	FBDh	CCP1CON	F9Dh	PIE1	F7Dh	PTMRL
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	(2)	F7Ch	PTMRH
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR2L	F9Bh	OSCTUNE	F7Bh	PTPERL
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	ADCON3	F7Ah	PTPERH
FF9h	PCL	FD9h	FSR2L	FB9h	ANSEL1	F99h	ADCHS	F79h	PDC0L
FF8h	TBLPTRU	FD8h	STATUS	FB8h	ANSEL0	F98h	(2)	F78h	PDC0H
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	T5CON	F97h	(2)	F77h	PDC1L
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	QEICON	F96h	TRISE ⁽³⁾	F76h	PDC1H
FF5h	TABLAT	FD5h	T0CON	FB5h	(2)	F95h	TRISD ⁽³⁾	F75h	PDC2L
FF4h	PRODH	FD4h	(2)	FB4h	(2)	F94h	TRISC	F74h	PDC2H
FF3h	PRODL	FD3h	OSCCON	FB3h	(2)	F93h	TRISB	F73h	PDC3L ⁽³⁾
FF2h	INTCON	FD2h	LVDCON	FB2h	(2)	F92h	TRISA	F72h	PDC3H ⁽³⁾
FF1h	INTCON2	FD1h	WDTCON	FB1h	_(2)	F91h	PR5H	F71h	SEVTCMPL
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	PR5L	F70h	SEVTCMPH
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	(2)	F6Fh	PWMCON0
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	(2)	F6Eh	PWMCON1
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽³⁾	F6Dh	DTCON
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽³⁾	F6Ch	FLTCONFIG
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC	F6Bh	OVDCOND
FEAh	FSR0H	FCAh	T2CON	FAAh	BAUDCON	F8Ah	LATB	F6Ah	OVDCONS
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA	F69h	CAP1BUFH
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	TMR5H	F68h	CAP1BUFL
FE7h	INDF1 ⁽¹⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	TMR5L	F67h	CAP2BUFH
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSPCON	FA6h	EECON1	F86h	(2)	F66h	CAP2BUFL
FE5h	POSTDEC1 ⁽¹⁾	FC5h	(2)	FA5h	IPR3	F85h	(2)	F65h	CAP3BUFH
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE	F64h	CAP3BUFL
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD ⁽³⁾	F63h	CAP1CON
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	CAP2CON
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	CAP3CON
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA	F60h	DFLTCON

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on 28-pin devices.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	PTIF	IC3DRIF	IC2QEIF	IC1IF	TMR5IF
bit 7							bit (
Legend:							
R = Reada		W = Writable		•	nented bit, read		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 7-5	Unimpleme	nted: Read as '	0'				
bit 4	•	Time Base Inter					
		me base match	•	n the PTPER re	egisters. Interru	pt is issued a	ccording to th
	postsca	ler settings. PTI	F must be clea	ared in software			0
	0 = PWM tir	ne base has no	t matched the	value in the PTI	PER registers		
bit 3	IC3DRIF: IC	3 Interrupt Flag	Direction Cha	nge Interrupt Fla	ag bit		
		(CAP3CON<3:					
		alue was captui apture has not o		ve edge on CAF	² 3 input (must t	be cleared in s	oftware)
		apture nas not (1 (QEIM<2:0>):	Julieu				
		n of rotation has	s changed (mu	st be cleared in	software)		
		n of rotation has			,		
bit 2	IC2QEIF: IC	2 Interrupt Flag	/QEI Interrupt	Flag bit			
		(CAP2CON<3:					
		alue was captur apture has not o		ve edge on CAF	2 input (must t	be cleared in s	oftware)
		<u>I (QEIM<2:0>):</u>					
		I position count					
		d. Depends on t I position count					
	detected						
bit 1	IC1 Enabled	(CAP1CON<3:	0>):				
	1 = TMR5 v	alue was captu	red by the activ	ve edge on CAF	P1 input (must b	e cleared in s	oftware)
		apture has not					
		<u>(QEIM<2:0>), ∖</u>					
		value was captu be set in CAP1					out). CAP1REI
		value was not c				are.	
h :+ 0	TMR5IF: Tin				- 3-		
bit 0							
DIEU		time base matcl	-	alue (must be cl	eared in softwa	are)	

REGISTER 10-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RB0/PWM0	RB0	0	0	DIG	LATB<0> data output; not affected by analog input.
		1	I	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input is enabled.
	PWM0	0	0	DIG	PWM Output 0.
RB1/PWM1	RB1	0	0	DIG	LATB<1> data output; not affected by analog input.
		1	Ι	TTL	PORTB<1> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input is enabled.
	PWM1	0	0	DIG	PWM Output 1.
RB2/PWM2	RB2	0	0	DIG	LATB<2> data output; not affected by analog input.
		1	Ι	TTL	PORTB<2> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input is enabled.
	PWM2	0	0	DIG	PWM Output 2.
RB3/PWM3	RB3	0	0	DIG	LATB<3> data output; not affected by analog input.
		1	Ι	TTL	PORTB<3> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input is enabled.
	PWM3	0	0	DIG	PWM Output 3.
RB4/KBI0/PWM5	RB4	0	0	DIG	LATB<4> data output; not affected by analog input.
RB4/KBI0/PWM5		1	Ι	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input is enabled.
	KBI0	1	Ι	TTL	Interrupt-on-change pin.
	PWM5	0	0	DIG	PWM Output 5.
RB5/KBI1/	RB5	0	0	DIG	LATB<5> data output.
PWM4/PGM		1	Ι	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.
	KBI1	1	Ι	TTL	Interrupt-on-change pin.
	PWM4 ⁽³⁾	0	0	DIG	PWM Output 4; takes priority over port data.
	PGM ⁽²⁾	х	I	ST	Single-Supply Programming mode entry (ICSP™). Enabled by LVP Configuration bit; all other pin functions are disabled.
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.
		1	Ι	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.
	KBI2	1	I	TTL	Interrupt-on-change pin.
	PGC	x	Ι	ST	Serial execution (ICSP™) clock input for ICSP and ICD operation. ⁽¹⁾
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.
		1	Ι	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.
	KBI3	1	I	TTL	Interrupt-on-change pin.
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operation. ⁽¹⁾
		x	Ι	ST	Serial execution data input for ICSP and ICD operation. ⁽¹⁾

TABLE 11-3: PORTB I/O SUMMARY

Legend:DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;
x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

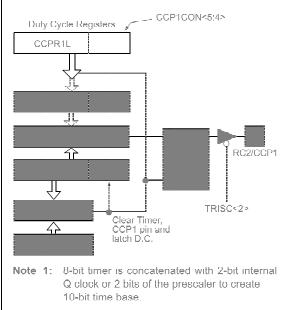
Note 1: All other pin functions are disabled when ICSP or ICD is enabled.

2: Single-Supply Programming must be enabled.

3: RD5 is the alternate pin for PWM4.

NOTES:

16.5 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.


Figure 16-3 shows a simplified block diagram of the CCP1 module in PWM mode.

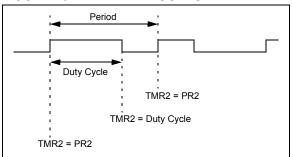

For a step-by-step procedure on how to set up the CCP1 module for PWM operation, see Section 16.5.3 "Setup for PWM Operation".

FIGURE 16-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 16-4) has a time base (period) and a time that the output is high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

16.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation:

EQUATION 16-1:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- · TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 14.0									
	"Timer2 Module") is not used in the									
	determination of the PWM frequency. The									
	postscaler could be used to have a servo									
	update rate at a different frequency than									
	the PWM output.									

16.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation:

EQUATION 16-2:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
SEVOPS3	SEVOPS2	SEVOPS1	SEVOPS0	SEVTDIR	—	UDIS	OSYNC
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7-4	SEVOPS<3:0 0000 = 1:1 P 0001 = 1:2 P	ostscale ostscale	n Event mgge	r Output Postsc			
bit 3	1 = A Special	••	will occur wher	e Direction bit I the PWM time I the PWM time		•	
bit 2	Unimplement	ted: Read as '0	,				
bit 1	UDIS: PWM L	Jpdate Disable	bit				
	•			uffer registers a uffer registers a			
bit 0	OSYNC: PWN	/ Output Overri	de Synchroniz	ation bit			
			0	ster are synchro ster are asynch		WM time base	

REGISTER 18-4: PWMCON1: PWM CONTROL REGISTER 1

18.3.1 FREE-RUNNING MODE

In the Free-Running mode, the PWM Time Base registers (PTMRL and PTMRH) will begin counting upwards until the value in the PWM Time Base Period register, PTPER (PTPERL and PTPERH), is matched. The PTMR registers will be reset on the following input clock edge and the time base will continue counting upwards as long as the PTEN bit remains set.

18.3.2 SINGLE-SHOT MODE

In the Single-Shot mode, the PWM time base will begin counting upwards when the PTEN bit is set. When the value in the PTMR register matches the PTPER register, the PTMR register will be reset on the following input clock edge and the PTEN bit will be cleared by the hardware to halt the time base.

18.3.3 CONTINUOUS UP/DOWN COUNT MODES

In Continuous Up/Down Count modes, the PWM time base counts upwards until the value in the PTPER register matches with the PTMR register. On the following input clock edge, the timer counts downwards. The PTDIR bit in the PTCON1 register is read-only and indicates the counting direction. The PTDIR bit is set when the timer counts downwards. Note: Since the PWM compare outputs are driven to the active state when the PWM time base is counting downwards and matches the duty cycle value, the PWM outputs are held inactive during the first half of the first period of the Continuous Up/Down Count mode until PTMR begins to count down from the PTPER value.

18.3.4 PWM TIME BASE PRESCALER

The input clock to PTMR (Fosc/4) has prescaler options of 1:1, 1:4, 1:16 or 1:64. These are selected by control bits, PTCKPS<1:0>, in the PTCON0 register. The prescaler counter is cleared when any of the following occurs:

- · Write to the PTMR register
- Write to the PTCON (PTCON0 or PTCON1)
 register
- Any device Reset

Note: The PTMR register is not cleared when PTCONx is written.

19.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

19.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

An overview of I²C operations and additional information on the SSP module can be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

Refer to application note AN578, "Use of the SSP Module in the I^2C^{TM} Multi-Master Environment" (DS00578).

19.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module. Additional information on the SPI module can be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- · Serial Data Out (SDO)
- · Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

• Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON (SSPCON<5:0>) and SSPSTAT<7:6> registers. These control bits allow the following to be specified:

- · Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock polarity (Idle state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- Clock rate (Master mode only)
- Slave Select mode (Slave mode only)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7	•		•	·			bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	SPEN: Serial	Port Enable bi	t				
	1 = Serial por 0 = Serial por						
bit 6	RX9: 9-Bit Re	ceive Enable b	bit				
	1 = Selects 9 0 = Selects 8	•					
bit 5	SREN: Single	Receive Enab	ole bit				
	<u>Asynchronous</u> Don't care.	<u>s mode</u> :					
	1 = Enables s 0 = Disables	<u>mode – Maste</u> single receive single receive ared after recej		ete.			
		mode – Slave:	-				
bit 4	CREN: Contir	nuous Receive	Enable bit				
	Asynchronous						
	1 = Enables r						
	0 = Disables Synchronous						
	1 = Enables			le bit, CREN, is	cleared (CREI	N overrides SR	EN)
bit 3	ADDEN: Add	ress Detect En	able bit				
	1 = Enables a 0 = Disables		ion, enables ir tion, all bytes a	nterrupt and load			
bit 2	FERR: Framir	na Error bit					
		error (can be c	leared by reac	ling RCREGx re	gister and rece	eiving next valio	l byte)
bit 1	OERR: Overr	0					
		error (can be c	leared by clea	ring bit, CREN)			
bit 0		of Received D	ata				
	<u> </u>	ddress/data bit					

20.3.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RX/DT line, while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX/DT is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 20-7), and asynchronously if the device is in Sleep mode (Figure 20-8). The interrupt condition is cleared by reading the RCREG register.

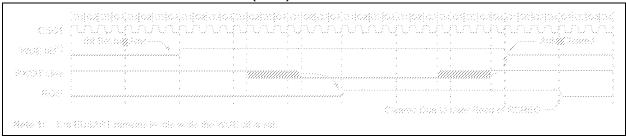
The WUE bit is automatically cleared once a low-tohigh transition is observed on the RX line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

20.3.4.1 Special Considerations Using Auto-Wake-up

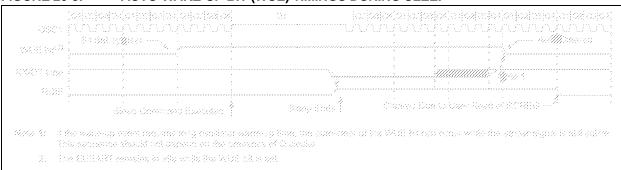
Since Auto-Wake-up functions by sensing rising edge transitions on RX/DT, information with any state changes before the Stop bit may signal a false end-of-character

and cause data or framing errors. To work properly, therefore, the initial characters in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices, or 000h (12 bits) for LIN/J2602 bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or Wake-up Signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.


20.3.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared after this when a rising edge is seen on RX/ DT. The interrupt condition is then cleared by reading the RCREG register. Ordinarily, the data in RCREG will be dummy data and should be discarded.


The fact that the WUE bit has been cleared (or is still set), and the RCIF flag is set, should not be used as an indicator of the integrity of the data in RCREG. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 20-7: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

FIGURE 20-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

21.4 A/D Voltage References

If external voltage references are used instead of the internal AVDD and AVSS sources, the source impedance of the VREF+ and VREF- voltage sources must be considered. During acquisition, currents supplied by these sources are insignificant. However, during conversion, the A/D module sinks and sources current through the reference sources.

In order to maintain the A/D accuracy, the voltage reference source impedances should be kept low to reduce voltage changes. These voltage changes occur as reference currents flow through the reference source impedance.

Note: When using external references, the source impedance of the external voltage references must be less than 75Ω in order to achieve the specified ADC resolution. A higher reference source impedance will increase the ADC offset and gain errors. Resistive voltage dividers will not provide a low enough source impedance. To ensure the best possible ADC performance, external VREF inputs should be buffered with an op amp or other low-impedance circuit.

21.5 Selecting and Configuring Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time an A/D conversion is triggered.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and the start of conversion. This occurs when the ACQT<3:0> bits (ADCON2<6:3>) remain in their Reset state ('0000'). If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When triggered, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and triggering the A/D. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

21.6 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are eight possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator
- Internal RC Oscillator/4

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD (approximately 416 ns, see parameter A11 for more information).

Table 21-2 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

AD Clock Sc	ource (TAD)	Maximum Device Frequency				
Operation	peration ADCS<2:0> P		PIC18LFXX31 ⁽⁴⁾			
2 Tosc	000	4.8 MHz	666 kHz			
4 Tosc	100	9.6 MHz	1.33 MHz			
8 Tosc	001	19.2 MHz	2.66 MHz			
16 Tosc	101	38.4 MHz	5.33 MHz			
32 Tosc	010	40.0 MHz	10.65 MHz			
64 Tosc	110	40.0 MHz	21.33 MHz			
RC/4 ⁽³⁾	011	1.00 MHz ⁽¹⁾	1.00 MHz ⁽²⁾			
RC ⁽³⁾	111	4.0 MHz ⁽²⁾	4.0 MHz ⁽²⁾			

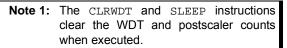
TABLE 21-2: TAD VS. DEVICE OPERATING FREQUENCIES

Note 1: The RC source has a typical TAD time of 2-6 μ s.

2: The RC source has a typical TAD time of 0.5-1.5 μs.

3: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D accuracy may be out of specification unless in Single-Shot mode.

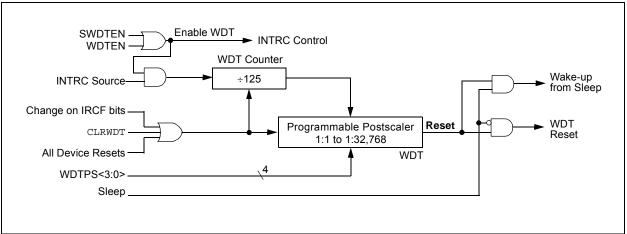
4: Low-power devices only.


23.2 Watchdog Timer (WDT)

For PIC18F2331/2431/4331/4431 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H (see Register 23-3). Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: execute a SLEEP or CLRWDT instruction, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred (see Section 23.4.1 "FSCM and the Watchdog Timer").

Adjustments to the internal oscillator clock period using the OSCTUNE register also affect the period of the WDT by the same factor. For example, if the INTRC period is increased by 3%, then the WDT period is increased by 3%.


FIGURE 23-1: WDT BLOCK DIAGRAM

- Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
- **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.
- 4: If WINEN = 0, then CLRWDT must be executed only when WDTW = 1; otherwise, a device Reset will result.

23.2.1 CONTROL REGISTER

Register 23-15 shows the WDTCON register. This is a readable and writable register. The SWDTEN bit allows software to enable or disable the WDT, but only if the Configuration bit has disabled the WDT. The WDTW bit is a read-only bit that indicates when the WDT count is in the fourth quadrant (i.e., when the 8-bit WDT value is b'11000000' or greater).

TABLE 24-1: OPCODE FIELD DESCRIPTIONS

Field	Description							
a	RAM access bit:							
	a = 0: RAM location in Access RAM (BSR register is ignored)							
	a = 1: RAM bank is specified by BSR register							
bbb	Bit address within an 8-bit file register (0 to 7).							
BSR	Bank Select Register. Used to select the current RAM bank.							
d	Destination select bit:							
	d = 0: store result in WREG d = 1: store result in file register f							
J t.								
dest	Destination either the WREG register or the specified register file locations. 8-bit register file address (0x00 to 0xFF).							
f								
fs	12-bit register file address (0x000 to 0xFFF). This is the source address.							
fd	12-bit register file address (0x000 to 0xFFF). This is the destination address.							
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).							
label	Label name.							
mm	The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions:							
*	No Change to register (such as TBLPTR with table reads and writes).							
*+	Post-Increment register (such as TBLPTR with table reads and writes).							
*_	Post-Decrement register (such as TBLPTR with table reads and writes).							
+*								
	Pre-Increment register (such as TBLPTR with table reads and writes).							
n	The relative address (2's complement number) for relative branch instructions, or the direct address for Call/Branch and Return instructions.							
PRODH	Product of Multiply High Byte.							
PRODL	Product of Multiply Low Byte.							
s	Fast Call/Return Mode Select bit:							
2	s = 0: do not update into/from Shadow registers							
	s = 1: certain registers loaded into/from shadow registers (Fast mode)							
u	Unused or Unchanged.							
WREG	Working register (accumulator).							
x	Don't care ('0' or '1').							
	The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all							
	Microchip software tools.							
TBLPTR	21-bit Table Pointer (points to a Program Memory location).							
TABLAT	8-bit Table Latch.							
TOS	Top-of-Stack.							
PC	Program Counter.							
PCL	Program Counter Low Byte.							
PCH	Program Counter High Byte.							
PCLATH	Program Counter High Byte Latch.							
PCLATU	Program Counter Upper Byte Latch.							
GIE	Global Interrupt Enable bit.							
WDT	Watchdog Timer.							
TO	Time-out bit.							
PD	Power-Down bit.							
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.							
[]	Optional.							
()	Contents.							
\rightarrow	Assigned to.							
< >	Register bit field.							
E	In the set of.							
italics	User-defined term (font is Courier New).							

Mnemonic,				16-1	Bit Instr	uction V	Vord	Status	
Operands		Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPER	ATIONS		•				·	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	C, DC	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	_	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP	_	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

LFS	R	Load FSR	ł		MO	/F	Move f				
Synta	ax:	[label] L	FSR f,k		Synta	ax:	[label] M	[<i>label</i>] MOVF f [,d [,a]]			
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	5		Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$	d ∈ [0,1]			
Oper	ation:	$k \rightarrow FSRf$	$k \rightarrow FSRf$			-ti	a ∈ [0,1]				
Statu	s Affected:	None				ation:	$f \rightarrow dest$				
Enco	ding:	1110 1111	11			s Affected: ding:	N, Z	00da	ffff	ffff	
Desc	ription:		iteral 'k' is loa egister pointeo		Desc	ription:	The content to a destina	•			
Word	s:	2					status of 'd'		,		
Cycle	es:	2					placed in W placed back				
QC	ycle Activity:						can be any	where in th	ne 256-b	yte bank.	
	Q1	Q2	Q3	Q4			If 'a' is '0', t				
	Decode	Read literal Process Write 'k' MSB Data literal 'k' MSB to FSRfH			selected, overriding the BSR value. If 'a' = 1, then the bank will be selected a per the BSR value.						
	Decode	Read literal	Process	Write literal	Word	ls:	1				
		ʻk' LSB	Data	'k' to FSRfL	Cycle	es:	1				
_					QC	ycle Activity:					
Exan		LFSR 2,	0x3AB			Q1	Q2	Q3		Q4	
	After Instruction FSR2H FSR2L	on = 0xi = 0xi				Decode	Read register 'f'	Process Data	6	Write W	
					Exan	nple:	MOVF RI	EG, W			
						Before Instruc REG W	tion = 0x2 = 0x1				
						After Instructio REG W	on = 0x2 = 0x2				

RETF	E	Return fro	om Interrupt	:
Syntax	:	[label] R	ETFIE [s]	
Operar	nds:	$s \in [0,1]$		
Operati	ion:	if s = 1: (WS) \rightarrow W, (STATUSS) (BSRS) \rightarrow	$\stackrel{\text{IEH or PEIE/G}}{\to} \text{STATUS},$	
Status	Affected:	GIE/GIEH,	PEIE/GIEL.	
Encodi	ng:	0000	0000 000	000s
Description:		and Top-of- the PC. Inte setting eithe global intern contents of STATUSS a their corres STATUS an	n interrupt. Sta Stack (TOS) is errupts are ena- er the high or I rupt enable bit the shadow re and BSRS, are ponding regist of BSR. If 's' = gisters occurs.	s loaded into abled by ow-priority . If 's' = 1, the egisters, WS, e loaded into ers, W,
Words:		1		
Cycles:	:	2		
Q Cyc	le Activity:			
	Q1	Q2	Q3	Q4
	Decode	No operation	No operation	POP PC from stack Set GIEH or GIEL
	No	No	No	No
	operation	operation	operation	operation
<u>Examp</u> Af	ter Interrupt PC W BSR STATUS	RETFIE	= TOS = WS = BSRS = STATL = 1	JSS

		Return Literal to W						
Syntax:	[<i>label</i>] R	[<i>label</i>] RETLW k						
Operands:	$0 \le k \le 255$							
Operation:		$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged						
Status Affected:	None							
Encoding:	0000	1100	kkkk	kkkk				
Description:	program co of the stack	W is loaded with the 8-bit literal, 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.						
Words:	1							
Cycles:	2							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'	Process Data	fror	OP PC n stack, ite to W				
No	No	No		No				
operation	operation	operatio	n op	eration				
Example: CALL TABLE	; W contai ; offset v ; W now ha	value	e					
:								
TABLE								
ADDWF PCL		; W = offset						
RETLW k0	; Begin ta	elda						
RETLW k1 :	i							
•								
•								

Before Instru		
W	=	0x07
After Instruct		
W	=	value of kn

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2331/2431/4331/4431 (Industrial, Extended) PIC18LF2331/2431/4331/4431 (Industrial) (Continued)

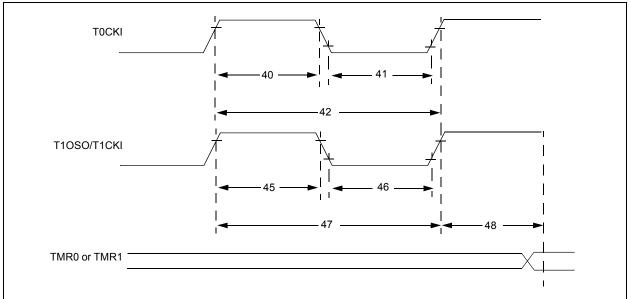
PIC18LF2331/2431/4331/4431 (Industrial) PIC18F2331/2431/4331/4431 (Industrial, Extended)				ing temp		s (unless otherwise $10^{\circ}C \le TA \le +85^{\circ}C$ for			
				ing temp	erature -4	s (unless otherwise $10^{\circ}C \le TA \le +85^{\circ}C$ for $10^{\circ}C \le TA \le +125^{\circ}C$ for	industrial		
Param No.	Device	Тур	Max	Max Units Conditions					
	Supply Current (IDD) ^(2,3)								
	PIC18LF2X31/4X31	5.1	9	μA	-10°C				
		5.8	9	μA	+25°C	VDD = 2.0V			
		7.9	11	μA	+70°C				
	PIC18LF2X31/4X31	7.9	12	μA	-10°C		(4)		
		8.9	12	μA	+25°C	VDD = 3.0V	Fosc = 32 kHz ⁽⁴⁾ (SEC_RUN mode,		
		10.5	14	μA	+70°C		Timer1 as clock)		
	All devices	12.5	20	μA	-10°C				
		16.3	20	μA	+25°C	VDD = 5.0V			
		18.9	25	μA	+70°C				
		150	850	μA	+125°C				
	PIC18LF2X31/4X31	9.2	15	μA	-10°C				
		9.6	15	μA	+25°C	VDD = 2.0V			
		12.7	18	μA	+70°C				
	PIC18LF2X31/4X31	22.0	30	μA	-10°C	_	Fosc = 32 kHz ⁽⁴⁾		
		21.0	30	μΑ	+25°C	VDD = 3.0V	(SEC_IDLE mode,		
		20.0	35	μA	+70°C		Timer1 as clock)		
	All devices 30 80 µA -10°C	4							
		45	80	μA	+25°C	VDD = 5.0V			
		45	85	μA	+70°C				
		250	850	μA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

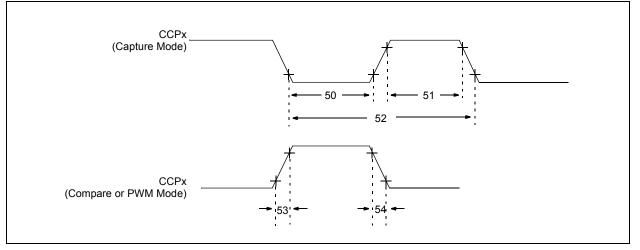


TABLE 26-9 :	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
---------------------	---

Param No.	Symbol		Characteristi	C	Min	Мах	Units	Conditions
40	Tt0H	T0CKI High	Pulse Width	No prescaler	0.5 Tcy + 20	_	ns	VDD = 2V
				With prescaler	10	_	ns	
41	Tt0L	T0CKI Low F	Pulse Width	No prescaler	0.5 Tcy + 20	_	ns	
				With prescaler	10		ns	
42	Tt0P	T0CKI Perio	d	No prescaler	Tcy + 10	_	ns	
				With prescaler	Greater of: 20 ns or <u>TCY + 40</u> N	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T1CKI High	Synchronous, no	prescaler	0.5 TCY + 20	_	ns	
		Time	Synchronous, with prescaler	PIC18FXX31	10	_	ns	
				PIC18LFXX31	25	_	ns	
			Asynchronous	PIC18FXX31	30		ns]
				PIC18LFXX31	50		ns	
46	Tt1L	T1CKI	Synchronous, no	prescaler	0.5 TCY + 5		ns	
		Low Time	Synchronous, with prescaler	PIC18FXX31	10		ns	
				PIC18LFXX31	25		ns	
			Asynchronous	PIC18FXX31	30	_	ns	
				PIC18LFXX31	50		ns	
47 Tt1P	Tt1P	Tt1P T1CKI Input Period	Synchronous		Greater of: 20 ns or <u>Tcy + 40</u> N	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60		ns	
	Ft1	T1CKI Oscill	ator Input Frequency Range		DC	50	kHz	
48	Tcke2tmrl	Delay from E Timer Increm	External T1CKI Clo nent	ock Edge to	2 Tosc	7 Tosc	_	

FIGURE 26-10: CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)

TABLE 26-10: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

Param No.	Symbol	Characteristic			Min	Мах	Units	Conditions
50	TccL	CCPx Input Low	No prescal	er	0.5 Tcy + 20	_	ns	
		Time	With	PIC18FXX31	10	_	ns	
			prescaler	PIC18LFXX31	20	_	ns	
51	ТссН	CCPx Input High	No prescaler		0.5 Tcy + 20	_	ns	
		Time	With prescaler	PIC18FXX31	10	_	ns	
				PIC18LFXX31	20	_	ns	
52	TccP	CCPx Input Period			<u>3 Tcy + 40</u> N	_	ns	N = prescale value (1, 4 or 16)
53	TccR	CCPx Output Fall	l Time	PIC18FXX31	—	25	ns	
				PIC18LFXX31	—	45	ns	
54	TccF	TccF CCPx Output Fal	l Time	PIC18FXX31	—	25	ns	
				PIC18LFXX31	—	45	ns	

Run Modes	40
PRI_RUN	40
RC_RUN	
SEC_RUN	
Selecting	
Sleep Mode	
Summary (table)	
Power-on Reset (POR)	
Power-up Delays	
Power-up Timer (PWRT)	
Prescaler, Timer0	
Assignment (PSA Bit)	
Rate Select (T0PS2:T0PS0 Bits)	
Prescaler, Timer2	
PRI_IDLE Mode	
PRI_RUN Mode	
Program Counter (PC)	62
Program Memory	
Instructions	
Two-Word	
Interrupt Vector	61
Map and Stack	
PIC18F2331/4331	
PIC18F2431/4431	
Reset Vector	
Program Verification	279
Pulse-Width Modulation. See PWM (CCP Module).	240
PUSH	
PUSH and POP Instructions	
PWM	202
Associated Registers	
Complementary Operation	
Control Registers	
Dead-Time Generators	
Duty Cycle	
Center-Aligned	
Comparison	
Edge-Aligned	
Register Buffers	
Registers	
Fault Inputs	
Functionality Modes	176
	100
Continuous Up/Down Count	
Free-Running Single-Shot	
Output and Polarity Control	
Output and Polarity Control	
Single-Pulse Operation	
Special Event Trigger	
Time Base	
Interrupts	
Continuous Up/Down	101
Count Mode	182
Double Update Mode	
Free-Running Mode	
Single-Shot Mode	
Postscaler	
Prescaler	
Update Lockout	
Opuale Luchoul	202

PWM (CCP Module)					
Associated Registers	. 150				
CCPR1H:CCPR1L Registers	. 149				
Duty Cycle	. 149				
Example Frequencies/Resolutions	. 150				
Period	. 149				
PR2 Register, Writing	. 149				
Setup for PWM Operation	. 150				
TMR2 to PR2 Match 136	, 149				
PWM Period	. 185				
Q					
Q Clock	150				
QEI	. 150				
and IC Shared Interrupts	. 170				
Configuration	. 162				
Direction of Rotation	. 163				
Interrupts					
Operation	. 163				
Operation in Sleep Mode	. 170				
3x Input Capture	. 170				
Sampling Modes					
Velocity Measurement	. 167				
Quadrature Encoder Interface (QEI)	161				

R

R/W Bit	. 206, 213, 214, 215
RAM. See Data Memory.	
RC Oscillator	
RCIO Oscillator Mode	
RC_IDLE Mode	
RC_RUN Mode	
RCALL	313
RCSTA Register	
SPEN Bit	217
Reader Response	388
Registers	
ADCHS (A/D Channel Select)	
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	
ADCON2 (A/D Control 2)	
ADCON3 (A/D Control 3)	
ANSEL0 (Analog Select 0)	
ANSEL1 (Analog Select 1)	
BAUDCON (Baud Rate Control)	
CAPxCON (Input Capture x Control)	
CCPxCON (CCPx Control)	
CONFIG1H (Configuration 1 High)	
CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	
CONFIG3H (Configuration 3 High)	
CONFIG3L (Configuration 3 Low)	
CONFIG4L (Configuration 4 Low)	
CONFIG5H (Configuration 5 High)	
CONFIG5L (Configuration 5 Low)	
CONFIG6H (Configuration 6 High)	
CONFIG6L (Configuration 6 Low)	
CONFIG7H (Configuration 7 High)	
CONFIG7L (Configuration 7 Low)	
DEVID1 (Device ID 1)	