

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2431-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 POWER-MANAGED MODES

PIC18F2331/2431/4331/4431 devices offer a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices).

There are three categories of power-managed modes:

- Run modes
- Idle modes
- Sleep mode

These categories define which portions of the device are clocked, and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source.

The power-managed modes include several powersaving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices, allowing the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC devices, where all device clocks are stopped.

4.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions: if the CPU is to be clocked or not and the selection of a clock source. The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS<1:0> bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 4-1.

4.1.1 CLOCK SOURCES

The SCS<1:0> bits allow the selection of one of three clock sources for power-managed modes. They are:

- the primary clock, as defined by the FOSC<3:0> Configuration bits
- the secondary clock (the Timer1 oscillator)
- the internal oscillator block (for RC modes)

4.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These are discussed in **Section 4.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

Mada	OSCCON Bits<7,1:0>		Module	Clocking	Available Cleak and Ossillator Source		
wode	IDLEN ⁽¹⁾	SCS<1:0>	CPU	Peripherals			
Sleep	0	N/A	Off	Off	None – All clocks are disabled		
PRI_RUN	N/A	00	Clocked	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC and Internal Oscillator Block. ⁽²⁾ This is the normal, full-power execution mode.		
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 Oscillator		
RC_RUN	N/A	1x	Clocked	Clocked	Internal Oscillator Block ⁽²⁾		
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC		
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator		
RC_IDLE	1	1x	Off	Clocked	Internal Oscillator Block ⁽²⁾		

TABLE 4-1: POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the **SLEEP** instruction is executed.

2: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.

TABLE 5-2:STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	0	0
RESET Instruction	0000h	00 uuuu	0	u	u	u	u	u	u
Brown-out	0000h	01 11u-	1	1	1	u	0	u	u
MCLR Reset during power-managed Run modes	0000h	0u luuu	u	1	u	u	u	u	u
MCLR Reset during power-managed Idle and Sleep modes	0000h	0u 10uu	u	1	0	u	u	u	u
WDT Time-out during full power or power-managed Run modes	0000h	0u 0uuu	u	0	u	u	u	u	u
MCLR Reset during full-power execution								u	u
Stack Full Reset (STVREN = 1)	0000h	0u uuuu	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)								u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	uu uuuu	u	u	u	u	u	u	1
WDT time-out during power-managed Idle or Sleep modes	PC + 2	uu 00uu	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2 ⁽¹⁾	uu u0uu	u	u	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (0x000008h or 0x000018h).

NOTES:

13.0 TIMER1 MODULE

The Timer1 timer/counter module has the following features:

- 16-bit timer/counter (two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (both registers)
- · Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP module Special Event Trigger
- Status of system clock operation

Figure 13-1 is a simplified block diagram of the Timer1 module.

Register 13-1 details the Timer1 Control register. This register controls the operating mode of the Timer1 module and contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

The Timer1 oscillator can be used as a secondary clock source in power-managed modes. When the T1RUN bit is set, the Timer1 oscillator provides the system clock. If the Fail-Safe Clock Monitor is enabled and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

										
Legend:										
R = Readable	e bit	W = Writable bit	U = Unimplemented bit,	read as '0'						
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	RD16: 16-Bit	Read/Write Mode Enable b	it							
	1 = Enables	register read/write of TImer	1 in one 16-bit operation							
	0 = Enables	register read/write of Timer	1 in two 8-bit operations							
bit 6	T1RUN: Timer1 System Clock Status bit									
	1 = Device clock is derived from Timer1 oscillator									
		lock is derived from anothe	source							
bit 5-4	T1CKPS<1:0	Interaction in the second s	cale Select bits							
	11 = 1:8 Prescale value									
	10 = 1.4 Fies									
	00 = 1:1 Pres	scale value								
bit 3	T1OSCEN: ⊺	imer1 Oscillator Enable bit								
	1 = Timer1 o	scillator is enabled								
	0 = Timer1 o	scillator is shut off								
	The oscillator	inverter and feedback resi	stor are turned off to eliminat	e power drain.						
bit 2	T1SYNC: Tim	ner1 External Clock Input S	ynchronization Select bit							
	When TMR10	<u>CS = 1 (External Clock):</u>								
	1 = Do not sy 0 = Synchron	nchronize external clock in ize external clock input	out							
	When TMR1	S = 0 (Internal Clock):								
	This bit is ign	ored. Timer1 uses the inter	nal clock when TMR1CS = 0	ı.						
bit 1	TMR1CS: Tin	ner1 Clock Source Select b	it							
	1 = External	clock from pin RC0/T1OSC	/T1CKI (on the rising edge)							
	0 = Internal o	clock (Fosc/4)								
bit 0	TMR1ON: Tir	mer1 On bit								
	1 = Enables	Timer1								
	0 = Stops Tir	ner1								

FIGURE 15-1: TIMER5 BLOCK DIAGRAM (16-BIT READ/WRITE MODE SHOWN)

15.1 Timer5 Operation

Timer5 combines two 8-bit registers to function as a 16-bit timer. The TMR5L register is the actual low byte of the timer; it can be read and written to directly. The high byte is contained in an unmapped register; it is read and written to through TMR5H, which serves as a buffer. Each register increments from 00h to FFh.

A second register pair, PR5H and PR5L, serves as the Period register; it sets the maximum count for the TMR5 register pair. When TMR5 reaches the value of PR5, the timer rolls over to 00h and sets the TMR5IF interrupt flag. A simplified block diagram of the Timer5 module is shown in Figure 2-1.

Note:	The	The Timer5 may be used as a general pur-						
	pose	e timer an	d as the time	base reso	ource to			
	the	Motion	Feedback	Module	(Input			
	Capt	Capture or Quadrature Encoder Interface).						

Timer5 supports three configurations:

- 16-Bit Synchronous Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

In Synchronous Timer configuration, the timer is clocked by the internal device clock. The optional Timer5 prescaler divides the input by 2, 4, 8 or not at all (1:1). The TMR5 register pair increments on Q1. Clearing TMR5CS (= 0) selects the internal device clock as the timer sampling clock.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54	
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	57	
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	57	
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	57	
TRISC	PORTC Data Direction Register									
TMR1L	Timer1 Register Low Byte									
TMR1H	Timer1 Register High Byte									
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	55	
CCPR1L	Capture/C	ompare/PWI	M Register	1 Low Byte					56	
CCPR1H	Capture/C	ompare/PWI	M Register	1 High Byte					56	
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	56	
CCPR2L	Capture/C	ompare/PWI	M Register	2 Low Byte					56	
CCPR2H	Capture/C	ompare/PWI	M Register	2 High Byte					56	
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	56	
PIR2	OSCFIF	_	_	EEIF	_	LVDIF	—	CCP2IF	57	
PIE2	OSCFIE	_	_	EEIE	—	LVDIE	—	CCP2IE	57	
IPR2	OSCFIP	—	_	EEIP	—	LVDIP	—	CCP2IP	57	

TABLE 16-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture, Compare and Timer1.

FIGURE 17-1: MOTION FEEDBACK MODULE BLOCK DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
SEVOPS3	SEVOPS2	SEVOPS1	SEVOPS0	SEVTDIR		UDIS	OSYNC		
bit 7			•			•	bit 0		
Legend:									
R = Readab	le bit	W = Writable	oit	U = Unimplem	nented bit, read	as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7-4	SEVOPS<3:0 0000 = 1:1 P 0001 = 1:2 P	 PWM Special ostscale ostscale Postscale 	al Event Trigge	r Output Postsc	ale Select bits				
bit 3	SEVTDIR: Sp 1 = A Specia 0 = A Specia	ecial Event Trig I Event Trigger I Event Trigger	ger Time Base will occur wher will occur wher	e Direction bit n the PWM time n the PWM time	e base is countii e base is countii	ng downwards ng upwards			
bit 2	Unimplemen	ted: Read as '0	3						
bit 1	UDIS: PWM L	Jpdate Disable	bit						
	 1 = Updates from Duty Cycle and Period Buffer registers are disabled 0 = Updates from Duty Cycle and Period Buffer registers are enabled 								
bit 0	OSYNC: PWI	M Output Overr	ide Synchroniz	ation bit					
	1 = Output ov 0 = Output ov	verrides via the verrides via the	OVDCON regi OVDCON regi	ster are synchr ster are asynch	onized to the P ironous	WM time base			

REGISTER 18-4: PWMCON1: PWM CONTROL REGISTER 1

18.3.1 FREE-RUNNING MODE

In the Free-Running mode, the PWM Time Base registers (PTMRL and PTMRH) will begin counting upwards until the value in the PWM Time Base Period register, PTPER (PTPERL and PTPERH), is matched. The PTMR registers will be reset on the following input clock edge and the time base will continue counting upwards as long as the PTEN bit remains set.

18.3.2 SINGLE-SHOT MODE

In the Single-Shot mode, the PWM time base will begin counting upwards when the PTEN bit is set. When the value in the PTMR register matches the PTPER register, the PTMR register will be reset on the following input clock edge and the PTEN bit will be cleared by the hardware to halt the time base.

18.3.3 CONTINUOUS UP/DOWN COUNT MODES

In Continuous Up/Down Count modes, the PWM time base counts upwards until the value in the PTPER register matches with the PTMR register. On the following input clock edge, the timer counts downwards. The PTDIR bit in the PTCON1 register is read-only and indicates the counting direction. The PTDIR bit is set when the timer counts downwards. Note: Since the PWM compare outputs are driven to the active state when the PWM time base is counting downwards and matches the duty cycle value, the PWM outputs are held inactive during the first half of the first period of the Continuous Up/Down Count mode until PTMR begins to count down from the PTPER value.

18.3.4 PWM TIME BASE PRESCALER

The input clock to PTMR (Fosc/4) has prescaler options of 1:1, 1:4, 1:16 or 1:64. These are selected by control bits, PTCKPS<1:0>, in the PTCON0 register. The prescaler counter is cleared when any of the following occurs:

- · Write to the PTMR register
- Write to the PTCON (PTCON0 or PTCON1)
 register
- Any device Reset

Note: The PTMR register is not cleared when PTCONx is written.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾				
bit 7							bit (
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	WCOL: Write	Collision Dete	ct bit								
	1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared										
	software)									
	0 = No collisi	ion									
bit 6	SSPOV: Rece	eive Overflow I	ndicator bit ⁽¹⁾								
	In SPI mode:										
	1 = A new by	te is received	while the SSP	BUF register is	still holding the	previous data.	In case				
	of overflo	w, the data in s	SSPSR is lost.	Overflow can c	only occur in Sl	ave mode. The	euser				
	must rea	d the SSPBUF,	even if only ti	ansmitting data	, to avoid settin	ng overflow. In	n) in				
	initiated t	ov writing to the	SSPBUF red	ister	ew reception (a		11) 15				
	0 = No overflow										
	In l ² C™ mod	e:									
	1 = A byte is	received while	the SSPBUF	register is still h	olding the prev	ious byte. SSF	VOV				
	is a "don	't care" in Trans	smit mode. SS	POV must be c	leared in softwa	are in either mo	ode.				
	0 = No overfl	ow		(2)							
bit 5	SSPEN: Sync	chronous Seria	Port Enable b	Dit ⁽²⁾							
	In SPI mode:										
	1 = Enables serial port and configures SCK, SDO and SDI as serial port pins										
	0 = Disables serial port and configures these pins as I/O port pins										
	$ln l^2C mode:$	he corial port a	nd configuros	the SDA and S	CL ning og ogri	al part pipa					
	1 = Disables	serial port and	configures the	se nins as I/O r	ort nins	ai port pins					
	In both mode	s. when enable	d. these pins i	must be properl	v configured as	input or outpu	ıt.				
bit 4	CKP: Clock F	Polarity Select b	oit		,						
	In SPI mode:	,									
	1 = Idle state	for clock is a h	igh level								
	0 = Idle state	for clock is a lo	w level								
	In I ² C mode:										
	SCK release	control.									
	1 = Enables of	clock									
	0 = Holds clo	CK IOW (CIOCK SI	retch). (Used	to ensure data s	setup time.)						
Note 1: In	Master mode, the SSF	the overflow bit PBUF register	is not set sind	ce each new rec	eption (and tra	nsmission) is ii	nitiated by				
				<i>.</i>							

- **2:** When enabled, these pins must be properly configured as inputs or outputs.
- **3:** Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>), must be set. To reset or reconfigure SPI mode, clear bit SSPEN, reinitialize the SSPCON register and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- Serial Data Out (SDO) RC7/RX/DT/SDO or RD1/SDO
- SDI must have TRISC<4> or TRISD<2> set
- SDO must have TRISC<7> or TRISD<1> cleared
- SCK (Master mode) must have TRISC<5> or TRISD<3> cleared
- SCK (Slave mode) must have TRISC<5> or TRISD<3> set
- SS must have TRISA<6> set
 - Note 1: When the SPI is in Slave mode, with the SS pin control enabled, (SSPCON<3:0> = 0100), the SPI module will reset if the SS pin is set to VDD.
 - **2:** If the SPI is used in Slave mode with CKE = 1, then the \overline{SS} pin control must be enabled.
 - 3: When the SPI is in Slave mode with SS pin control enabled (SSPCON<3:0> = 0100), the state of the SS pin can affect the state read back from the TRISC<6> bit. The peripheral OE signal from the SSP module into PORTC controls the state that is read back from the TRISC<6> bit (see Section 11.3 "PORTC, TRISC and LATC Registers" for information on PORTC). If Read-Modify-Write instructions, such as BSF, are performed on the TRISC register while the SS pin is high, this will cause the TRISC<6> bit to be set, thus disabling the SDO output.

FIGURE 19-3: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)

20.5.2 EUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep, or any Idle mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this Low-Power mode. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the chip from Low-Power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit, RCIE.
- 3. If 9-bit reception is desired, set bit, RX9.
- 4. To enable reception, set enable bit, CREN.
- 5. Flag bit, RCIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCIE, was set.
- 6. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit, CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	57
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	57
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	57
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	56
RCREG	EUSART Re	ceive Registe	er						56
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	56
BAUDCON	—	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	56
SPBRGH	EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART Ba	ud Rate Gene	erator Regi	ster Low I	Byte				56

TABLE 20-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

22.4 LVD Start-up Time

The internal reference voltage of the LVD module, specified in electrical specification Parameter D420, may be used by other internal circuitry, such as the Programmable Brown-out Reset. If the LVD, or other circuits using the voltage reference, are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification Parameter 36.

The LVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (refer to Figure 22-2).

CLR	F	Clear f			CI	RWDT	Clear Wa	Clear Watchdog Timer			
Synta	ax:	[label] CL	RF f[,a]		Sy	ntax:	[label] C	LRWDT			
Oper	ands:	$0 \leq f \leq 255$			Op	erands:	None	None			
Oper	ation:	$a \in [0,1]$ 000h \rightarrow f, 1 \rightarrow Z			Op	eration:	$\begin{array}{l} 000h \rightarrow WDT, \\ 000h \rightarrow WDT \text{ postscaler,} \\ 1 \rightarrow \overline{TO}, \end{array}$		ır,		
Statu	Status Affected: Z				$1 \rightarrow PD$						
Enco	oding:	0110 101a ffff ffff		Sta	atus Affected:	TO, PD	TO, PD				
Desc	ription:	Clears the contents of the specified reg-		En En	coding:	0000	0000 0	000 0100			
		ister. If 'a' is selected, ov 'a' = 1, then per the BSF	6 '0', the Acces verriding the B I the bank will t R value.	s Bank will be SR value. If be selected as	De	Description:		CLRWDT instruction resets the Watchdog Timer. It also resets the post- scaler of the WDT. Status bits \overline{TO} and \overline{PD} are set.			
Word	ls:	1			We	ords:	1				
Cycle	es:	1			Су	cles:	1				
QC	ycle Activity:				Q	Cycle Activity:					
	Q1	Q2	Q3	Q4	1	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process Data	Write register 'f'		Decode	No operation	Process Data	No operation		
Exan	nple:	CLRF	FLAG_REG	ł	Ex	ample:	CLRWDT				
	Before Instruction FLAG_REG = 0x5A				Before Instrue WDT Co	ction ounter =	?				
After Instruction FLAG_REG = 0x00				After Instructi WDT Co WDT Po TO PD	on ounter = ostscaler = = =	0x00 0 1 1					

<u>,</u>	=	1
)	=	1

RLNCF	Rotate L	Rotate Left f (No Carry)						
Syntax:	[label]	RLNCF	f [,d [,a]]				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	i						
Operation:	$(f < n >) \rightarrow c$ $(f < 7 >) \rightarrow c$	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$						
Status Affected:	N, Z							
Encoding:	0100	01da	ffff	ffff				
	one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register, 'f'. If 'a' is '0', the Access Bank will be selected, overrid- ing the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Proces Data	s W des	rite to tination				
Example:	RLNCF	REG						
Before Instruc REG	tion = 1010 1	.011						
After Instruction REG = 0101 0111								

RRCF	Rotate Ri	ght f th	rough	n Carry		
Syntax:	[label] R	RCF f	[,d [,a]]]		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow dest$	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$				
Status Affected:	C, N, Z					
Encoding:	0011	00da	fff	f ffff		
	Flag. If 'd' i W. If 'd' is ' in register, Bank will bu BSR value. be selected	s '0', the 1', the re 'f'. If 'a' is e selecte If 'a' is '1 I as per t	result is sult is is s '0', th d, over L', then he BSF	is placed in placed back ie Access rriding the the bank will R value.		
		- icy	ISLEIT			
Words:	1	leg				
Words: Cycles:	1 1	- <u> </u>				
Words: Cycles: Q Cycle Activity:	1					
Words: Cycles: Q Cycle Activity: Q1	1 1 Q2	Q		Q4		
Words: Cycles: Q Cycle Activity: Q1 Decode	1 1 Q2 Read register 'f'	Q3 Proce Data	ess a	Q4 Write to destination		
Words: Cycles: Q Cycle Activity: Q1 Decode	1 1 Q2 Read register 'f'	Q3 Proce Data	ess a	Q4 Write to destination		
Words: Cycles: Q Cycle Activity: Q1 Decode <u>Example:</u>	1 1 Q2 Read register 'f'	Q3 Proce Data	ess a	Q4 Write to destination		
Words: Cycles: Q Cycle Activity: Q1 Decode <u>Example:</u> Before Instrucc REG C	1 1 2 Read register 'f' RRCF F tion = 1110 (= 0	Q3 Proce Data REG, W		Q4 Write to destination		

TBLWT	Table Write						
Syntax:	[<i>label</i>] TBLWT (*; *+; *-; +*)						
Operands:	None						
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register, TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register, (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register, (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR, (TABLAT) \rightarrow Holding Register						
Status Affected:	None						
Encoding:	0000 0000 0000 11nn nn = 0 * =1 *+ =2 *- =3 +*						
Description:	This instruction uses the 3 LSBs of TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 8.0 "Flash Pro- gram Memory" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte						
	of Program Memory Word The TBLWT instruction can modify the value of TBLPTR as follows:						
	no change post-increment						

post-decrement

pre-increment

TBLWT Table Write (Continued)

Words:	1

Cycles: 2

Q Cycle Activity

Q Cycle A	Activity:			
	Q1	Q2	Q3	Q4
	Decode	No	No	No
		operation	operation	operation
	No operation	No operation (Read TABLAT)	No operation	No operation (Write to Holding Register)
Example	<u>1:</u> 5	TBLWT *+;		
Befo	re Instruction			
	TABLAT	=	0x55	
	TBLPTR	=	0x00A356	i
	HOLDING RE	EGISTER -		
	(UXUUASSO)	-		
After	TABLAT	table write co	mpletion)	
		=	0x00A357	,
	HOLDING RE	EGISTER		
	(0x00A356)	=	0x55	
Example	<u>2:</u> 1	CBLWT +*;		
Befo	re Instruction			
2010	TABLAT	=	0x34	
	TBLPTR	=	0x01389A	
	HOLDING RE	EGISTER		
	(0x01389A)	=	0xFF	
		-GISTER		
	(UXU1369B)	-		
Atter	TABLAT	able write corr	0×34	
	TBLPTR	=	0x01389B	1
	HOLDING RE	EGISTER		
	(0x01389A)	=	0xFF	
	HOLDING RE	EGISTER		
	(0x01389B)	=	0x34	

XOF	RWF	Exclusive	Exclusive OR W with f						
Synt	ax:	[label]	XORWF	f [,d [,a	l]]				
Oper	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Oper	ration:	(W) .XOR.	(W) .XOR. (f) \rightarrow dest						
Statu	is Affected:	N, Z	N, Z						
Enco	oding:	0001	10da	ffff	ffff				
Desc	pription:	Exclusive OR the contents of W with register, 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register, 'f'. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value.							
Word	ds:	1							
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read register 'f'	Proce Data	ess a de	Write to estination				
Example: XORWF REG									
	Before Instruc REG W	tion = 0xAF = 0xB5							
	After Instructio REG W	on = 0x1A = 0xB5							

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2331/2431/4331/4431 (Industrial, Extended) PIC18LF2331/2431/4331/4431 (Industrial) (Continued)

PIC18LF2331/2431/4331/4431 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18F2 (Indu	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ^(2,3)								
	PIC18LF2X31/4X31	5.1	9	μA	-10°C				
		5.8	9	μA	+25°C	VDD = 2.0V			
		7.9	11	μA	+70°C		Fosc = 32 kHz ⁽⁴⁾ (SEC_RUN mode, Timer1 as clock)		
	PIC18LF2X31/4X31	7.9	12	μA	-10°C				
		8.9	12	μA	+25°C	VDD = 3.0V			
		10.5	14	μA	+70°C				
	All devices	12.5	20	μA	-10°C				
		16.3	20	μA	+25°C				
		18.9	25	μA	+70°C	VDD - 5.0V			
		150	850	μA	+125°C				
	PIC18LF2X31/4X31	9.2	15	μA	-10°C				
		9.6	15	μA	+25°C	VDD = 2.0V			
		12.7	18	μA	+70°C				
	PIC18LF2X31/4X31	22.0	30	μA	-10°C		– – – – – – – – – –		
		21.0	30	μA	+25°C	VDD = 3.0V	FOSC = 32 kHz ⁽⁴⁾		
		20.0	35	μA	+70°C		Timer1 as clock)		
	All devices	30	80	μA	-10°C		· ·		
		45	80	μA	+25°C	Vpp = 5 0V			
		45	85	μA	+70°C	VDD - 3.0V			
		250	850	μA	+125°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

TABLE 26-20: A/D CONVERTER CHARACTERISTICS

PIC18LF2331/2431/4331/4431 (Industrial) PIC18F2331/2431/4331/4431 (Industrial)		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Device	Supply	·			•		•	
	AVDD	Analog VDD Supply	VDD - 0.3	_	VDD + 0.3	V		
	AVss	Analog Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
	IAD	Module Current	_	500	_	μA	VDD = 5V	
		(during conversion)	—	250	—	μA	VDD = 2.5V	
	IADO	Module Current Off	—		1.0	μA		
AC Tim	ing Parame	eters			1		1	
A10	Fthr	Throughput Rate	_	_	200 75	ksps ksps	VDD = 5V, single channel VDD < 3V, single channel	
A11	Tad	A/D Clock Period	385	_	20,000	ns	VDD = 5V	
	_		1000	_	20,000	ns	VDD = 3V	
A12	TRC	A/D Internal RC Oscillator Period	_	500 750	1500 2250	ns	PIC18F parts	
			_	10000	20000	ns	AVDD < 3.0V	
A13	TCNV	Conversion Time ⁽¹⁾	12	12	12	TAD		
A14	TACQ	Acquisition Time ⁽²⁾	2 ⁽²⁾	_	_	TAD		
A16	Ттс	Conversion Start from External	1/4 Tcy	_	_			
Referen	ice Inputs	•						
A20	Vref	Reference Voltage for 10-Bit Resolution (VREF+ – VREF-)	1.5 1.8	_	AVDD – AVSS AVDD – AVSS	V V	$VDD \ge 3V$ VDD < 3V	
A21	Vrefh	Reference Voltage High (AVDD or VREF+)	1.5V	_	AVDD	V	$VDD \ge 3V$	
A22	VREFL	Reference Voltage Low (AVss or VREF-)	AVss	_	VREFH – 1.5V	V		
A23	IREF	Reference Current	_	150 μA 75 μA			VDD = 5V VDD = 2.5V	
Analog	Input Char	acteristics		·			I	
A26	Vain	Input Voltage ⁽³⁾	AVss - 0.3		AVDD + 0.3	V		
A30	Zain	Recommended Impedance of Analog Voltage Source	—	—	2.5	kΩ		
A31	ZCHIN	Analog Channel Input Impedance	_	_	10.0	kΩ	VDD = 3.0V	
DC Per	formance							
A41	NR	Resolution		10 bits		_		
A42	EIL	Integral Nonlinearity	—	—	<±1	LSb	$VDD \ge 3.0V$ VREFH $\ge 3.0V$	
A43	EIL	Differential Nonlinearity	—	—	<±1	LSb	$VDD \ge 3.0V$ VREFH $\ge 3.0V$	
A45	EOFF	Offset Error	—	±0.5	<±1.5	LSb	$\begin{array}{l} VDD \geq 3.0V \\ VREFH \geq 3.0V \end{array}$	
A46	EGA	Gain Error	—	±0.5	<±1.5	LSb	$\begin{array}{l} VDD \geq 3.0V \\ VREFH \geq 3.0V \end{array}$	
A47	—	Monotonicity ⁽⁴⁾	guaranteed			—	$VDD \ge 3.0V$ VREFH $\ge 3.0V$	

Note 1: Conversion time does not include acquisition time. See Section 21.0 "10-Bit High-Speed Analog-to-Digital Converter (A/D) Module" for a full discussion of acquisition time requirements.

2: In Sequential modes, TACQ should be 12 TAD or greater.

3: For VDD < 2.7V and temperature below 0°C, VAIN should be limited to range < VDD/2.

4: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.