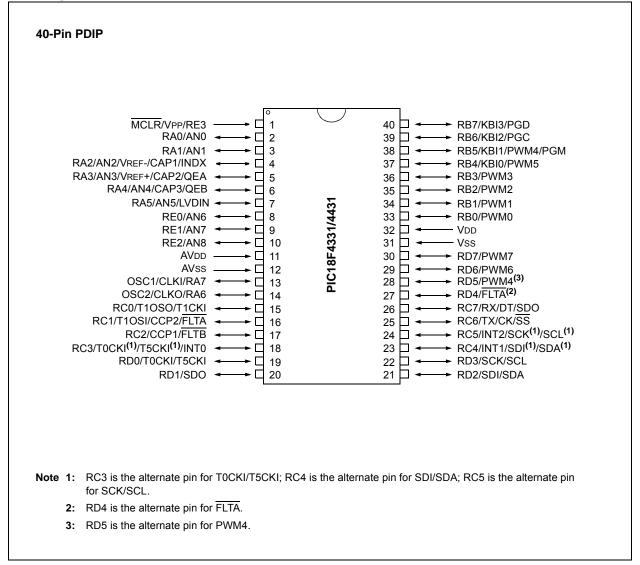


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

20000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2431-e-so

Email: info@E-XFL.COM

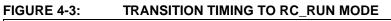
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

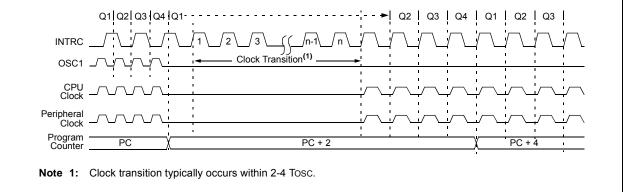
Pin Diagrams (Continued)

Pin Name	Pin Number Pi			Pin	Buffer	Description
Pin Name	PDIP	TQFP	QFN	Туре	Туре	Description
						PORTC is a bidirectional I/O port.
RC0/T1OSO/T1CKI RC0 T1OSO T1CKI	15	32	34	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1 external clock input.
RC1/T1OSI/CCP2/ FLTA	16	35	35		-	
RC1 T1OSI <u>CCP2</u> FLTA				I/O I I/O I	ST CMOS ST ST	Digital I/O. Timer1 oscillator input. Capture 2 input, Compare 2 output, PWM2 output. Fault interrupt input pin.
RC2/CCP1/FLTB RC2 CCP1 FLTB	17	36	36	I/O I/O I	ST ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Fault interrupt input pin.
RC3/T0CKI/T5CKI/ INT0	18	37	37			
RC3 T0CKI ⁽¹⁾ T5CKI ⁽¹⁾ INT0				I/O I I	ST ST ST ST	Digital I/O. Timer0 alternate clock input. Timer5 alternate clock input. External Interrupt 0.
RC4/INT1/SDI/SDA RC4 INT1 SDI ⁽¹⁾ SDA ⁽¹⁾	23	42	42	I/O I I I/O	ST ST ST I ² C	Digital I/O. External Interrupt 1. SPI data in. I ² C™ data I/O.
RC5/INT2/SCK/SCL RC5 INT2 SCK ⁽¹⁾ SCL ⁽¹⁾	24	43	43	I/O I I/O I/O	ST ST ST I ² C	Digital I/O. External Interrupt 2. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.
RC6/TX/CK/ SS RC6 TX <u>CK</u> SS	25	44	44	I/O O I/O I	ST — ST ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT). SPI slave select input.
RC7/RX/DT/SDO RC7 RX DT SDO ⁽¹⁾	26	1	1	I/O I I/O O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK). SPI data out.
Legend: TTL = TTL ST = Schi O = Outp	mitt Tri	atible inp gger inp		CMOS	levels	CMOS = CMOS compatible input or output I = Input P = Power

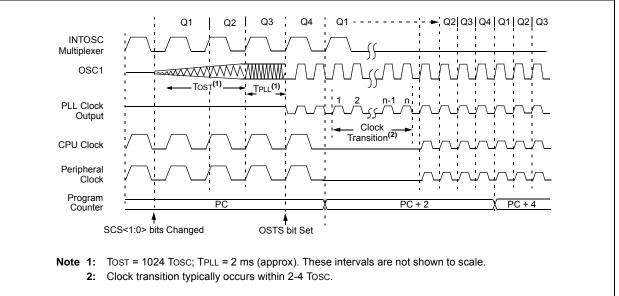
TABLE 1-3: PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)

for SCK/SCL; RC7 is the alternate pin for SDO.

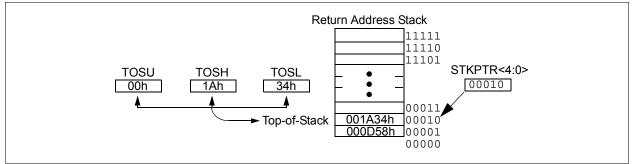

2: RD4 is the alternate pin for \overline{FLTA} .


3: RD5 is the alternate pin for PWM4.

If the IRCF bits and the INTSRC bit are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the device clocks.


If the IRCF bits are changed from all clear (thus, enabling the INTOSC output), or if INTSRC is set, the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the device continue while the INTOSC source stabilizes, after an interval of TIOBST.

If the IRCF bits were previously at a non-zero value, or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.



When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and set the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or a POR occurs.

Note: Returning a value of zero to the PC on an underflow has the effect of vectoring the program to the Reset vector, where the stack conditions can be verified and appropriate actions can be taken. This is not the same as a Reset as the contents of the SFRs are not affected.

FIGURE 6-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

REGISTER 6-1: STKPTR: STACK POINTER REGISTER

R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	—	SP4	SP3	SP2	SP1	SP0
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	STKFUL: Stack Full Flag bit ⁽¹⁾
	 1 = Stack became full or overflowed 0 = Stack has not become full or overflowed
bit 6	STKUNF: Stack Underflow Flag bit ⁽¹⁾
	1 = Stack underflow occurred
	0 = Stack underflow did not occur
bit 5	Unimplemented: Read as '0'
bit 4-0	SP<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP
bit 7							bit C
Levende							
Legend: R = Readab	la hit	W = Writable	hit	II – Unimplon	nented bit, read	1 00 '0'	
-n = Value at		'1' = Bit is set		$0^{\circ} = \text{Bit is clear}$		x = Bit is unk	2014/2
-n = value a	IPUR	I = DILIS SEL			areu	x = bit is unk	nown
bit 7	RBPU: PORT	B Pull-up Enal	ole bit				
		B pull-ups are					
	0 = PORTB p	oull-ups are ena	abled by individ	lual port latch v	/alues		
bit 6	INTEDG0: Ex	ternal Interrupt	0 Edge Select	bit			
		on rising edge					
	-	on falling edge					
bit 5		ternal Interrupt	1 Edge Select	bit			
		on rising edge on falling edge					
bit 4	•	•••					
DIL 4		ternal Interrupt	2 Euge Select	DIL			
		on rising edge on falling edge					
bit 3	•	ted: Read as '					
bit 2	•	R0 Overflow Int		bit			
	1 = High prio						
	0 = Low prior	•					
bit 1	Unimplemen	ted: Read as '	י)				
bit 0	RBIP: RB Po	rt Change Inter	rupt Priority bit				
	1 = High prio	rity					
	0 = Low prior	city.					

REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

11.5 PORTE, TRISE and LATE Registers

Note:	PORTE is only available on PIC18F4331/
	4431 devices.

PORTE is a 4-bit wide, bidirectional port. Three pins (RE0/AN6, RE1/AN7 and RE2/AN8) are individually configurable as inputs or outputs. These pins have Schmitt Trigger input buffers. When selected as an analog input, these pins will read as '0's.

The corresponding Data Direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note:	On	а	Power-on	Reset,	RE<2:0>	are
	con	figu	ired as anal	og input	S.	

The Data Latch register (LATE) is also memory mapped. Read-modify-write operations on the LATE register read and write the latched output value for PORTE.

The fourth pin of PORTE (MCLR/VPP/RE3) is an input only pin available for PIC18F4331/4431 devices. Its operation is controlled by the MCLRE Configuration bit

REGISTER 11-1: TRISE REGISTER

in Configuration Register 3H (CONFIG3H<7>). When selected as a port pin (MCLRE = 0), it functions as a digital input-only pin. As such, it does not have TRIS or LAT bits associated with its operation. Otherwise, it functions as the device's master clear input. In either configuration, RE3 also functions as the programming voltage input during programming.

Note:	On a Power-on Reset, RE3 is enabled as a digital input only if Master Clear functionality
	is disabled.

CLRF	PORTE	; Initialize PORTE by
		; clearing output
		; data latches
CLRF	LATE	; Alternate method
		; to clear output
		; data latches
MOVLW	0x3F	; Configure A/D
MOVWF	ANSEL0	; for digital inputs
BCF	ANSEL1, 0	;
MOVLW	0x03	; Value used to
		; initialize data
		; direction
MOVWF	TRISE	; Set RE<0> as input
		; RE<1> as output
		; RE<2> as input
1		

11.5.1 PORTE IN 28-PIN DEVICES

For PIC18F2331/2431 devices, PORTE is not available. It is only available for PIC18F4331/4431 devices.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—	_	_	_	_	TRISE2	TRISE1	TRISE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2	TRISE2: RE2 Direction Control bit
	1 = Input
	0 = Output
bit 1	TRISE1: RE1 Direction Control bit
	1 = Input
	0 = Output
bit 0	TRISE0: RE0 Direction Control bit
	1 = Input
	0 = Output

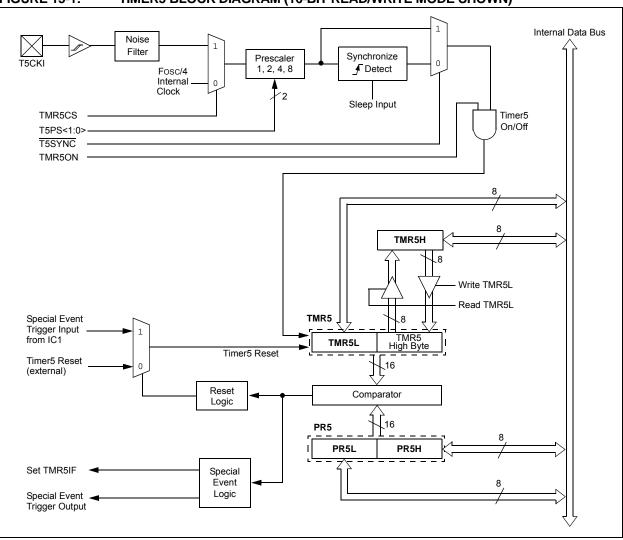
15.0 TIMER5 MODULE

The Timer5 module implements these features:

- 16-bit timer/counter operation
- Synchronous and Asynchronous Counter modes
- Continuous Count and Single-Shot Operating modes
- Four programmable prescaler values (1:1 to 1:8)
- · Interrupt generated on period match
- Special Event Trigger Reset function
- Double-buffered registers
- Operation during Sleep
- · CPU wake-up from Sleep
- Selectable hardware Reset input with a wake-up feature

Timer5 is a general purpose timer/counter that incorporates additional features for use with the Motion Feedback Module (see **Section 17.0 "Motion Feedback Module**"). It may also be used as a general purpose timer or a Special Event Trigger delay timer. When used as a general purpose timer, it can be configured to generate a delayed Special Event Trigger (e.g., an ADC Special Event Trigger) using a preprogrammed period delay.

Timer5 is controlled through the Timer5 Control register (T5CON), shown in Register 15-1. The timer can be enabled or disabled by setting or clearing the control bit TMR5ON (T5CON<0>).


A block diagram of Timer5 is shown in Figure 15-1.

REGISTER 15-1: T5CON: TIMER5 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T5SEN	RESEN ⁽¹⁾	T5MOD	T5PS1	T5PS0	T5SYNC ⁽²⁾	TMR5CS	TMR5ON
bit 7							bit 0

R = Readable b	bit W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at P	OR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknowr
bit 7	15SEN: Timer5 Sleep Enable bit		
	 Timer5 is enabled during Sleep Timer5 is disabled during Sleep 		
bit 6	RESEN: Special Event Trigger Reset E	Enable bit ⁽¹⁾	
	L = Special Event Trigger Reset is dis D = Special Event Trigger Reset is ena		
bit 5	[5MOD: Timer5 Mode bit		
	L = Single-Shot mode is enabledD = Continuous Count mode is enable	d	
bit 4-3	[5PS<1:0>: Timer5 Input Clock Presc	ale Select bits	
	11 = 1:8 10 = 1:4 01 = 1:2		
-	00 = 1:1 F5SYNC: Timer5 External Clock Input	Synchronization Salact hit(2)	
	When TMR5CS = 1:	Synchronization Select bit.	
	L = Do not synchronize external clock	input	
(= Synchronize external clock input		
	When TMR5CS = 0:		_
	This bit is ignored. Timer5 uses the inter-).
	TMR5CS: Timer5 Clock Source Select		
	 External clock from the T5CKI pin Internal clock (TCY) 		
bit 0	FMR5ON: Timer5 On bit		
	L = Timer5 is enabledD = Timer5 is disabled		
Note 1: The	se bits are not implemented on PIC18	F2331/2431 devices and read	as '0'.
2: For	Timer5 to operate during Sleep mode.	T5SYNC must be set.	

2: For Timer5 to operate during Sleep mode, T5SYNC must be set.

FIGURE 15-1: TIMER5 BLOCK DIAGRAM (16-BIT READ/WRITE MODE SHOWN)

15.1 Timer5 Operation

Timer5 combines two 8-bit registers to function as a 16-bit timer. The TMR5L register is the actual low byte of the timer; it can be read and written to directly. The high byte is contained in an unmapped register; it is read and written to through TMR5H, which serves as a buffer. Each register increments from 00h to FFh.

A second register pair, PR5H and PR5L, serves as the Period register; it sets the maximum count for the TMR5 register pair. When TMR5 reaches the value of PR5, the timer rolls over to 00h and sets the TMR5IF interrupt flag. A simplified block diagram of the Timer5 module is shown in Figure 2-1.

Note:	The Timer5 may be used as a general pur-						
	pose timer and as the time base resource to						
	the	Motion	Feedback	Module	(Input		
	Capture or Quadrature Encoder Interface).						

Timer5 supports three configurations:

- 16-Bit Synchronous Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

In Synchronous Timer configuration, the timer is clocked by the internal device clock. The optional Timer5 prescaler divides the input by 2, 4, 8 or not at all (1:1). The TMR5 register pair increments on Q1. Clearing TMR5CS (= 0) selects the internal device clock as the timer sampling clock.

16.4 Compare Mode

In Compare mode, the 16-bit CCPR1 (CCPR2) register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 (RC1/CCP2) pin:

- is driven high
- is driven low
- toggles output (high-to-low or low-to-high)
- remains unchanged (interrupt only)

The action on the pin is based on the value of control bits, CCP1M<3:0> (CCP2M<3:0>). At the same time, interrupt flag bit CCP1IF (CCP2IF) is set.

16.4.1 CCP PIN CONFIGURATION

The user must configure the CCP1 pin as an output by clearing the appropriate TRISC bit.

Note: Clearing the CCPxCON register will force the RC1 or RC2 compare output latch to the default low level. This is not the PORTC I/O data latch.

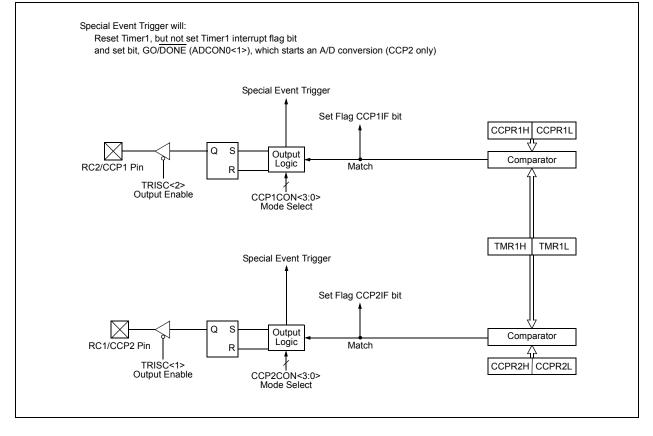
16.4.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

16.4.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

16.4.4 SPECIAL EVENT TRIGGER


In this mode, an internal hardware trigger is generated which may be used to initiate an action.

The Special Event Trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The Special Event Trigger output of CCP2 resets the TMR1 register pair. Additionally, the CCP2 Special Event Trigger will start an A/D conversion if the A/D module is enabled.

Note: The Special Event Trigger from the CCP2 module will not set the Timer1 interrupt flag bit.

FIGURE 16-2: COMPARE MODE OPERATION BLOCK DIAGRAM

BRFEN bit 7 Legend: R = Readab -n = Value a bit 7 bit 6 bit 5 bit 5	BRFEN: Brea 1 = Enable F 0 = Disable F FLTBS: Fault 1 = FLTB is a if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	OD = 0, cleared OD = 1, cleared	ble bit a breakpoint by the user; automatically) ns are inactive	'0' = Bit is cle (i.e., only when at beginning o e for the remain	The new period f the new period	x = Bit is unkn	deasserted
Legend: R = Readab -n = Value a bit 7 bit 6 bit 5	BRFEN: Brea 1 = Enable F 0 = Disable F FLTBS: Fault 1 = FLTB is a if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	'1' = Bit is set akpoint Fault Ena fault condition on Fault condition t B Status bit ⁽¹⁾ asserted: IOD = 0, cleared IOD = 1, cleared Fault B Mode bit ⁽¹⁾ -Cycle mode: Pir erted; FLTBS is c	ble bit a breakpoint by the user; automatically) ns are inactive	'0' = Bit is cle (i.e., only when at beginning o e for the remain	n PWMPIN = 1 f the new perio	x = Bit is unkn	own deasserted
R = Readab -n = Value a bit 7 bit 6 bit 5	BRFEN: Brea 1 = Enable F 0 = Disable F FLTBS: Fault 1 = FLTB is a if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	'1' = Bit is set akpoint Fault Ena fault condition on Fault condition t B Status bit ⁽¹⁾ asserted: IOD = 0, cleared IOD = 1, cleared Fault B Mode bit ⁽¹⁾ -Cycle mode: Pir erted; FLTBS is c	ble bit a breakpoint by the user; automatically) ns are inactive	'0' = Bit is cle (i.e., only when at beginning o e for the remain	n PWMPIN = 1 f the new perio	x = Bit is unkn	deasserted
R = Readab -n = Value a bit 7 bit 6 bit 5	BRFEN: Brea 1 = Enable F 0 = Disable F FLTBS: Fault 1 = FLTB is a if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	'1' = Bit is set akpoint Fault Ena fault condition on Fault condition t B Status bit ⁽¹⁾ asserted: IOD = 0, cleared IOD = 1, cleared Fault B Mode bit ⁽¹⁾ -Cycle mode: Pir erted; FLTBS is c	ble bit a breakpoint by the user; automatically) ns are inactive	'0' = Bit is cle (i.e., only when at beginning o e for the remain	n PWMPIN = 1 f the new perio	x = Bit is unkn	deasserted
<u>-n = Value a</u> bit 7 bit 6 bit 5	BRFEN: Brea 1 = Enable F 0 = Disable F FLTBS: Fault 1 = FLTB is a if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	'1' = Bit is set akpoint Fault Ena fault condition on Fault condition t B Status bit ⁽¹⁾ asserted: IOD = 0, cleared IOD = 1, cleared Fault B Mode bit ⁽¹⁾ -Cycle mode: Pir erted; FLTBS is c	ble bit a breakpoint by the user; automatically) ns are inactive	'0' = Bit is cle (i.e., only when at beginning o e for the remain	n PWMPIN = 1 f the new perio	x = Bit is unkn	deasserted
bit 7 bit 6 bit 5	BRFEN: Brea 1 = Enable F 0 = Disable F FLTBS: Fault 1 = FLTB is a if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	akpoint Fault Ena Fault condition on Fault condition t B Status bit ⁽¹⁾ asserted: IOD = 0, cleared IOD = 1, cleared Fault B Mode bit ⁽¹ -Cycle mode: Pir erted; FLTBS is c	a breakpoint by the user; automatically) ns are inactive	(i.e., only when at beginning o e for the remain	The new period f the new period	L) od when \overline{FLTB} is	deasserted
bit 6 bit 5	 1 = Enable F 0 = Disable F FLTBS: Fault 1 = FLTB is a if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive 	ault condition on Fault condition B Status bit ⁽¹⁾ asserted: IOD = 0, cleared IOD = 1, cleared Fault B Mode bit ⁽¹⁾ -Cycle mode: Pir erted; FLTBS is c	a breakpoint by the user; automatically) ns are inactive	at beginning o e for the remain	f the new perio	od when \overline{FLTB} is	
bit 5	 1 = Enable F 0 = Disable F FLTBS: Fault 1 = FLTB is a if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive 	ault condition on Fault condition B Status bit ⁽¹⁾ asserted: IOD = 0, cleared IOD = 1, cleared Fault B Mode bit ⁽¹⁾ -Cycle mode: Pir erted; FLTBS is c	a breakpoint by the user; automatically) ns are inactive	at beginning o e for the remain	f the new perio	od when \overline{FLTB} is	
bit 5	1 = FLTB is a if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	asserted: IOD = 0, cleared IOD = 1, cleared Fault B Mode bit ⁽¹ -Cycle mode: Pir erted; FLTBS is c	automatically) ns are inactive	e for the remain	nder of the cur		
	if FLTBM if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	IOD = 0, cleared IOD = 1, cleared Fault B Mode bit ⁽¹ -Cycle mode: Pir erted; FLTBS is c	automatically) ns are inactive	e for the remain	nder of the cur		
	if FLTBM 0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	IOD = 1, cleared Fault B Mode bit ⁽¹ -Cycle mode: Pir erted; FLTBS is c	automatically) ns are inactive	e for the rema <u>i</u> r	nder of the cur		
	0 = No Fault FLTBMOD: F 1 = Cycle-by is deasse 0 = Inactive	ault B Mode bit ⁽¹ -Cycle mode: Pir erted; FLTBS is c) ns are inactiv	e for the rema <u>i</u> r	nder of the cur		
	1 = Cycle-by is deasse 0 = Inactive	-Cycle mode: Pir erted; FLTBS is c	ns are inactiv			rrent PWM period	វ or until FLTB
bit 4	is deasse 0 = Inactive	erted; FLTBS is c				rrent PWM period	d or until FLTB
bit 4	0 = Inactive		leared autom	atically when E	·		
bit 4		mode: Pins are o					
bit 4		by the user only	deactivated (catastrophic fai	lure) until FLI	B is deasserted	and FLIBS is
		ult B Enable bit ⁽¹⁾	1				
	1 = Enable F						
	0 = Disable F						
bit 3		ult Configuration					
		TB or both deact		M outputs			
bit 2	0 = FLIA or I	FLTB deactivates	5 PVVIVI<5:0>				
DILZ	1 = FLTA is a						
		OD = 0, cleared	by the user;				
		OD = 1, cleared	automatically	at beginning o	f the new perio	od when FLTA is	deasserted
	0 = No Fault						
bit 1	-	ault A Mode bit	a ara ina ativ	for the remain	day of the aver	ant DW/M namiad	
		-Cycle mode: Pin ed; FLTAS is clea			der of the curre	ent Prvivi period d	
	0 = Inactive	mode: Pins are only			lure) until FLT	A is deasserted	and FLTAS is
bit 0		ult A Enable bit					
	1 = Enable F 0 = Disable F						
Note 1: U	Jnimplemented	l in PIC18F2331/2	2431 devices	: maintain these	e bits clear.		
2: P	PWM<7:6> are	implemented only N has no effect.				F2331/2431 devi	ces, setting or

REGISTER 18-8: FLTCONFIG: FAULT CONFIGURATION REGISTER

18.13 PWM Update Lockout

For a complex PWM application, the user may need to write up to four Duty Cycle registers and the PWM Time Base Period register, PTPER, at a given time. In some applications, it is important that all buffer registers be written before the new duty cycle and period values are loaded for use by the module.

A PWM update lockout feature may optionally be enabled so the user may specify when new duty cycle buffer values are valid. The PWM update lockout feature is enabled by setting the control bit, UDIS, in the PWMCON1 register. This bit affects all Duty Cycle Buffer registers and the PWM Time Base Period register, PTPER.

To perform a PWM update lockout:

- 1. Set the UDIS bit.
- 2. Write all Duty Cycle registers and PTPER, if applicable.
- 3. Clear the UDIS bit to re-enable updates.
- 4. With this, when UDIS bit is cleared, the buffer values will be loaded to the actual registers. This makes a synchronous loading of the registers.

18.14 PWM Special Event Trigger

The PWM module has a Special Event Trigger capability that allows A/D conversions to be synchronized to the PWM time base. The A/D sampling and conversion time may be programmed to occur at any point within the PWM period. The Special Event Trigger allows the user to minimize the delay between the time when A/D conversion results are acquired and the time when the duty cycle value is updated.

The PWM 16-bit Special Event Trigger register, SEVTCMP (high and low), and five control bits in the PWMCON1 register are used to control its operation.

The PTMR value for which a Special Event Trigger should occur is loaded into the SEVTCMP register pair. The SEVTDIR bit in the PWMCON1 register specifies the counting phase when the PWM time base is in a Continuous Up/Down Count mode.

If the SEVTDIR bit is cleared, the Special Event Trigger will occur on the upward counting cycle of the PWM time base. If SEVTDIR is set, the Special Event Trigger will occur on the downward count cycle of the PWM time base. The SEVTDIR bit has effect only when the PWM timer is in the Continuous Up/Down Count mode.

18.14.1 SPECIAL EVENT TRIGGER ENABLE

The PWM module will always produce Special Event Trigger pulses. This signal may optionally be used by the A/D module. Refer to **Section 21.0 "10-Bit High-Speed Analog-to-Digital Converter (A/D) Module"** for details.

18.14.2 SPECIAL EVENT TRIGGER POSTSCALER

The PWM Special Event Trigger has a postscaler that allows a 1:1 to 1:16 postscale ratio. The postscaler is configured by writing the SEVOPS<3:0> control bits in the PWMCON1 register.

The Special Event Trigger output postscaler is cleared on any write to the SEVTCMP register pair, or on any device Reset.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
IPR3	_	_	_	PTIP	IC3DRIP	IC2QEIP	IC1IP	TMR5IP	56
PIE3	_	_	_	PTIE	IC3DRIE	IC2QEIE	IC1IE	TMR5IE	56
PIR3	—	_	_	PTIF	IC3DRIF	IC2QEIF	IC1IF	TMR5IF	56
PTCON0	PTOPS3	PTOPS2	PTOPS1	PTOPS0	PTCKPS1	PTCKPS0	PTMOD1	PTMOD0	58
PTCON1	PTEN	PTDIR	_	_	_	_	_	_	58
PTMRL ⁽¹⁾	PWM Time	PWM Time Base Register (lower 8 bits)							58
PTMRH ⁽¹⁾		UN	USED		PWM Time	Base Registe	er (upper 4 b	oits)	58
PTPERL ⁽¹⁾	PWM Time Base Period Register (lower 8 bits)							58	
PTPERH ⁽¹⁾	UNUSED PWM Time Base Period Register (upper 4 bits)						58		
SEVTCMPL ⁽¹⁾	PWM Special Event Compare Register (lower 8 bits)							58	
SEVTCMPH ⁽¹⁾	UNUSED				PWM Special Event Compare Register (upper 4 bits)				58
PWMCON0	—	PWMEN2	PWMEN1	PWMEN0	PMOD3 ⁽²⁾	PMOD2	PMOD1	PMOD0	58
PWMCON1	SEVOPS3	SEVOPS2	SEVOPS1	SEVOPS0	SEVTDIR	—	UDIS	OSYNC	58
DTCON	DTPS1	DTPS0	DT5	DT4	DT3	DT2	DT1	DT0	58
FLTCONFIG	BRFEN	FLTBS ⁽²⁾	FLTBMOD ⁽²⁾	FLTBEN ⁽²⁾	FLTCON	FLTAS	FLTAMOD	FLTAEN	58
OVDCOND	POVD7 ⁽²⁾	POVD6 ⁽²⁾	POVD5	POVD4	POVD3	POVD2	POVD1	POVD0	58
OVDCONS	POUT7 ⁽²⁾	POUT6 ⁽²⁾	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0	58
PDC0L ⁽¹⁾	PWM Duty	Cycle #0L Re	gister (lower 8	bits)					58
PDC0H ⁽¹⁾	UNU	ISED	PWM Duty Cy	/cle #0H Regi	ster (upper 6	bits)			58
PDC1L ⁽¹⁾	PWM Duty	Cycle #1L rec	gister (lower 8 l	bits)					58
PDC1H ⁽¹⁾	UNU	ISED	PWM Duty Cy	/cle #1H Regi	ster (upper 6	bits)			58
PDC2L ⁽¹⁾	PWM Duty	Cycle #2L Re	gister (lower 8	bits)					58
PDC2H ⁽¹⁾	UNU	ISED	PWM Duty Cy	cle #2H Regi	ster (upper 6	bits)			58
PDC3L ^(1,2)	PWM Duty	Cycle #3L Re	gister (lower 8	bits)					58
PDC3H ^(1,2)	UNU	ISED	PWM Duty Cy	cle #3H Regi	ster (upper 6	bits)			58

TABLE 18-6: REGISTERS ASSOCIATED WITH THE POWER CONTROL PWM MODULE

Legend: — = Unimplemented, read as '0'. Shaded cells are not used with the power control PWM.

Note 1: Double-buffered register pairs. Refer to text for explanation of how these registers are read and written to.

2: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear. Reset values shown are for PIC18F4331/4431 devices.

REGISTER 19-2: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER (CONTINUED)

- bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits⁽³⁾
 - 0000 = SPI Master mode, Clock = Fosc/4
 - 0001 = SPI Master mode, Clock = Fosc/16
 - 0010 = SPI Master mode, Clock = Fosc/64
 - 0011 = SPI Master mode, Clock = TMR2 output/2
 - 0100 = SPI Slave mode, Clock = SCK pin, \overline{SS} pin control enabled
 - 0101 = SPI Slave mode, Clock = SCK pin, SS pin control disabled, SS can be used as I/O pin
 - 0110 = I^2C Slave mode, 7-bit address
 - 0111 = I^2C Slave mode, 10-bit address
 - $1011 = I^2_{C}$ Firmware Controlled Master mode (slave Idle)
 - 1110 = I^2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled
 - 1111 = I^2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled
- **Note 1:** In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register.
 - 2: When enabled, these pins must be properly configured as inputs or outputs.
 - **3:** Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

20.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of the two serial I/O modules available in the PIC18F2331/ 2431/4331/4431 family of microcontrollers. EUSART is also known as a Serial Communications Interface or SCI.

The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a halfduplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The EUSART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These features make it ideally suited for use in Local Interconnect Network (LIN/J2602) bus systems.

The EUSART can be configured in the following modes:

- Asynchronous (full-duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half-duplex) with selectable clock polarity
- Synchronous Slave (half-duplex) with selectable clock polarity

In order to configure pins, TX and RX, as the Enhanced Universal Synchronous Asynchronous Receiver Transmitter:

- SPEN (RCSTA<7>) bit must be set (= 1),
- TRISC<6> bit must be set (= 1), and
- TRISC<7> bit must be set (= 1).

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as
	needed.

The operation of the Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These are detailed on the following pages in Register 20-1, Register 20-2 and Register 20-3, respectively.

20.1 Asynchronous Operation in Power-Managed Modes

The EUSART may operate in Asynchronous mode while the peripheral clocks are being provided by the internal oscillator block. This makes it possible to remove the crystal or resonator that is commonly connected as the primary clock on the OSC1 and OSC2 pins.

The factory calibrates the internal oscillator block output (INTOSC) for 8 MHz (see Table 26-6). However, this frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output back to 8 MHz. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source (see **Section 3.6.4 "INTOSC Frequency Drift"** for more information).

The other method adjusts the value in the Baud Rate Generator (BRG). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

21.1 Configuring the A/D Converter

The A/D Converter has two types of conversions, two modes of operation and eight different Sequencing modes. These features are controlled by the ACONV bit (ADCON0<5>), ACSCH bit (ADCON0<4>) and ACMOD<1:0> bits (ADCON0<3:2>). In addition, the A/D channels are divided into four groups as defined in the ADCHS register. Table 21-1 shows the sequence configurations as controlled by the ACSCH and ACMOD<1:0> bits.

21.1.1 CONVERSION TYPE

Two types of conversions exist in the high-speed 10-bit A/D Converter module that are selected using the ACONV bit. Single-Shot mode allows a single conversion or sequence to be enabled when ACONV = 0. At the end of the sequence, the GO/\overline{DONE} bit will be automatically cleared and the interrupt flag, ADIF, will be set. When using Single-Shot mode and configured for Simultaneous mode, STNM2, acquisition time must be used to ensure proper conversion of the analog input signals.

Continuous Loop mode allows the defined sequence to be executed in a continuous loop when ACONV = 1. In this mode, either the user <u>can</u> trigger the start of conversion by setting the GO/DONE bit, or one of the A/D triggers can start the conversion. The interrupt flag, ADIF, is set based on the configuration of the bits, ADRS<1:0> (ADCON3<7:6>). In Simultaneous modes, STNM1 and STNM2 acquisition time must be configured to ensure proper conversion of the analog input signals.

21.1.2 CONVERSION MODE

The ACSCH bit (ADCON0<4>) controls how many channels are used in the configured sequence. When clear, the A/D is configured for single channel conversion and will convert the group selected by the ACMOD<1:0> bits and the channel selected by the GxSEL<1:0> bits (ADCHS register). When ACSCH = 1, the A/D is configured for multiple channel conversion and the sequence is defined by ACMOD<1:0>.

TABLE 21-1:	AUTO-CONVERSION SEQUENCE CONFIGURATIONS
-------------	---

Mode	ACSCH	ACMOD<1:0>	Description
Multi-Channel Sequential Mode 1 (SEQM1)	1	00	Groups A and B are sampled and converted sequentially.
Multi-Channel Sequential Mode 2 (SEQM2)	1	01	Groups A, B, C and D are sampled and converted sequentially.
Multi-Channel Simultaneous Mode 1 (STNM1)	1	10	Groups A and B are sampled simultaneously and converted sequentially.
Multi-Channel Simultaneous Mode 2 (STNM2)	1	11	Groups A and B are sampled simultaneously, then converted sequentially. Then, Group C and D are sampled simultaneously, then converted sequentially.
Single Channel Mode 1 (SCM1)	0	00	Group A is sampled and converted.
Single Channel Mode 2 (SCM2)	0	01	Group B is sampled and converted.
Single Channel Mode 3 (SCM3)	0	10	Group C is sampled and converted.
Single Channel Mode 4 (SCM4)	0	11	Group D is sampled and converted.

24.0 INSTRUCTION SET SUMMARY

The PIC18 instruction set adds many enhancements to the previous PIC[®] instruction sets, while maintaining an easy migration from these PIC instruction sets.

Most instructions are a single program memory word (16 bits), but there are three instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- · Byte-oriented operations
- Bit-oriented operations
- · Literal operations
- · Control operations

The PIC18 instruction set summary in Table 24-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 24-1 shows the opcode field descriptions.

Most **byte-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator, 'f', specifies which file register is to be used by the instruction.

The destination designator, 'd', specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the WREG register. If 'd' is '1', the result is placed in the file register specified in the instruction.

All bit-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator, 'b', selects the number of the bit affected by the operation, while the file register designator, 'f', represents the number of the file in which the bit is located.

The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the call or return instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for three double-word instructions. These three instructions were made double word instructions so that all the required information is available in these 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double word instructions execute in two instruction cycles.

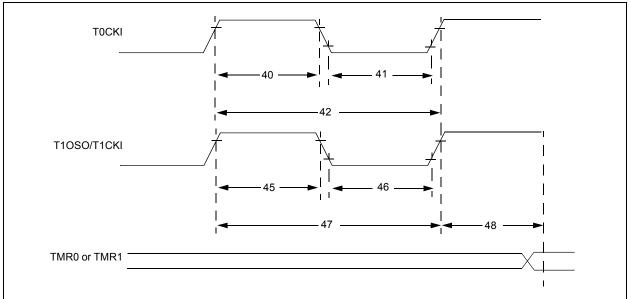
One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 24-1 shows the general formats that the instructions can have.

All examples use the format 'nnh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

The Instruction Set Summary, shown in Table 24-2, lists the instructions recognized by the Microchip Assembler (MPASM[™] Assembler). Section 24.2 "Instruction Set" provides a description of each instruction.

24.1 Read-Modify-Write Operations


Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction or the destination designator, 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a "BCF PORTB, 1" instruction will read PORTB, clear bit 1 of the data, then write the result back to PORTB. The read operation would have the unintended result that any condition that sets the RBIF flag would be cleared. The R-M-W operation may also copy the level of an input pin to its corresponding output latch.

BRA	۱.	Unconditi	Unconditional Branch					
Synta	ax:	[<i>label</i>] BR	[<i>label</i>] BRA n					
Oper	ands:	-1024 ≤ n ≤	1023					
Oper	ation:	(PC) + 2 + 2	$2n \rightarrow PC$;				
Statu	s Affected:	None						
Enco	ding:	1101	0nnn	nnr	n	nnnn		
Desc	ription:	Add the 2's to the PC. S mented to for new addres instruction i	Since the etch the solutions will be	PC w next ir PC +	/ill ha nstru 2 +	ave incre- ction, the 2n. This		
Vord	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	1		Q4		
	Decode	Read literal 'n'	Proce Data		V	/rite to PC		
	No operation	No operation	No operat	ion	ор	No eration		
Exan	nple:	HERE	BRA	Jump				
	Before Instruc PC		dress (I	HERE)				
	After Instructio PC		dress (J	Jump)				

BSF	Bit Set f						
Syntax:	[label] BS	F f,b[,a]					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$						
Operation:	$1 \rightarrow f \le b >$						
Status Affected:	None						
Encoding:	1000	bbba	ffff	ffff			
Description: Bit 'b' in register, 'f', is set. If 'a' is '0', Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.							
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Process Data	-	Write gister 'f'			
Example:	BSF F	LAG_REG	, 7				
	Before Instruction FLAG_REG = 0x0A						
After Instruction FLAG_REG = 0x8A							

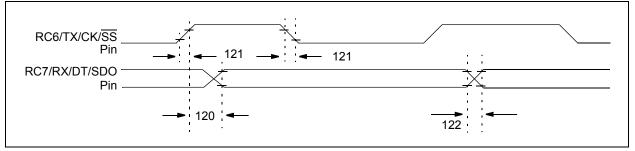


TABLE 26-9 :	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
---------------------	---

Param No.	Symbol		Characteristic		Min	Мах	Units	Conditions
40	Tt0H	T0CKI High Pulse Width		No prescaler	0.5 Tcy + 20	— ns	VDD = 2V	
				With prescaler	10	_	ns	
41	Tt0L	T0CKI Low Pulse Width		No prescaler	0.5 Tcy + 20	_	ns	
				With prescaler	10		ns	
42	Tt0P	T0CKI Period		No prescaler	Тсү + 10 —		ns	
				With prescaler	Greater of: 20 ns or <u>TCY + 40</u> N	_	ns	N = prescale value (1, 2, 4,, 256)
45	Tt1H	T1CKI High Time	Synchronous, no prescaler		0.5 TCY + 20	_	ns	
			Synchronous, with prescaler	PIC18FXX31	10	_	ns	
				PIC18LFXX31	25	_	ns	
			Asynchronous	PIC18FXX31	30		ns]
				PIC18LFXX31	50		ns	
46	Tt1L	T1CKI Low Time	Synchronous, no prescaler		0.5 TCY + 5		ns	
			Synchronous, with prescaler	PIC18FXX31	10		ns	
				PIC18LFXX31	25		ns	
			Asynchronous	PIC18FXX31	30	_	ns	
				PIC18LFXX31	50		ns	
47	Tt1P	T1CKI Input Period	Synchronous		Greater of: 20 ns or <u>Tcy + 40</u> N	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60		ns	
	Ft1	T1CKI Oscillator Input Frequency Range		DC	50	kHz		
48	Tcke2tmrl		elay from External T1CKI Clock Edge to imer Increment		2 Tosc	7 Tosc	_	

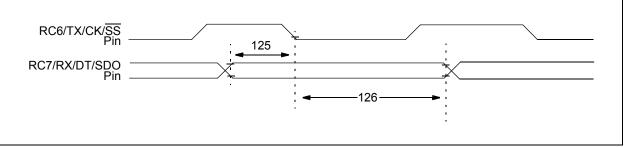

FIGURE 26-17: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 26-18: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions	
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE)					
		Clock High to Data Out Valid	PIC18FXX31	—	40	ns	
			PIC18LFXX31	_	100	ns	
121 Tckrf		Clock Out Rise Time and Fall Time	PIC18FXX31	_	20	ns	
		(Master mode)	PIC18LFXX31	_	50	ns	
122	Tdtrf	Data Out Rise Time and Fall Time	PIC18FXX31	_	20	ns	
			PIC18LFXX31	_	50	ns	

FIGURE 26-18: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 26-19: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TdtV2ckl	<u>SYNC RCV (MASTER & SLAVE)</u> Data Hold before CK \downarrow (DT hold time)	10		ns	
126	TckL2dtl	Data Hold after CK \downarrow (DT hold time)	15	_	ns	

NOTES: