

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2431-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

	Pin Nu	Pin Number		Buffer			
Pin Name	SPDIP, SOIC	QFN	Pin Type		Description		
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.		
RB0/PWM0 RB0 PWM0	21	18	1/O O	TTL TTL	Digital I/O. PWM Output 0.		
RB1/PWM1 RB1 PWM1	22	19	1/O O	TTL TTL	Digital I/O. PWM Output 1.		
RB2/PWM2 RB2 PWM2	23	20	1/O O	TTL TTL	Digital I/O. PWM Output 2.		
RB3/PWM3 RB3 PWM3	24	21	1/O O	TTL	Digital I/O. PWM Output 3.		
RB4/KBI0/PWM5 RB4 KBI0 PWM5	25	22	I/O I O	TTL TTL TTL	Digital I/O. Interrupt-on-change pin. PWM Output 5.		
RB5/KBI1/PWM4/PGM RB5 KBI1 PWM4 PGM	26	23	I/O I O I/O	TTL TTL TTL ST	Digital I/O. Interrupt-on-change pin. PWM Output 4. Single-Supply ICSP™ Programming entry pin.		
RB6/KBI2/PGC RB6 KBI2 PGC	27	24	1/O 1 1/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.		
RB7/KBI3/PGD RB7 KBI3 PGD	28	25	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.		
Legend: TTL = TTL comp ST = Schmitt T O = Output			CMO	CMOS = CMOS compatible input or output I = Input P = Power			

TABLE 1-2: PIC18F2331/2431 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number			Pin	Buffer	Description
Fill Name	PDIP	TQFP	QFN	Туре	Туре	Description
						PORTD is a bidirectional I/O port.
RD0/T0CKI/T5CKI	19	38	38			
RD0				I/O	ST	Digital I/O.
TOCKI				I	ST	Timer0 external clock input.
T5CKI				Ι	ST	Timer5 input clock.
RD1/SDO	20	39	39			
RD1				I/O	ST	Digital I/O.
SDO ⁽¹⁾				0	—	SPI data out.
RD2/SDI/SDA	21	40	40			
RD2				I/O	ST	Digital I/O.
SDI ⁽¹⁾				Ι	ST	SPI data in.
SDA ⁽¹⁾				I/O	ST	I ² C™ data I/O.
RD3/SCK/SCL	22	41	41			
RD3				I/O	ST	Digital I/O.
SCK ⁽¹⁾				I/O	ST	Synchronous serial clock input/output for SPI mode.
SCL ⁽¹⁾				I/O	ST	Synchronous serial clock input/output for I ² C mode.
RD4/FLTA	27	2	2			
RD4				I/O	ST	Digital I/O.
FLTA ⁽²⁾				Ι	ST	Fault interrupt input pin.
RD5/PWM4	28	3	3			
RD5				I/O	ST	Digital I/O.
PWM4 ⁽³⁾				0	TTL	PWM Output 4.
RD6/PWM6	29	4	4			
RD6				I/O	ST	Digital I/O.
PWM6				0	TTL	PWM Output 6.
RD7/PWM7	30	5	5			
RD7				I/O	ST	Digital I/O.
PWM7				0	TTL	PWM Output 7.
Legend: TTL = TTL	compa	tible inp				CMOS = CMOS compatible input or output

TABLE 1-3:	PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (C	CONTINUED)	
		·•···••=•/	

0

ST = Schmitt Trigger input with CMOS levels = Output

= Input L Ρ = Power

Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin for SCK/SCL; RC7 is the alternate pin for SDO.

2: RD4 is the alternate pin for FLTA.

3: RD5 is the alternate pin for PWM4.

6.5.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 6-1 and Table 6-2.

The SFRs can be classified into two sets: those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature.

The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations will be unimplemented and read as '0's.

TABLE 6-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F2331/2431/4331/4431 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1	F7Fh	PTCON0
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	CCPR1L	F9Eh	PIR1	F7Eh	PTCON1
FFDh	TOSL	FDDh	POSTDEC2(1)	FBDh	CCP1CON	F9Dh	PIE1	F7Dh	PTMRL
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	(2)	F7Ch	PTMRH
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR2L	F9Bh	OSCTUNE	F7Bh	PTPERL
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	ADCON3	F7Ah	PTPERH
FF9h	PCL	FD9h	FSR2L	FB9h	ANSEL1	F99h	ADCHS	F79h	PDC0L
FF8h	TBLPTRU	FD8h	STATUS	FB8h	ANSEL0	F98h	(2)	F78h	PDC0H
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	T5CON	F97h	(2)	F77h	PDC1L
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	QEICON	F96h	TRISE ⁽³⁾	F76h	PDC1H
FF5h	TABLAT	FD5h	TOCON	FB5h	(2)	F95h	TRISD ⁽³⁾	F75h	PDC2L
FF4h	PRODH	FD4h	(2)	FB4h	(2)	F94h	TRISC	F74h	PDC2H
FF3h	PRODL	FD3h	OSCCON	FB3h	(2)	F93h	TRISB	F73h	PDC3L ⁽³⁾
FF2h	INTCON	FD2h	LVDCON	FB2h	(2)	F92h	TRISA	F72h	PDC3H ⁽³⁾
FF1h	INTCON2	FD1h	WDTCON	FB1h	_(2)	F91h	PR5H	F71h	SEVTCMPL
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	PR5L	F70h	SEVTCMPH
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	(2)	F6Fh	PWMCON0
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	(2)	F6Eh	PWMCON1
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽³⁾	F6Dh	DTCON
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽³⁾	F6Ch	FLTCONFIG
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC	F6Bh	OVDCOND
FEAh	FSR0H	FCAh	T2CON	FAAh	BAUDCON	F8Ah	LATB	F6Ah	OVDCONS
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA	F69h	CAP1BUFH
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	TMR5H	F68h	CAP1BUFL
FE7h	INDF1 ⁽¹⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	TMR5L	F67h	CAP2BUFH
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSPCON	FA6h	EECON1	F86h	(2)	F66h	CAP2BUFL
FE5h	POSTDEC1 ⁽¹⁾	FC5h	(2)	FA5h	IPR3	F85h	(2)	F65h	CAP3BUFH
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE	F64h	CAP3BUFL
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD ⁽³⁾	F63h	CAP1CON
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	CAP2CON
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	CAP3CON
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA	F60h	DFLTCON

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on 28-pin devices.

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available for the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation). The basic process is shown in Example 7-1.

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

EXAMPLE 7-1: DATA EEPROM READ

MOVLW DATA_EE_ADDR MOVWF EEADR BCF EECON1, EEPGD BSF EECON1, RD MOVF EEDATA, W

; Data Memory Address to read ; Point to DATA memory ; EEPROM Read ; W = EEDATA

:

EXAMPLE 7-2: DATA EEPROM WRITE

	MOVLW	DATA_EE_ADDR	;
	MOVWF	EEADR	; Data Memory Address to write
	MOVLW	DATA_EE_DATA	;
	MOVWF	EEDATA	; Data Memory Value to write
	BCF	EECON1, EEPGD	; Point to DATA memory
	BCF	EECON1, CFGS	; Access EEPROM
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	55h	;
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	GOTO	\$-2	;
	BSF	INTCON, GIE	; Enable interrupts
-	BSF BCF MOVLW MOVWF MOVWF BSF BTFSC	EECON1, WREN INTCON, GIE 55h EECON2 0AAh EECON2 EECON1, WR EECON1, WR EECON1, WR	<pre>; Enable writes ; Disable Interrupts ; ; Write 55h ; ; Write 0AAh ; Set WR bit to begin write ; Wait for write to complete ;</pre>

REGISTER 8-1: EECON1: DATA EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

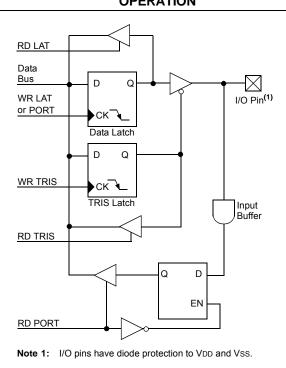
Legend:	S = Settable bit (canne	ot be cleared in software)	
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by
	completion of erase operation) 0 = Perform write only
bit 3	
DILS	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation, or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle
	(The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit
	can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete
bit 0	RD: Read Control bit
DILU	
	 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
	0 = Does not initiate an EEPROM read
Note 1.	When a WRERP assure the EERCD and CECS bits are not cleared. This allows tracing of the error

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

11.0 I/O PORTS

Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.


Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Data Latch)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port without the interfaces to other peripherals is shown in Figure 11-1.

FIGURE 11-1: GENERIC I/O PORT OPERATION

11.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA<4:2> pins are multiplexed with three input capture pins and Quadrature Encoder Interface pins. Pins, RA6 and RA7, are multiplexed with the main oscillator pins. They are enabled as oscillator or I/O pins by the selection of the main oscillator in Configuration Register 1H (see Section 23.1 "Configuration Bits" for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as A/D Converter inputs is selected by clearing/setting the control bits in the ANSEL0 and ANSEL1 registers.

Note 1:	On	а	Powe	er-on	Rese	et, R/	۹<5:(0> are
	conf	īgu	red as	analo	og inpi	uts and	d rea	d as '0'.
2:						,	on	40-pin
	devi	ice	s (PIC	18F4	331/4	431).		

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

ł	EXAMPL	E 11-1:	INITIALIZING PORTA
	CLRF	PORTA	; Initialize PORTA by
			; clearing output
			; data latches
	CLRF	LATA	; Alternate method
			; to clear output
			; data latches
	MOVLW	0x3F	; Configure A/D
	MOVWF	ANSEL0	; for digital inputs
	MOVLW	0xCF	; Value used to
			; initialize data
			; direction
	MOVWF	TRISA	; Set RA<3:0> as inputs
			; RA<5:4> as outputs

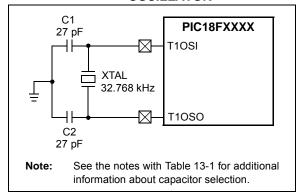
Pin	Function	TRIS Setting	I/O	I/O Type	Description
RB0/PWM0	RB0	0	0	DIG	LATB<0> data output; not affected by analog input.
		1	I	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input is enabled.
	PWM0	0	0	DIG	PWM Output 0.
RB1/PWM1	RB1	0	0	DIG	LATB<1> data output; not affected by analog input.
		1	Ι	TTL	PORTB<1> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input is enabled.
	PWM1	0	0	DIG	PWM Output 1.
RB2/PWM2	RB2	0	0	DIG	LATB<2> data output; not affected by analog input.
		1	Ι	TTL	PORTB<2> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input is enabled.
	PWM2	0	0	DIG	PWM Output 2.
RB3/PWM3	RB3	0	0	DIG	LATB<3> data output; not affected by analog input.
		1	Ι	TTL	PORTB<3> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input is enabled.
	PWM3	0	0	DIG	PWM Output 3.
RB4/KBI0/PWM5	RB4	0	0	DIG	LATB<4> data output; not affected by analog input.
		1	Ι	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input is enabled.
	KBI0	1	Ι	TTL	Interrupt-on-change pin.
	PWM5	0	0	DIG	PWM Output 5.
RB5/KBI1/	RB5	0	0	DIG	LATB<5> data output.
PWM4/PGM		1	Ι	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.
	KBI1	1	Ι	TTL	Interrupt-on-change pin.
	PWM4 ⁽³⁾	0	0	DIG	PWM Output 4; takes priority over port data.
	PGM ⁽²⁾	х	I	ST	Single-Supply Programming mode entry (ICSP™). Enabled by LVP Configuration bit; all other pin functions are disabled.
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.
		1	Ι	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.
	KBI2	1	I	TTL	Interrupt-on-change pin.
	PGC	x	Ι	ST	Serial execution (ICSP™) clock input for ICSP and ICD operation. ⁽¹⁾
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.
		1	Ι	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.
	KBI3	1	I	TTL	Interrupt-on-change pin.
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operation. ⁽¹⁾
		x	Ι	ST	Serial execution data input for ICSP and ICD operation. ⁽¹⁾

TABLE 11-3: PORTB I/O SUMMARY

Legend:DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output;
x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: All other pin functions are disabled when ICSP or ICD is enabled.

2: Single-Supply Programming must be enabled.


3: RD5 is the alternate pin for PWM4.

13.2 Timer1 Oscillator

A crystal oscillator circuit is built in-between pins, T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 13-3. Table 13-1 shows the capacitor selection for the Timer1 oscillator.

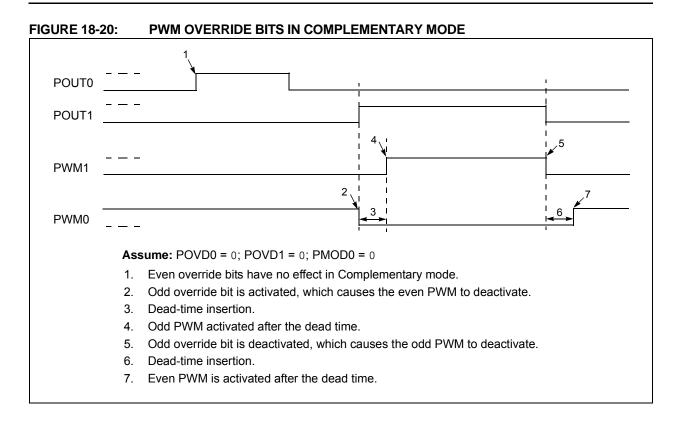
The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 13-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 13-1:CAPACITOR SELECTION FOR
THE TIMER OSCILLATOR

Osc Type	Freq	C1	C2
LP	32 kHz	27 pF ⁽¹⁾	27 pF ⁽¹⁾

- Note 1: Microchip suggests this value as a starting point in validating the oscillator circuit.
 - 2: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - **3:** Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Capacitor values are for design guidance only.


13.3 Timer1 Oscillator Layout Considerations

The Timer1 oscillator for PIC18F2331/2431/4331/4431 devices incorporates an additional low-power feature. When this option is selected, it allows the oscillator to automatically reduce its power consumption when the microcontroller is in Sleep mode. During normal device operation, the oscillator draws full current. As high noise environments may cause excessive oscillator instability in Sleep mode, this option is best suited for low noise applications, where power conservation is an important design consideration.

<u>The low-power option is enabled by clearing the</u> T1OSCMX bit (CONFIG3L<5>). By default, the option is disabled, which results in a more or less constant current draw for the Timer1 oscillator.

Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 13-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD. Refer to **Section 2.0 "Guidelines for Getting Started with PIC18F Microcontrollers"** for additional information

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
SMP	CKE	D/A	Р	S	R/W	UA	BF				
bit 7	I						bi				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
L:1 7	011D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1- 1-14									
bit 7	SMP: Sample bit SPI Master mode:										
		ta sampled at e	nd of data outr	out time							
		ta sampled at m									
	<u>SPI Slave m</u>	ode:									
	SMP must b	e cleared when	SPI is used in	Slave mode.							
bit 6	CKE: SPI CI	lock Edge Selec	t bit (Figure 19	9-2, Figure 19-3	and Figure 19-	4)					
	<u>SPI mode, C</u>										
		nsmitted on risir									
	0 = Data transmitted on falling edge of SCK SPI mode, CKP = 1:										
	<u>SPI mode, CKP = 1:</u> 1 = Data transmitted on falling edge of SCK										
		nsmitted on risir									
	<u>I²C™ mode:</u>	<u>-</u>									
	_	t be maintained									
bit 5	D/A : Data/A	D/A : Data/Address bit (I ² C mode only) 1 = Indicates that the last byte received or transmitted was data									
		s that the last by s that the last by									
bit 4	P : Stop bit (I ² C mode only)										
	This bit is cleared when the SSP module is disabled or when the Start bit is detected last; SSPEN is cleared.										
	cleared. 1 = Indicates that a Stop bit has been detected last (this bit is '0' on Reset)										
		was not detecte				.()					
bit 3	S : Start bit (I^2C mode only)										
	This bit is cleared when the SSP module is disabled or when the Stop bit is detected last; SSPEN is										
	cleared. 1 = Indicates that a Start bit has been detected last (this bit is '0' on Reset)										
		s that a Start bit was not detecte		cted last (this b	it is '0' on Rese	et)					
bit 2		Write Information	•	• ·							
	This bit hold	s the R/W bit inf	ormation follow	win <u>g the l</u> ast ad	dress match. T	his bit is only v	alid from the				
	This bit holds the R/\overline{W} bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or ACK bit.										
	1 = Read 0 = Write										
hit 1		Address bit (10	Bit I ² C mode	only)							
	UA : Update Address bit (10-Bit I ² C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register										
bit 1	1 = Indicates	,		e the address in	the SSPADD r	eaister					
DILI		,	eeds to update	e the address ir	the SSPADD r	egister					
bit 0		s that the user n does not need	eeds to update	e the address ir	n the SSPADD r	egister					
	0 = Address BF : Buffer F	s that the user n does not need	eeds to update to be updated	e the address ir	the SSPADD r	egister					
	0 = Address BF : Buffer F <u>Receive (SP</u> 1 = Receive	s that the user n does not need ull Status bit <u>Pl and I²C mode</u> complete, SSP	eeds to update to be updated <u>s):</u> BUF is full		the SSPADD r	egister					
	0 = Address BF : Buffer F <u>Receive (SP</u> 1 = Receive 0 = Receive	s that the user n does not need ull Status bit <u>et and I²C mode</u> complete, SSP not complete, S	eeds to update to be updated <u>s):</u> BUF is full		n the SSPADD r	egister					
	0 = Address BF : Buffer F <u>Receive (SP</u> 1 = Receive 0 = Receive <u>Transmit (I²(</u>	s that the user n does not need ull Status bit <u>Pl and I²C mode</u> complete, SSP	eeds to update to be updated <u>s):</u> BUF is full iSPBUF is em		n the SSPADD r	egister					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0			
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D			
pit 7	·						bit			
₋egend: R = Readab	le hit	W = Writable	hit	II = I Inimplen	nented bit, rea	d as 'O'				
n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	own			
		2.1.0 000								
oit 7	CSRC: Clock	Source Select	bit							
	<u>Asynchronou</u> Don't care.	<u>s mode:</u>								
		<u>mode:</u> ode (clock gen ode (clock from								
pit 6		ansmit Enable I								
		-bit transmissio -bit transmissio								
oit 5	TXEN: Trans	mit Enable bit ⁽¹)							
	1 = Transmit 0 = Transmit									
oit 4	SYNC: EUSA	SYNC: EUSART Mode Select bit								
	1 = Synchror									
	0 = Asynchro		- t h : t							
bit 3		d Break Chara	cter bit							
				n (cleared by ha	rdware upon c	ompletion)				
	<u>Synchronous</u> Don't care.		·							
oit 2	BRGH: High	Baud Rate Sel	ect bit							
	Asynchronou 1 = High spe 0 = Low spee	ed								
	Synchronous Unused in thi	mode:								
pit 1	TRMT: Trans	mit Shift Regist	er Status bit							
	1 = TSR is er 0 = TSR is fu									
oit O	TX9D: 9th Bi	t of Transmit Da	ata							
	Can be addre									

20.5 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the RC6/TX/CK/SS pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

20.5.1 EUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit, TXIF, will not be set.
- When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	57
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	57
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	57
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	56
TXREG	EUSART Tra	ansmit Regist	er						56
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	56
BAUDCON	—	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	56
SPBRGH	EUSART Baud Rate Generator Register High Byte								56
SPBRG	EUSART Baud Rate Generator Register Low Byte								56

TABLE 20-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

REGISTER 21-4: ADCON3: A/D CONTROL REGISTER 3

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRS1	ADRS0	—	SSRC4 ⁽¹⁾	SSRC3 ⁽¹⁾	SSRC2 ⁽¹⁾	SSRC1 ⁽¹⁾	SSRC0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 **ADRS<1:0>**: A/D Result Buffer Depth Interrupt Select Control for Continuous Loop Mode bits The ADRS bits are ignored in Single-Shot mode. 00 = Interrupt is generated when each word is written to the buffer 01 = Interrupt is generated when the 2nd and 4th words are written to the buffer

10 = Interrupt is generated when the 4th word is written to the buffer

11 = Unimplemented

bit 5 Unimplemented: Read as '0'

bit 4-0 SSRC<4:0>: A/D Trigger Source Select bits⁽¹⁾

00000 = All triggers disabled

xxxx1 = External interrupt RC3/INT0 starts A/D sequence

<code>xxx1x</code> = Timer5 starts A/D sequence

xx1xx = Input Capture 1 (IC1) starts A/D sequence

 ${\tt xlxxx}$ = CCP2 compare match starts A/D sequence

1xxxx = Power Control PWM module rising edge starts A/D sequence

Note 1: The SSRC<4:0> bits can be set such that any of the triggers will start a conversion (e.g., SSRC<4:0> = 00101 will trigger the A/D conversion sequence when RC3/INT0 or Input Capture 1 event occurs).

21.1.3 CONVERSION SEQUENCING

The ACMOD<1:0> bits control the sequencing of the A/D conversions. When ACSCH = 0, the A/D is configured to sample and convert a single channel. The ACMOD bits select which group to perform the conversions and the GxSEL<1:0> bits select which channel in the group is to be converted. If Single-Shot mode is enabled, the A/D interrupt flag will be set after the channel is converted. If Continuous Loop mode is enabled, the A/D interrupt flag will be set according to the ADRS<1:0> bits.

When ACSCH = 1, multiple channel sequencing is enabled and two submodes can be selected. The first mode is Sequential mode with two settings. The first setting is called SEQM1, and first samples and converts the selected Group A channel, and then samples and converts the selected Group B channel. The second mode is called SEQM2, and it samples and converts a Group A channel, Group B channel, Group C channel and finally, a Group D channel.

The second multiple channel sequencing submode is Simultaneous Sampling mode. In this mode, there are also two settings. The first setting is called STNM1, and uses the two sample and hold circuits on the A/D module. The selected Group A and B channels are simultaneously sampled and then the Group A channel is converted followed by the conversion of the Group B channel. The second setting is called STNM2, and starts the same as STNM1, but follows it with a simultaneous sample of Group C and D channels. The A/D module will then convert the Group C channel followed by the Group D channel.

21.1.4 TRIGGERING A/D CONVERSIONS

The PIC18F2331/2431/4331/4431 devices are capable of triggering conversions from many different sources. The same method used by all other microcontrollers of setting the GO/DONE bit still works. The other trigger sources are:

- RC3/INT0 Pin
- Timer5 Overflow
- Input Capture 1 (IC1)
- CCP2 Compare Match
- · Power Control PWM Rising Edge

These triggers are enabled using the SSRC<4:0> bits (ADCON3<4:0>). Any combination of the five sources can trigger a conversion by simply setting the corresponding bit in ADCON3. When the trigger occurs, the GO/DONE bit is automatically set by the hardware and then cleared once the conversion completes.

21.1.5 A/D MODULE INITIALIZATION STEPS

The following steps should be followed to initialize the A/D module:

- 1. Configure the A/D module:
 - a) Configure the analog pins, voltage reference and digital I/O.
 - b) Select the A/D input channels.
 - c) Select the A/D Auto-Conversion mode (Single-Shot or Continuous Loop).
 - d) Select the A/D conversion clock.
 - e) Select the A/D conversion trigger.
- 2. Configure the A/D interrupt (if required):
 - a) Set the GIE bit.
 - b) Set the PEIE bit.
 - c) Set the ADIE bit.
 - d) Clear the ADIF bit.
 - e) Select the A/D trigger setting.
 - f) Select the A/D interrupt priority.
- 3. Turn on ADC:
 - a) Set the ADON bit in the ADCON0 register.
 - b) Wait the required power-up setup time, about 5-10 $\ensuremath{\mu s}.$
- 4. Start the sample/conversion sequence:
 - a) Sample for a minimum of 2 TAD and start the conversion by setting the GO/DONE bit. The GO/DONE bit is set by the user in software or by the module if initiated by a trigger.
 - b) If TACQ is assigned a value (multiple of TAD), then setting the GO/DONE bit starts a sample period of the TACQ value, then starts a conversion.
- 5. Wait for A/D conversion/conversions to complete using one of the following options:
 - a) Poll for the GO/DONE bit to be cleared if in Single-Shot mode.
 - b) Wait for the A/D Interrupt Flag (ADIF) to be set.
 - c) Poll for the BFEMT bit to be cleared to signify that at least the first conversion has completed.
- 6. Read the A/D results, clear the ADIF flag, reconfigure the trigger.

CLF	RF	Clear f					CLRW	/DT	Clear Wa	tchdog Tim	er		
Synt	ax:	[<i>label</i>] CL	RF f[,a]				Syntax		[label] C	[label] CLRWDT			
Ope	rands:	$0 \le f \le 255$					Operar	nds:	None				
One	ration:	a ∈ [0,1] 000h → f,					Operat	ion:	$000h \rightarrow W$	DT, DT postscaler			
Ope		$1 \rightarrow Z$							$1 \rightarrow \overline{\text{TO}}$	DT posiscalei	3		
Statu	us Affected:	Z							$1 \rightarrow \overline{PD}$				
Enco	oding:	0110	101a	ffff	ffff]	Status	Affected:	TO, PD				
Desc	cription:	Clears the	contents of	the spe	cified reg-	-	Encodi	ng:	0000	0000 00	00 0100		
		ister. If 'a' is selected, o 'a' = 1, ther per the BSI	verriding the the bank w	e BSR \	/alue. If		Descrip	otion:	Watchdog	e WDT. Statu	resets the post-		
Wor	ds:	1					Words:		1				
Cycl	es:	1					Cycles	:	1				
QC	Cycle Activity:						Q Cyc	le Activity:					
	Q1	Q2	Q3		Q4	7		Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process Data		Write gister 'f'			Decode	No operation	Process Data	No operation		
		register i	Dulu	10		1			operation	Dulu	operation		
Exar	<u>mple:</u>	CLRF	FLAG_	REG			Examp	le:	CLRWDT				
	Before Instruc						Be	efore Instruc		0			
	FLAG_R		5A					WDT Co		?			
	After Instruction		00				At	ter Instructio WDT Co		0x00			
								WDT Po:		0			
								TO	=	1			
								PD	=	1			

)	=	1
)	=	1

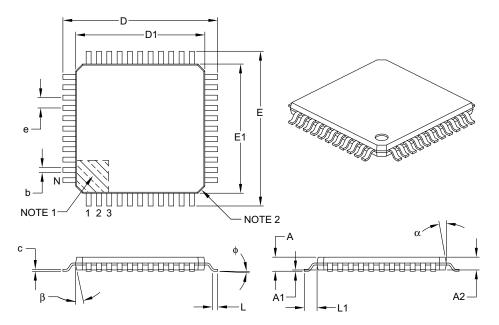
IORLW	Inclusive	Inclusive OR Literal with W						
Syntax:	[label]	ORLW k						
Operands:	$0 \le k \le 255$	5						
Operation:	(W) .OR. k	$\rightarrow W$						
Status Affected:	N, Z							
Encoding:	0000	1001	kkkk	kkkk				
Description:	The conter 8-bit literal W.							
Words:	1	1						
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'	Proce Data		/rite to W				
Example:	IORLW	0x35						
Before Instruc W	tion = 0x9A							
After Instructio W	on = 0xBF							

IORWF		Inclusive	OR W	with f		
Syntax:		[label]	ORWF	f [,d [,	a]]	
Operands:		$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	i			
Operation:		(W) .OR. (f) \rightarrow dest			
Status Affected	:	N, Z				
Encoding:		0001	00da	fff	f	ffff
Description:		Inclusive C '0', the result i 'a' is '0', th selected, c 'a' = 1, the per the BS	ult is plac s placed to be Access overriding n the ban	ced in N back in Bank the B	W. If reg will SR v	f 'd' is '1', ister, 'f'. If be value. If
Words:		1				
Cycles:		1				
Q Cycle Activi	ty:					
Q1		Q2	Q3	3	Q4	
Decode	;	Read register 'f'	Proce Data			/rite to stination
Example: Before Ins	tructio		RESULT,	W		
	JLT					
After Instr RES W	JLT					

TABLE 26-20: A/D CONVERTER CHARACTERISTICS

	F2331/243 ustrial)	31/4331/4431	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
	2331/2431 ustrial)	/4331/4431	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Characteristic Min Typ Max L		Units	Conditions			
Device	Supply	·					-		
	AVDD	Analog VDD Supply	VDD - 0.3	—	VDD + 0.3	V			
	AVss	Analog Vss Supply	Vss – 0.3	_	Vss + 0.3	V			
	IAD	Module Current (during conversion)	_	500 250		μΑ μΑ	VDD = 5V VDD = 2.5V		
	Iado	Module Current Off	_	_	1.0	μA			
AC Timi	ng Param	eters							
A10	Fthr	Throughput Rate	_		200 75	ksps ksps	VDD = 5V, single channel VDD < 3V, single channel		
A11	Tad	A/D Clock Period	385 1000		20,000 20,000	ns ns	VDD = 5V VDD = 3V		
A12	TRC	A/D Internal RC Oscillator Period		500 750 10000	1500 2250 20000	ns ns ns	PIC18F parts PIC18LF parts AVDD < 3.0V		
A13	TCNV	Conversion Time ⁽¹⁾	12	12	12	TAD			
A14	TACQ	Acquisition Time ⁽²⁾	2 ⁽²⁾		—	TAD			
A16	Ттс	Conversion Start from External	1/4 Tcy	_	—				
Referen	ice Inputs								
A20	Vref	Reference Voltage for 10-Bit Resolution (VREF+ – VREF-)	1.5 1.8		AVDD – AVSS AVDD – AVSS	V V	$VDD \ge 3V$ VDD < 3V		
A21	VREFH	Reference Voltage High (AVDD or VREF+)	1.5V	_	AVdd	V	$VDD \ge 3V$		
A22	Vrefl	Reference Voltage Low (AVss or VREF-)	AVss	_	VREFH – 1.5V	V			
A23	IREF	Reference Current		150 μΑ 75 μΑ			VDD = 5V VDD = 2.5V		
Analog	Input Char	racteristics							
A26	VAIN	Input Voltage ⁽³⁾	AVss - 0.3		AVDD + 0.3	V			
A30	ZAIN	Recommended Impedance of Analog Voltage Source			2.5	kΩ			
A31	ZCHIN	Analog Channel Input Impedance	—	_	10.0	kΩ	VDD = 3.0V		
DC Per	formance								
A41	Nr	Resolution		10 bits		_			
A42	EIL	Integral Nonlinearity	—	—	<±1	LSb	$\begin{array}{l} VDD \geq 3.0V \\ VREFH \geq 3.0V \end{array}$		
A43	EIL	Differential Nonlinearity	_		<±1	LSb	$\begin{array}{l} VDD \geq 3.0V \\ VREFH \geq 3.0V \end{array}$		
A45	EOFF	Offset Error	—	±0.5	<±1.5	LSb	$\begin{array}{l} VDD \geq 3.0V \\ VREFH \geq 3.0V \end{array}$		
A46	Ega	Gain Error	—	±0.5	<±1.5	LSb	$\begin{array}{l} VDD \geq 3.0V \\ VREFH \geq 3.0V \end{array}$		
A47	-	Monotonicity ⁽⁴⁾		guarantee	d	—	$\begin{array}{l} VDD \geq 3.0V \\ VREFH \geq 3.0V \end{array}$		

Note 1: Conversion time does not include acquisition time. See Section 21.0 "10-Bit High-Speed Analog-to-Digital Converter (A/D) Module" for a full discussion of acquisition time requirements.


2: In Sequential modes, TACQ should be 12 TAD or greater.

3: For VDD < 2.7V and temperature below 0°C, VAIN should be limited to range < VDD/2.

4: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
C	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N		44		
Lead Pitch	е		0.80 BSC		
Overall Height	А	_	—	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0° 3.5° 7°			
Overall Width	E		12.00 BSC		
Overall Length	D		12.00 BSC		
Molded Package Width	E1		10.00 BSC		
Molded Package Length	D1		10.00 BSC		
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

DEVID2 (Device ID 2)	273
DFLTCON (Digital Filter Control)	
DTCON (Dead-Time Control)	
EECON1 (Data EEPROM Control 1)	87
EECON1 (EEPROM Control 1)	80
FLTCONFIG (Fault Configuration)	
INTCON (Interrupt Control)	
INTCON2 (Interrupt Control 2)	
INTCON3 (Interrupt Control 3)	101
IPR1 (Peripheral Interrupt Priority 1)	108
IPR2 (Peripheral Interrupt Priority 2)	
IDD2 (Device and Interrupt Priority 2)	100
IPR3 (Peripheral Interrupt Priority 3)	
LVDCON (Low-Voltage Detect Control)	
OSCCON (Oscillator Control)	36
OSCTUNE (Oscillator Tuning)	
OVDCOND (Output Override Control)	
OVDCONS (Output State)	
PIE1 (Peripheral Interrupt Enable 1)	
PIE2 (Peripheral Interrupt Enable 2)	106
PIE3 (Peripheral Interrupt Enable 3)	107
PIR1 (Peripheral Interrupt Request (Flag) 1)	
PIR2 (Peripheral Interrupt Request (Flag) 2)	
PIR3 (Peripheral Interrupt Request (Flag) 3)	
PTCON0 (PWM Timer Control 0)	178
PTCON1 (PWM Timer Control 1)	178
PWMCON0 (PWM Control 0)	
PWMCON1 (PWM Control 1)	
QEICON (QEI Control)	
RCON (Reset Control)	
RCSTA (Receive Status and Control)	
SSPCON (SSP Control)	207
SSPSTAT (SSP Status)	
STATUS	
STKPTR (Stack Pointer)	
Summary	
TRISE	
TXSTA (Transmit Status and Control)	218
T0CON (Timer0 Control)	
T1CON (Timer1 Control)	
T2CON (Timer2 Control)	
T5CON (Timer5 Control)	139
WDTCON (Watchdog Timer Control)	275
RESET	313
Reset	47
Resets	
RETFIE	
RETLW	
RETURN	
Return Address Stack	
Return Stack Pointer (STKPTR)	62
Revision History	
RLCF	
RLNCF	
RRCF	
RRNCF	317

S

S (Start) Bit SCK	205 212 205 205 44 40
—	
Serial Clock (SCK) Pin Serial Data In (SDI) Pin	

Order Date Out (ODO) Die	005
Serial Data Out (SDO) Pin	
SETF	
Single-Supply ICSP Programming	282
Slave Select (SS) Pin	205
SLEEP	
Sleep	
OSC1 and OSC2 Pin States	37
Software Simulator (MPLAB SIM)	327
Special Event Trigger. See Compare (CCP Module).	
Special Features of the CPU	263
Special Function Registers	
Мар	69
SPI Mode (SSP)	
Associated Registers	
Serial Clock	
Serial Data In	
Serial Data Internet Serial Data Out	
Slave Select	
SS	205
Overview.	
TMR2 Output for Clock Shift 136,	
SSPEN Bit	
SSPM<3:0> Bits	
SSPOV Bit	
Stack Full/Underflow Resets	64
Status Bits, Significance and Initialization for	
RCON Register	53
SUBFWB	318
SUBLW	319
SUBWF	319
SUBWFB	320
SWAPF	320
Synchronous Serial Port. See SSP.	

Т

TABLAT Register	88
Table Pointer Operations (table)	88
TBLPTR Register	88
TBLRD	321
TBLWT	322
Time-out in Various Situations (table)	50
Timer0	127
Associated Registers	129
Clock Source Edge Select (T0SE Bit)	129
Clock Source Select (T0CS Bit)	129
Interrupt	129
Operation	129
Prescaler	
Switching Assignment	129
Prescaler. See Prescaler, Timer0.	
16-Bit Mode Timer Reads and Writes	129
Timer1	131
Associated Registers	135
Interrupt	134
Operation	132
Oscillator	131, 133
Layout Considerations	133
Overflow Interrupt	131
Resetting, Using a Special Event Trigger	
Output (CCP)	134
Special Event Trigger (CCP)	147
TMR1H Register	131
TMR1L Register	131
Use as a Real-Time Clock (RTC)	134
16-Bit Read/Write Mode	