

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2431t-e-sog

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pi	n Numl	ber	Pin	Buffer	Description
	PDIP	TQFP	QFN	туре	туре	
						PORTC is a bidirectional I/O port.
RC0/T1OSO/T1CKI RC0 T1OSO T1CKI	15	32	34	I/O O	ST — ST	Digital I/O. Timer1 oscillator output. Timer1 external clock input
RC1/T1OSI/CCP2/	16	35	35		•	
RC1 T1OSI <u>CCP2</u> FLTA				I/O I I/O I	ST CMOS ST ST	Digital I/O. Timer1 oscillator input. Capture 2 input, Compare 2 output, PWM2 output. Fault interrupt input pin.
RC2/CCP1/FLTB RC2 <u>CCP1</u> FLTB	17	36	36	I/O I/O I	ST ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Fault interrupt input pin.
RC3/T0CKI/T5CKI/ INT0	18	37	37			
RC3 T0CKI ⁽¹⁾ T5CKI ⁽¹⁾ INT0				I/O I I	ST ST ST ST	Digital I/O. Timer0 alternate clock input. Timer5 alternate clock input. External Interrupt 0.
RC4/INT1/SDI/SDA RC4 INT1 SDI ⁽¹⁾ SDA ⁽¹⁾	23	42	42	I/O I I I/O	ST ST ST I ² C	Digital I/O. External Interrupt 1. SPI data in. I ² C™ data I/O.
RC5/INT2/SCK/SCL RC5 INT2 SCK ⁽¹⁾ SCL ⁽¹⁾	24	43	43	I/O I I/O I/O	ST ST ST I ² C	Digital I/O. External Interrupt 2. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.
RC6/TX/CK/SS RC6 TX <u>CK</u> SS	25	44	44	I/O O I/O I	ST — ST ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT). SPI slave select input.
RC7/RX/DT/SDO RC7 RX DT SDO ⁽¹⁾	26	1	1	I/O I I/O O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK). SPI data out.
Legend: TTL = TTL ST = Sch	compa mitt Trig	itible inp gger inp	out out with	CMOS	6 levels	CMOS = CMOS compatible input or output I = Input B = Powor
Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin						

TABLE 1-3: PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)

for SCK/SCL; RC7 is the alternate pin for SDO.

2: RD4 is the alternate pin for \overline{FLTA} .

3: RD5 is the alternate pin for PWM4.

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer. In this mode, the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing-sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPG	D CFGS	_	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7			I				bit 0
Legend:		S = Settable b	oit (cannot be o	cleared in softwa	are)		
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	EEPGD: Flas 1 = Access F 0 = Access d	h Program or E lash program r lata EEPROM r	Data EEPROM nemory nemory	Memory Select	t bit		
bit 6	CFGS: Flash	Program/Data	EEPROM or C	Configuration Se	elect bit		
	1 = Access C 0 = Access F	Configuration re	gisters or data EEPRC	OM memory			
bit 5	Unimplemen	ted: Read as ')'				
bit 4	FREE: Flash	Row Erase Ena	able bit				
	1 = Erase the completion 0 = Perform	e program mer on of erase ope write only	nory row addr ration)	essed by TBLF	TR on the ne	xt WR commar	nd (cleared by
bit 3	WRERR: Flas	sh Program/Da	ta EEPROM E	rror Flag bit ⁽¹⁾			
	1 = A write o operatior 0 = The write	peration is prei n, or an imprope e operation com	maturely termi er write attemp ipleted	nated (any Res it)	et during self-t	imed programr	ning in normal
bit 2	WREN: Flash	Program/Data	EEPROM Wr	ite Enable bit			
	1 = Allows w 0 = Inhibits w	rite cycles to Fl vrite cycles to F	ash program/c lash program/c	lata EEPROM data EEPROM			
bit 1	WR: Write Co	ontrol bit					
	1 = Initiates a (The ope can only 0 = Write cyc	a data EEPRON ration is self-tin be set (not clea cle to the EEPR	I erase/write c ned and the bit ared) in softwa OM is comple	ycle or a progra t is cleared by h re.) te	m memory era ardware once	se cycle or writ write is comple	e cycle te. The WR bit
bit 0	RD: Read Co	ntrol bit					
	1 = Initiates a be set (no 0 = Does not	an EEPROM re ot cleared) in so initiate an EEF	ad (Read takes oftware. RD bit PROM read	s one cycle. RD cannot be set w	is cleared in h /hen EEPGD =	ardware. The F 1 or CFGS = 1	RD bit can only .)
Noto 1		accura the EE		S hits are not a	loored This a	lowe tracing of	the error

REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

REGISTER 8-1: EECON1: DATA EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit (cannot be cleared in software)				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ıd as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit 1 = Access Flash program memory 0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit 1 = Access Configuration registers 0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation, or an improper write attempt) 0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	 1 = Allows write cycles to Flash program/data EEPROM 0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write Control bit
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete.
bit 0	RD: Read Control bit
	 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.) 0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

R/W-1	U-0	U-0	R/W-1	U-0	R/W-1	U-0	R/W-1
OSCFIP	—	—	EEIP	—	LVDIP	—	CCP2IP
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	OSCFIP: Osc	illator Fail Inter	rupt Priority bit	:			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 6-5	Unimplemen	ted: Read as '0	,				
bit 4	EEIP: Interrup	ot Priority bit					
	1 = High prio	rity					
	0 = Low priority						
bit 3	Unimplemented: Read as '0'						
bit 2	LVDIP: Low-V	/oltage Detect I	nterrupt Priorit	y bit			
	1 = High prio	rity					
	0 = Low prior	ity					
bit 1	Unimplemen	ted: Read as '0	,				
bit 0	CCP2IP: CCF	P2 Interrupt Pric	ority bit				
	1 = High prio	rity					
	• • • • • • • • • • • • • • • •						

0 = Low priority

10.5 RCON Register

The RCON register contains bits used to determine the cause of the last Reset or wake-up from a powermanaged mode. RCON also contains the bit that enables interrupt priorities (IPEN).

REGISTER 10-13: RCON: RESET CONTROL REGISTER

R/W-0	U-0	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	—	_	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit
	1 = Enable priority levels on interrupts
	0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6-5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	For details of bit operation, see Register 5-1.
bit 3	TO: Watchdog Timer Time-out Flag bit
	For details of bit operation, see Register 5-1.
bit 2	PD: Power-Down Detection Flag bit
	For details of bit operation, see Register 5-1.
bit 1	POR: Power-on Reset Status bit
	For details of bit operation, see Register 5-1.
bit 0	BOR: Brown-out Reset Status bit
	For details of bit operation, see Register 5-1.

11.4 PORTD, TRISD and LATD Registers

Note:	PORTD is only available on PIC18F4331/
	4431 devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins are
	configured as digital inputs.

PORTD includes PWM<7:6> complementary fourth channel PWM outputs. PWM4 is the complementary output of PWM5 (the third channel), which is multiplexed with the RB5 pin. This output can be used as the alternate output using the PWM4MX Configuration bit in CONFIG3H when the Single-Supply Programming pin (PGM) is used on RB5.

RD1, RD2 and RD3 can be used as the alternate output for SDO, SDI/SDA and SCK/SCL using the SSPMX Configuration bit in CONFIG3H.

RD4 an be used as the alternate output for FLTA using the FLTAMX Configuration bit in CONFIG3H.

EXAMPLE 11-4:	INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by ; clearing output : data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

14.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF (PIR1<1>).

The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>). A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

FIGURE 14-1: TIMER2 BLOCK DIAGRAM

14.3 Output of TMR2

The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode. Timer2 can be optionally used as the shift clock source for the SSP module operating in SPI mode.

For additional information, see Section 19.0 "Synchronous Serial Port (SSP) Module".

TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54	
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	57	
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	57	
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	57	
TMR2	Timer2 Register								55	
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	55	
PR2	Timer2 Period Register									

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Table 18-1 shows the minimum PWM frequencies that can be generated with the PWM time base and the prescaler. An operating frequency of 40 MHz (FCYC = 10 MHz) and PTPER = 0xFFF is assumed in the table. The PWM module must be capable of generating PWM signals at the line frequency (50 Hz or 60 Hz) for certain power control applications.

Minimum PWM Frequencies vs. Prescaler Value for Fcyc = 10 MIPS (PTPER = 0FFFh)							
Prescale	PWM Frequency Edge-Aligned	PWM Frequency Center-Aligned					
1:1	2441 Hz	1221 Hz					
1:4	610 Hz	305 Hz					
1:16	153 Hz	76 Hz					
1:64	38 Hz	19 Hz					

TABLE 18-1: MINIMUM PWM FREQUENCY

18.3.5 PWM TIME BASE POSTSCALER

The match output of PTMR can optionally be postscaled through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate an interrupt. The postscaler counter is cleared when any of the following occurs:

- Write to the PTMR register
- Write to the PTCON register
- Any device Reset

The PTMR register is not cleared when PTCON is written.

18.4 PWM Time Base Interrupts

The PWM timer can generate interrupts based on the modes of operation selected by the PTMOD<1:0> bits and the postscaler bits (PTOPS<3:0>).

18.4.1 INTERRUPTS IN FREE-RUNNING MODE

When the PWM time base is in the Free-Running mode (PTMOD<1:0> = 00), an interrupt event is generated each time a match with the PTPER register occurs. The PTMR register is reset to zero in the following clock edge.

Using a postscaler selection other than 1:1 will reduce the frequency of interrupt events.

FIGURE 18-5: PWM TIME BASE INTERRUPT TIMING, FREE-RUNNING MODE

18.6 PWM Duty Cycle

PWM duty cycle is defined by the PDCx (PDCxL and PDCxH) registers. There are a total of four PWM Duty Cycle registers for four pairs of PWM channels. The Duty Cycle registers have 14-bit resolution by combining six LSbs of PDCxH with the 8 bits of PDCxL. PDCx is a double-buffered register used to set the counting period for the PWM time base.

18.6.1 PWM DUTY CYCLE REGISTERS

There are four 14-bit Special Function Registers used to specify duty cycle values for the PWM module:

- PDC0 (PDC0L and PDC0H)
- PDC1 (PDC1L and PDC1H)
- PDC2 (PDC2L and PDC2H)
- PDC3 (PDC3L and PDC3H)

The value in each Duty Cycle register determines the amount of time that the PWM output is in the active state. The upper 12 bits of PDCx holds the actual duty cycle value from PTMRH/L<11:0>, while the lower 2 bits control which internal Q clock the duty cycle match will occur. This 2-bit value is decoded from the Q clocks as shown in Figure 18-11 (when the prescaler is 1:1 or PTCKPS<1:0> = 00).

In Edge-Aligned mode, the PWM period starts at Q1 and ends when the Duty Cycle register matches the PTMR register as follows. The duty cycle match is considered when the upper 12 bits of the PDCx are equal to the PTMR and the lower 2 bits are equal to Q1, Q2, Q3 or Q4, depending on the lower two bits of the PDCx (when the prescaler is 1:1 or PTCKPS<1:0> = 00).

Note:	When	en the prescaler		caler	is	not	1:1			
	(PTCK	PS<1:0)> ≠	~00),	the	duty	cycle			
	match	occurs	s at i	the Q	1 cl	ock c	of the			
	instruct	tion cy	vcle v	vhen	the	PTMF	and 8			
	PDCx match occurs.									

Each compare unit has logic that allows override of the PWM signals. This logic also ensures that the PWM signals will complement each other (with dead-time insertion) in Complementary mode (see **Section 18.7** "**Dead-Time Generators**").

18.7 Dead-Time Generators

In power inverter applications, where the PWMs are used in Complementary mode to control the upper and lower switches of a half-bridge, a dead-time insertion is highly recommended. The dead-time insertion keeps both outputs in inactive state for a brief time. This avoids any overlap in the switching during the state change of the power devices due to TON and TOFF characteristics.

Because the power output devices cannot switch instantaneously, some amount of time must be provided between the turn-off event of one PWM output in a complementary pair and the turn-on event of the other transistor. The PWM module allows dead time to be programmed. The following sections explain the dead-time block in detail.

18.7.1 DEAD-TIME INSERTION

Each complementary output pair for the PWM module has a 6-bit down counter used to produce the dead-time insertion. As shown in Figure 18-17, each dead-time unit has a rising and falling edge detector connected to the duty cycle comparison output. The dead time is loaded into the timer on the detected PWM edge event. Depending on whether the edge is rising or falling, one of the transitions on the complementary outputs is delayed until the timer counts down to zero. A timing diagram, indicating the dead-time insertion for one pair of PWM outputs, is shown in Figure 18-18.

FIGURE 18-17: DEAD-TIME CONTROL UNIT BLOCK DIAGRAM FOR ONE PWM OUTPUT PAIR

FIGURE 18-18: DEAD-TIME INSERTION FOR COMPLEMENTARY PWM

20.2.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 20-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Detect must receive a byte with the value of 55h (ASCII "U", which is also the LIN/J2602 bus Sync character) in order to calculate the proper bit rate. The measurement takes over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG begins counting up, using the preselected clock source on the first rising edge of RX. After eight bits on the RX pin, or the fifth rising edge, an accumulated value totalling the proper BRG period is left in the SPBRGH:SPBRG registers. Once the 5th edge is seen (should correspond to the Stop bit), the ABDEN bit is automatically cleared.

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. The BRG clock can be configured by the BRG16 and BRGH bits. The BRG16 bit must be set to use both SPBRG and SPBRGH as a 16-bit counter. This allows the user to verify that no carry occurred for 8bit modes by checking for 00h in the SPBRGH register. Refer to Table 20-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RCIF interrupt is set once the fifth rising edge on RX is detected. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded.

- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Rate Detection will occur on the byte *following* the Break character (see Section 20.3.4 "Auto-Wake-up on Sync Break Character").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.
 - **3:** To maximize baud rate range, setting the BRG16 bit is recommended if the auto-baud feature is used.

TABLE 20-4:	BRG COUNTER CLOCK
	RATES

BRG16	BRGH	BRG Counter Clock
0	0	Fosc/512
0	1	Fosc/256
1	0	Fosc/128
1	1	Fosc/32

FIGURE 20-1: AUTOMATIC BAUD RATE CALCULATION⁽¹⁾

BRG Value	XXXXh	0000h		001Ch
RX Pin		Start	- Edge #1 - Edge #2 - Edge #3 - Edge #4 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7	– Edge #5 Stop Bit
BRG Clock		huuuuuuu		
ABDEN bit	Set by user —			Auto-Cleared
RCIF bit (Interrupt)				
Read RCREG				f
SPBRG			XXXXh	1Ch
SPBRGH			XXXXh	00h

EXAMPLE 21-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	Negligible
TCOFF	=	$(\text{Temp} - 25^{\circ}\text{C})(0.005 \ \mu\text{s}/^{\circ}\text{C})$ $(50^{\circ}\text{C} - 25^{\circ}\text{C})(0.005 \ \mu\text{s}/^{\circ}\text{C}) = .13 \ \mu\text{s}$
Temper	ature	coefficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 µs.
ТС	=	-(CHOLD) (RIC + RSS + RS) $\ln(1/2047) \ \mu s$ -(9 pF) (1 k Ω + 6 k Ω + 100 Ω) ln(0.0004883) μs = .49 μs
TACQ	=	$0 + .49 \ \mu s + .13 \ \mu s = .62 \ \mu s$
Note	e: If t	he converter module has been in Sleep mode, TAMP is 2.0 μ s from the time the part exits Sleep mode.

22.4 LVD Start-up Time

The internal reference voltage of the LVD module, specified in electrical specification Parameter D420, may be used by other internal circuitry, such as the Programmable Brown-out Reset. If the LVD, or other circuits using the voltage reference, are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification Parameter 36.

The LVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (refer to Figure 22-2).

U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
_	_	WINEN	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN			
bit 7		•				•	bit 0			
Legend:										
R = Readable	e bit	P = Program	mable bit	U = Unimpler	nented bit, read	l as '0'				
-n = Value wi	hen device is unp	programmed		U = Unchang	ed from prograr	nmed state				
bit 7-6	Unimplemen	ted: Read as '	0'							
bit 5	WINEN: Wato	hdog Timer W	indow Enable	bit						
	1 = WDT wind	1 = WDT window is disabled								
	0 = WDT wind	dow is enabled								
bit 4-1	WDTPS<3:0>	: Watchdog Ti	mer Postscale	e Select bits						
	1111 = 1:32,7	768								
	1110 = 1.16,3	384 32								
	1101 - 1.0, 18 1100 = 1.4 00	92								
	1011 = 1.204	18								
	1010 = 1:1,02	24								
	1001 = 1:512									
	1000 = 1:256									
	0111 = 1:128									
	0110 = 1:64									
	0101 = 1:32									
	0100 = 1.10									
	0011 = 1.0 0010 = 1.4									
	0001 = 1.4									
	0000 = 1:1									
bit 0	WDTEN: Wat	chdog Timer E	nable bit							
	1 = WDT is er	nabled								
	0 = WDT is di	sabled (contro	l is placed on	the SWDTEN	bit)					

REGISTER 23-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

Mnemonic, Operands		Description	Quality	16-Bit Instruction Word				Status	
		Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPERA	TIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	2	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	1 (2)	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	C, DC	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP		Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 24-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

GO'	го	Uncondit	ional Branc	h	INC	F	Incremen	tf	
Synt	ax:	[label] G	[<i>label</i>] GOTO k			ax:	[label] IN	NCF f [,d [,a]]
Оре	erands: $0 \le k \le 1048575$				Ope	rands:	$0 \leq f \leq 255$		
Operation: $k \rightarrow PC < 20:1 >$						d ∈ [0,1] a ∈ [0,1]			
Statu	us Affected:	None	-		Ope	ration:	(f) + 1 \rightarrow de	est	
Enco 1st v 2nd ⁻	oding: vord (k<7:0>) word(k<19:8>)	1110 1111	1111 k ₇ k	kk kkkk ₀	Stati	us Affected: odina:	C, DC, N, 0	OV,Z	ff ffff
Description:		GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value, 'k', is loaded into PC<20:1>. GOTO is always a two-cycle instruction.			Des	cription:	The conten incremente placed in W placed back the Access riding the B	ts of register, d. If 'd' is '0', t /. If 'd' is '1', th < in register, 'f Bank will be s SR value. If 'a	f', are he result is he result is '. If 'a' is '0', selected, over- a' = 1, then the per the RSP
Wor	ds:	2					value.	e selecteu as	
Cycl	es:	2			Wor	ds:	1		
QC	cycle Activity:				Cycle		1		
	Q1	Q2	Q3	Q4			I		
	Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC		Q1	Q2 Read	Q3 Process	Q4 Write to
	No	No	No	No		Decode	register 'f'	Data	destination
	operation	operation	operation	operation	Exa	mple:	INCF	CNT,	
Exar	<u>mple:</u>	GOTO THE	RE			Before Instruc	tion		
After Instruction PC = Address (THERE)					CNT Z C DC	= 0xFF = 0 = ? = ?			
						After Instruction CNT Z C DC	on = 0x00 = 1 = 1 = 1		

27.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimer	nsion Limits	MIN	NOM	MAX
Number of Pins	N	28		
Pitch	е	.100 BSC		
Top to Seating Plane	A	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

DEVID2 (Device ID 2)	273
DELTCON (Digital Filter Control)	169
DTCON (Dead Time Centrel)	100
DICON (Dead-Time Control)	192
EECON1 (Data EEPROM Control 1)	87
EECON1 (EEPROM Control 1)	80
FLTCONFIG (Fault Configuration)	201
INTCON (Interrupt Control)	00
INTCON2 (Interrupt Control 2)	100
INTCON3 (Interrupt Control 3)	101
IPR1 (Peripheral Interrupt Priority 1)	108
IPR2 (Perinheral Interrunt Priority 2)	100
IDD2 (Device and Interrupt Priority 2)	100
IPR3 (Peripheral Interrupt Priority 3)	110
LVDCON (Low-Voltage Detect Control)	257
OSCCON (Oscillator Control)	36
OSCTUNE (Oscillator Tuning)	33
	196
	100
	190
PIE1 (Peripheral Interrupt Enable 1)	105
PIE2 (Peripheral Interrupt Enable 2)	106
PIE3 (Peripheral Interrupt Enable 3)	107
PIP1 (Peripheral Interrunt Request (Flag) 1)	102
DID2 (Deripheral Interrupt Deguest (Flag) 2)	102
PIRZ (Peripheral Interrupt Request (Flag) 2)	103
PIR3 (Peripheral Interrupt Request (Flag) 3)	104
PTCON0 (PWM Timer Control 0)	178
PTCON1 (PWM Timer Control 1)	178
PWMCON0 (PWM Control 0)	179
PW/MCON1 (PW/M Control 1)	180
	160
	102
RCON (Reset Control)	48, 111
RCSTA (Receive Status and Control)	219
SSPCON (SSP Control)	207
SSPSTAT (SSP Status)	206
STATUS	74
STKDTP (Stock Dointor)	
Summary	.70–73
TRISE	124
TXSTA (Transmit Status and Control)	218
T0CON (Timer0 Control)	127
T1CON (Timer1 Control)	131
T2CON (Timer? Control)	126
	130
15CON (Timers Control)	139
WDTCON (Watchdog Timer Control)	275
RESET	313
Reset	47
Resets	263
DETEIE	214
REILW	314
RETURN	315
Return Address Stack	62
Return Stack Pointer (STKPTR)	62
Revision History	
RICE	315
	246
	310
	316
RRNCF	317

S

S (Start) Bit	
SCK	205
SCL	
SDI	
SDO	205
SEC_IDLE Mode	
SEC_RUN Mode	
Serial Clock (SCK) Pin	
Serial Data In (SDI) Pin	

	005
Serial Data Out (SDO) Pin	205
SETF	. 317
Single-Supply ICSP Programming	. 282
Slave Select (SS) Pin	205
SLEEP	. 318
Sleep	
OSC1 and OSC2 Pin States	37
Software Simulator (MPLAB SIM)	327
Special Event Trigger, See Compare (CCP Module).	
Special Features of the CPU	. 263
Special Function Registers	
Man	69
SPI Mode (SSP)	205
Associated Registers	211
Serial Clock	205
Serial Data In	205
Serial Data III	205
Serial Data Out	205
	205
00 0 0	205
55P	
Overview.	
I MR2 Output for Clock Shift 136	, 137
SSPEN Bit	. 207
SSPM<3:0> Bits	. 208
SSPOV Bit	. 207
Stack Full/Underflow Resets	64
Status Bits, Significance and Initialization for	
RCON Register	53
SUBFWB	. 318
SUBLW	. 319
SUBWF	. 319
SUBWFB	320
SWAPF	. 320
Synchronous Serial Port. See SSP.	

Т

TABLAT Register	88
Table Pointer Operations (table)	88
TBLPTR Register	88
TBLRD	321
TBLWT	322
Time-out in Various Situations (table)	50
Timer0	127
Associated Registers	129
Clock Source Edge Select (T0SE Bit)	129
Clock Source Select (T0CS Bit)	129
Interrupt	129
Operation	129
Prescaler	129
Switching Assignment	129
Prescaler. See Prescaler, Timer0.	
16-Bit Mode Timer Reads and Writes	129
Timer1	131
Associated Registers	135
Interrupt	134
Operation	132
Oscillator	131, 133
Layout Considerations	133
Overflow Interrupt	131
Resetting, Using a Special Event Trigger	
Output (CCP)	134
Special Event Trigger (CCP)	147
TMR1H Register	131
TMR1L Register	131
Use as a Real-Time Clock (RTC)	134
16-Bit Read/Write Mode	134