

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2431t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer. In this mode, the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing-sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.

TADLE 0-2	IBLE 6-2. REGISTER FILE SUMMART (FICTOF2331/2431/4431) (CONTINUED)								
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
EEADR	EEPROM Add	fress Register							0000 0000
EEDATA	EEPROM Dat	a Register							0000 0000
EECON2	EEPROM Cor	ntrol Register 2	(not a physical	register)					0000 0000
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	xx-0 x000
IPR3	_	—	—	PTIP	IC3DRIP	IC2QEIP	IC1IP	TMR5IP	1 1111
PIR3	_	—	—	PTIF	IC3DRIF	IC2QEIF	IC1IF	TMR5IF	0 0000
PIE3	_	—	—	PTIE	IC3DRIE	IC2QEIE	IC1IE	TMR5IE	0 0000
IPR2	OSCFIP	—	—	EEIP	_	LVDIP	—	CCP2IP	11 -1-1
PIR2	OSCFIF	—	—	EEIF	_	LVDIF	—	CCP2IF	00-0
PIE2	OSCFIE	—	—	EEIE	_	LVDIE	—	CCP2IE	00-0
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-111 1111
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000
OSCTUNE	_	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000
ADCON3	ADRS1	ADRS0	—	SSRC4	SSRC3	SSRC2	SSRC1	SSRC0	00-0 0000
ADCHS	GDSEL1	GDSEL0	GBSEL1	GBSEL0	GCSEL1	GCSEL0	GASEL1	GASEL0	0000 0000
TRISE ⁽⁴⁾	— — — PORTE Data Direction Register ⁽⁴⁾					111			
TRISD ⁽⁴⁾	PORTD Data Direction Register 1							1111 1111	
TRISC	PORTC Data	Direction Regis	ster						1111 1111
TRISB	PORTB Data	Direction Regis	ter						1111 1111
TRISA	TRISA7 ⁽²⁾	TRISA6 ⁽¹⁾	PORTA Data I	Direction Regis	ter				1111 1111
PR5H	Timer5 Period	Register High	Byte						1111 1111
PR5L	Timer5 Period	Register Low	Byte						1111 1111
LATE ⁽⁴⁾	_	_	_	_	-	LATE Data Ou	utput Register		xxx
LATD ⁽⁴⁾	LATD Data Ou	utput Register							xxxx xxxx
LATC	LATC Data Ou	utput Register							xxxx xxxx
LATB	LATB Data Ou	utput Register							xxxx xxxx
LATA	LATA7 ⁽²⁾	LATA6 ⁽¹⁾	LATA Data Ou	Itput Register					xxxx xxxx
TMR5H	Timer5 Regist	er High Byte							xxxx xxxx
TMR5L	Timer5 Regist	er Low Byte							xxxx xxxx
PORTE	_	—	—	_	RE3 ^(4,5)	RE2 ⁽⁴⁾	RE1 ⁽⁴⁾	RE0 ⁽⁴⁾	xxxx
PORTD ⁽⁴⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx
PORTA	RA7 ⁽²⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000
PTCON0	PTOPS3	PTOPS2	PTOPS1	PTOPS0	PTCKPS1	PTCKPS0	PTMOD1	PTMOD0	0000 0000
PTCON1	PTEN	PTDIR	—	_	_	_	—	_	00
PTMRL	PWM Time Ba	ase Register (lo	wer 8 bits)						0000 0000
PTMRH		UNU	ISED		PWM Time Ba	ase Register (u	pper 4 bits)		0000
PTPERL	PWM Time Ba	ase Period Reg	ister (lower 8 b	its)	-				1111 1111
PTPERH	UNUSED PWM Time Base Period Register (upper 4						oits)	1111	

DECISTED FUE CUMMADY (DICASE3334/3434/4334/434) (CONTINUED)

 $\label{eq:Legend: Legend: Legend: used of the set of$

Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator modes only and read '0' in all other oscillator modes.

2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read '0' in all other modes.

3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

4: These registers and/or bits are not implemented on the PIC18F2331/2431 devices and read as '0'.

5: The RE3 port bit is only available for PIC18F4331/4431 devices when the MCLRE fuse (CONFIG3H<7>) is programmed to '0'; otherwise, RE3 reads '0'. This bit is read-only.

NOTES:

REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

R/W-1	U-0	U-0	R/W-1	U-0	R/W-1	U-0	R/W-1
OSCFIP	—	—	EEIP	—	LVDIP	—	CCP2IP
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	OSCFIP: Osc	illator Fail Inter	rupt Priority bit	:			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 6-5	Unimplemen	ted: Read as '0	,				
bit 4	EEIP: Interrup	ot Priority bit					
	1 = High prio	rity					
	0 = Low prior	ity					
bit 3	Unimplemen	ted: Read as '0	,				
bit 2	LVDIP: Low-V	/oltage Detect I	nterrupt Priorit	y bit			
	1 = High prio	rity					
	0 = Low prior	ity					
bit 1	Unimplemen	ted: Read as '0	,				
bit 0	CCP2IP: CCF	P2 Interrupt Pric	ority bit				
	1 = High prio	rity					
	• • • • • • • • • • • • • • • •						

0 = Low priority

13.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow, which is latched in Timer1 Interrupt Flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

13.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "Special Event Trigger" (CCP1M<3:0> = 1011), this signal will reset Timer1 and start an A/D conversion if the A/D module is enabled (see **Section 16.4.4** "**Special Event Trigger**" for more information).

Note:	The	Special	Event	Triggers	from	the	
	CCP1 module will not set interrupt flag bit,						
	TMR1IF (PIR1<0>).						

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L register pair effectively becomes the Period register for Timer1.

13.6 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 13-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, is valid due to a rollover between reads. A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

13.7 Using Timer1 as a Real-Time Clock (RTC)

Adding an external LP oscillator to Timer1 (such as the one described in **Section 13.2 "Timer1 Oscillator**") gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base, and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 13-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one. Additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
IPR3	_	_	_	PTIP	IC3DRIP	IC2QEIP	IC1IP	TMR5IP	56
PIE3	—	—	—	PTIE	IC3DRIE	IC2QEIE	IC1IE	TMR5IE	56
PIR3	—	—	—	PTIF	IC3DRIF	IC2QEIF	IC1IF	TMR5IF	56
TMR5H	Timer5 Register High Byte								57
TMR5L	TImer5 Register Low Byte								57
PR5H	Timer5 Period Register High Byte								57
PR5L	Timer5 Period Register Low Byte								57
T5CON	T5SEN	RESEN	T5MOD	T5PS1	T5PS0	T5SYNC	TMR5CS	TMR5ON	56
CAP1CON	_	CAP1REN	_	_	CAP1M3	CAP1M2	CAP1M1	CAP1M0	59
DFLTCON	—	FLT4EN	FLT3EN	FLT2EN	FLT1EN	FLTCK2	FLTCK1	FLTCK0	59

TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER5

Legend: — = unimplemented. Shaded cells are not used by the Timer5 module.

18.5 PWM Period

The PWM period is defined by the PTPER register pair (PTPERL and PTPERH). The PWM period has 12-bit resolution by combining 4 LSBs of PTPERH and 8 bits of PTPERL. PTPER is a double-buffered register used to set the counting period for the PWM time base.

The PTPER register contents are loaded into the PTPER register at the following times:

- Free-Running and Single-Shot modes: When the PTMR register is reset to zero after a match with the PTPER register.
- Continuous Up/Down Count modes: When the PTMR register is zero. The value held in the PTPER register is automatically loaded into the PTPER register when the PWM time base is disabled (PTEN = 0). Figure 18-9 and Figure 18-10 indicate the times when the contents of the PTPER register are loaded into the actual PTPER register.

The PWM period can be calculated from the following formulas:

EQUATION 18-1: PWM PERIOD FOR FREE-RUNNING MODE

 $TPWM = \frac{(PTPER + 1) \times PTMRPS}{FOSC/4}$

EQUATION 18-2: PWM PERIOD FOR UP/DOWN COUNT MODE

$$TPWM = \frac{(2 \text{ x PTPER}) \text{ x PTMRPS}}{\frac{Fosc}{4}}$$

The PWM frequency is the inverse of period; or:

EQUATION 18-3: PWM FREQUENCY

```
PWM Frequency = \frac{1}{PWM Period}
```

The maximum resolution (in bits) for a given device oscillator and PWM frequency can be determined from the following formula:

EQUATION 18-4: PWM RESOLUTION

Resolution =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$

The PWM resolutions and frequencies are shown for a selection of execution speeds and PTPER values in Table 18-2. The PWM frequencies in Table 18-2 are calculated for Edge-Aligned PWM mode. For Center-Aligned mode, the PWM frequencies will be approximately one-half the values indicated in this table.

TABLE 18-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS

PWM Frequency = 1/TPWM								
Fosc	MIPS	PTPER Value	PWM Resolution	PWM Frequency				
40 MHz	10	0FFFh	14 bits	2.4 kHz				
40 MHz	10	07FFh	13 bits	4.9 kHz				
40 MHz	10	03FFh	12 bits	9.8 kHz				
40 MHz	10	01FFh	11 bits	19.5 kHz				
40 MHz	10	FFh	10 bits	39.0 kHz				
40 MHz	10	7Fh	9 bits	78.1 kHz				
40 MHz	10	3Fh	8 bits	156.2 kHz				
40 MHz	10	1Fh	7 bits	312.5 kHz				
40 MHz	10	0Fh	6 bits	625 kHz				
25 MHz	6.25	0FFFh	14 bits	1.5 kHz				
25 MHz	6.25	03FFh	12 bits	6.1 kHz				
25 MHz	6.25	FFh	10 bits	24.4 kHz				
10 MHz	2.5	0FFFh	14 bits	610 Hz				
10 MHz	2.5	03FFh	12 bits	2.4 kHz				
10 MHz	2.5	FFh	10 bits	9.8 kHz				
5 MHz	1.25	0FFFh	14 bits	305 Hz				
5 MHz	1.25	03FFh	12 bits	1.2 kHz				
5 MHz	1.25	FFh	10 bits	4.9 kHz				
4 MHz	1	0FFFh	14 bits	244 Hz				
4 MHz	1	03FFh	12 bits	976 Hz				
4 MHz	1	FFh	10 bits	3.9 kHz				

Note: For center-aligned operation, PWM frequencies will be approximately 1/2 the value indicated in the table.

19.3 SSP I²C Operation

The SSP module, in I²C mode, fully implements all slave functions except general call support and provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the SCK/ SCL pin, which is the clock (SCL), and the SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<5:4> or TRISD<3:2> bits.

The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

FIGURE 19-5: SSP BLOCK DIAGRAM (I²C™ MODE)

Note 1: When SSPMX = 1 in CONFIG3H: SCK/SCL is multiplexed to the RC5 pin, SDA/ SDI is multiplexed to the RC4 pin and SDO is multiplexed to pin, RC7.

> When SSPMX = 0 in CONFIG3H: SCK/SCL is multiplexed to the RD3 pin, SDA/ SDI is multiplexed to the RD2 pin and SDO is multiplexed to pin, RD1.

The SSP module has five registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with Start and Stop bit interrupts enabled to support Firmware Controlled Master mode
- I²C Slave mode (10-bit address), with Start and Stop bit interrupts enabled to support Firmware Controlled Master mode
- I²C Start and Stop bit interrupts enabled to support Firmware Controlled Master mode; Slave is Idle

Selection of any I²C mode, with the SSPEN bit set, forces the SCL and SDA pins to be open-drain, provided these pins are programmed as inputs by setting the appropriate TRISC or TRISD bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

Additional information on SSP I²C operation can be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

19.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<5:4> or TRISD<3:2> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. They include (either or both):

- a) The Buffer Full bit, BF (SSPSTAT<0>), was set before the transfer was received.
- b) The SSP Overflow bit, SSPOV (SSPCON<6>), was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit, SSPIF (PIR1<3>), is set. Table 19-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit, BF, is cleared by reading the SSPBUF register, while bit, SSPOV, is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirements of the SSP module, are shown in timing Parameter 100 and Parameter 101.

20.3.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 20-5. The data is received on the RC7/RX/DT/SDO pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- 6. Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCIE, was set.
- Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

20.3.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

20.3.5 BREAK CHARACTER SEQUENCE

The Enhanced USART module has the capability of sending the special Break character sequences that are required by the LIN/J2602 bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN/J2602 specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 20-9 for the timing of the Break character sequence.

20.3.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN/J2602 bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to setup the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

20.3.6 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 of the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in Section 20.3.4 "Auto-Wake-up on Sync Break Character". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit before placing the EUSART in its Sleep mode.

FIGURE 20-9: SEND BREAK CHARACTER SEQUENCE

21.2 A/D Result Buffer

The A/D module has a 4-level result buffer with an address range of 0 to 3, enabled by setting the FIFOEN bit in the ADCON1 register. This buffer is implemented in a circular fashion, where the A/D result is stored in one location and the address is incremented. If the address is greater than 3, the pointer is wrapped back around to 0. The result buffer has a Buffer Empty Flag, BFEMT, indicating when any data is in the buffer. It also has a Buffer Overflow Flag, BFOVFL, which indicates when a new sample has overwritten a location that was not previously read.

Associated with the buffer is a pointer to the address for the next read operation. The ADPNT<1:0> bits configure the address for the next read operation. These bits are read-only.

The Result Buffer also has a configurable interrupt trigger level that is configured by the ADRS<1:0> bits. The user has three selections: interrupt flag set on every write to the buffer, interrupt on every second write to the buffer, or interrupt on every fourth write to the buffer. ADPNT<1:0> are reset to '00' every time a conversion sequence is started (either by setting the GO/DONE bit or on a trigger).

Note: When right justified, reading ADRESL increments the ADPNT<1:0> bits. When left justified, reading ADRESH increments the ADPNT<1:0> bits.

21.3 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 21-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding capacitor is disconnected from the					
	input p	in.				

To calculate the minimum acquisition time, Equation 21-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Example 21-1 shows the calculation of the minimum required acquisition time TACQ. In this case, the converter module is fully powered up at the outset and therefore, the amplifier settling time, TAMP, is negligible. This calculation is based on the following application system assumptions:

CHOLD	=	9 pF
Rs	=	100Ω
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 6 \ k\Omega$
Temperature	=	50°C (system max.)
VHOLD	=	0V @ time = 0

EQUATION 21-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
	=	TAMP + TC + TCOFF

EQUATION 21-2: MINIMUM A/D HOLDING CAPACITOR CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) $\ln(1/2048)$

REGISTER 23-13: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2331/2431/4331/4431 DEVICES

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	rogrammed	U = Unchanged from programmed state

bit 7-5	DEV<2:0>: Device ID bits						
	These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number.						
	000 = PIC18F4331						
	001 = PIC18F4431						
	100 = PIC18F2331						
	101 = PIC18F2431						
bit 4-0	REV<4:0>: Revision ID bits						
	These bits are used to indicate the device revision.						

REGISTER 23-14: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2331/2431/4331/4431 DEVICES

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	programmed	U = Unchanged from programmed state

bit 7-0 **DEV<10:3>:** Device ID bits⁽¹⁾ These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number 0000 0101 = PIC18F2331/2431/4331/4431 devices

Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified by using the entire DEV<10:0> bit sequence.

ΒZ		Branch if	Zero					
Synta	ax:	[<i>label</i>] BZ	n					
Oper	ands:	-128 ≤ n ≤ 1	27					
Oper	ation:	if Zero bit is (PC) + 2 + 2	'1', 2n → PC					
Statu	s Affected:	None						
Enco	ding:	1110	0000 nn	nn nnnn				
Desc	ription:	If the Zero t will branch. The 2's com added to the incremented instruction, PC + 2 + 2r two-cycle in	If the Zero bit is '1', then the program will branch. The 2's complement number, '2n', is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction					
Word	ls:	1						
Cycle	es:	1(2)						
Q C If Ju	ycle Activity: mp:							
	Q1	Q2	Q3	Q4				
	Decode	Read literal 'n'	Process Data	Write to PC				
	No	No	No	No				
	operation	operation	operation	operation				
If NO	o Jump:	02	03	01				
	Decode	Read literal	Process	No				
		ʻn'	Data	operation				
Example: HERE BZ Jump Before Instruction								
PC = address (HERE) After Instruction If Zero = 1; PC = address (Jump) If Zero = 0; PC = address (HERE + 2)								

CALL Subroutine Call								
Syntax:	[label] C	ALL k[,s]					
Operands:	$0 \le k \le 104$ s \in [0,1]	0 ≤ k ≤ 1048575 s ∈ [0,1]						
Operation:	$(PC) + 4 \rightarrow TOS,$ $k \rightarrow PC<20:1>;$ if s = 1: $(W) \rightarrow WS,$ $(STATUS) \rightarrow STATUSS,$ $(BSR) \rightarrow BSRS$							
Status Affected:	None							
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ k} kkk	k kł	kk ₀ kk ₈			
	(PC + 4) is stack. If 's' BSR regist respective STATUSS update occ 20-bit value PC<20:1>.	(PC + 4) is pushed onto the return address (PC + 4) is pushed onto the return stack. If 's' = 1, the W, STATUS and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs. Then, the 20-bit value, 'k', is loaded into PC<20:1>. CALL is a two-cycle						
Words:	2							
Cycles:	2							
O Cycle Activity:	-							
Q1	Q2	Q3		Q4	1			
Decode	Read literal 'k'<7:0>,	Push PC Stack	C to	Read li 'k'<19 Write to	teral :8>, o PC			
No	No	No		No				
operation	operation	operati	on	operat	tion			
Example: Before Instruc	HERE	CALL	THEF	RE, FAS	Г			
PC = address (HERE)								
After Instructio PC TOS WS BSRS	on = address = address = W = BSR	S (THERE S (HERE	2) + 4))				
STATUS	S= STATU	S						

CLR	F	Clear f			CI	RWDT	Clear Wa	Clear Watchdog Timer			
Synta	ax:	[label] CL	RF f[,a]		Sy	ntax:	[label] C	LRWDT			
Oper	ands:	$0 \leq f \leq 255$			Op	erands:	None	None			
$\begin{array}{ll} a \in [0,1] \\ \text{Operation:} & 000h \rightarrow f, \\ & 1 \rightarrow Z \end{array}$		Op	eration:	$\begin{array}{l} 000h \rightarrow Wl \\ 000h \rightarrow Wl \\ 1 \rightarrow \overline{\text{TO}}, \end{array}$	DT, DT postscale	ır,					
Statu	is Affected:	Z					$1 \rightarrow PD$				
Enco	oding:	0110	101a ffi	ff ffff	Sta	atus Affected:	TO, PD				
Desc	ription:	Clears the	contents of the	specified reg-	En En	coding:	0000	0000 0	000 0100		
		ister. If 'a' is selected, ov 'a' = 1, then per the BSF	6 '0', the Acces verriding the B I the bank will t R value.	s Bank will be SR value. If be selected as	De	scription:	CLRWDT ins Watchdog scaler of th PD are set	struction rese Timer. It also e WDT. Stati	ets the resets the pos us bits TO and		
Word	ls:	1			We	ords:	1				
Cycle	es:	1			Су	cles:	1				
QC	ycle Activity:				Q	Cycle Activity:					
	Q1	Q2	Q3	Q4	1	Q1	Q2	Q3	Q4		
	Decode	Read register 'f'	Process Data	Write register 'f'		Decode	No operation	Process Data	No operation		
Exan	nple:	CLRF	FLAG_REG	ł	Ex	ample:	CLRWDT				
Before Instruction FLAG_REG = 0x5A			Before Instrue WDT Co	ction ounter =	?						
After Instruction FLAG_REC		on EG = 0x	00			After Instructi WDT Co WDT Po TO PD	on ounter = ostscaler = = =	0x00 0 1 1			

<u>,</u>	=	1
)	=	1

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2331/2431/4331/4431 (Industrial, Extended) PIC18LF2331/2431/4331/4431 (Industrial) (Continued)

PIC18LF (Indu	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F2 (Indu		Standa Operati	itandard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Device	Тур	Max	Units		Condit	ions		
	Supply Current (IDD) ^(2,3)								
	PIC18LF2X31/4X31	8	40	μA	-40°C				
		9	40	μA	+25°C	VDD = 2.0V			
		11	40	μA	+85°C				
	PIC18LF2X31/4X31	25	68	μA	-40°C				
		25	68	μA	+25°C	VDD = 3.0V	Fosc = 31 kHz		
		20	68	μA	+85°C		Internal oscillator source)		
	All devices	55	180	μA	-40°C				
		55	180	μA	+25°C	VDD = 5.0V			
		50	180	μA	+85°C				
		0.25	1	mA	+125°C				
	PIC18LF2X31/4X31	140	220	μA	-40°C	_			
		145	220	μA	+25°C	VDD = 2.0V			
		155	220	μA	+85°C		4		
	PIC18LF2X31/4X31	215	330	μA	-40°C				
		225	330	μA	+25°C	VDD = 3.0V	$(\mathbf{RC} \ \mathbf{RUN} \ mode)$		
		235	330	μΑ	+85°C		Internal oscillator source)		
	All devices	385	550	μA	-40°C	_			
		390	550	μA	+25°C	VDD = 5.0V			
		405	550	μA	+85°C	-			
		0.7	2.8	mA	+125°C				
	PIC18LF2X31/4X31	410	600	μΑ	-40°C				
		425	600	μΑ	+25 C	VDD = 2.0V			
		430	000	μΑ	+65 C		4		
	PIC 10LF2A31/4A31	670	900	μΑ	-40 C		Fosc = 4 MHz		
			900	μΑ	+85°C	vuu – 3.0V	(RC_RUN mode,		
		12	1.8	μ Λ mΔ	-40°C		Internal oscillator source)		
		1.2	1.0	mA		4			
		12	1.0	mA	+85°C	VDD = 5.0V			
		2.2	6	mA	+125°C	1			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

26.2 DC Characteristics: Power-Down and Supply Current PIC18F2331/2431/4331/4431 (Industrial, Extended) PIC18LF2331/2431/4331/4431 (Industrial) (Continued)

PIC18LF: (Indus	Standa Operati	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial										
PIC18F2: (Indus	331/2431/4331/4431 strial, Extended)		Standa Operati	rd Oper ng temp	ating Conditions erature -4 -4	s (unless otherwise 0°C ≤ TA ≤ +85°C fc 0°C ≤ TA ≤ +125°C	e stated) or industrial for extended					
Param No.	Device	Тур	o Max Units Conditions									
	Supply Current (IDD) ^(2,3)											
	PIC18LF2X31/4X31	150	250	μA	-40°C							
		150	250	μA	+25°C	VDD = 2.0V						
		160	250	μA	+85°C							
	PIC18LF2X31/4X31	340	350	μA	-40°C							
		300	350	μA	+25°C	VDD = 3.0V	Fosc = 1 MHz					
		280	350	μA	+85°C		(PRI_RON, EC oscillator)					
	All devices	0.72	1.0	mA	-40°C		20 000					
		0.63	1.0	mA	+25°C							
		0.57	1.0	mA	+85°C	VDD - 5.0V						
		0.9	2.1	mA	+125°C							
	PIC18LF2X31/4X31	440	600	μA	-40°C							
		450	600	μA	+25°C	VDD = 2.0V						
		460	600	μA	+85°C							
	PIC18LF2X31/4X31	0.80	1.0	mA	-40°C							
		0.78	1.0	mA	+25°C	VDD = 3.0V						
		0.77	1.0	mA	+85°C		EC oscillator)					
	All devices	1.6	2.0	mA	-40°C		,					
		1.5	2.0	mA	+25°C	$V_{DD} = 5.0V$						
		1.5	2.0	mA	+85°C	VDD - 5.0V						
		2.0	4.2	mA	+125°C							
	All devices	10	28	mA	+125°C	VDD = 5.0V	Fosc = 25 MHz (PRI_RUN , EC oscillator)					
	All devices	9.5	12	mA	-40°C							
		9.7	12	mA	+25°C	VDD = 4.2V						
		9.9	12	mA	+85°C]	Fosc = 40 MHz					
	All devices	11.9	15	mA	-40°C		(FRI_KUN, FC oscillator)					
		12.1	15	mA	+25°C	VDD = 5.0V						
		12.3	15	mA	+85°C							

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

					- /		
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	10	MHz	HS mode only
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HS mode only
F12	TPLL	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13	ΔCLK	CLKO Stability (Jitter)	-2	_	+2	%	

TABLE 26-5: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 26-6: INTERNAL RC ACCURACY

PIC18LI (Indu	F2331/2431/4331/4431 ustrial)	Standard Operating	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2 (Indu	2 331/2431/4331/4431 ustrial)	Standard Operating	tandard Operating Conditions (unless otherwise stated)perating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param No.	Device	Min Typ Max Units Conditions								
	INTOSC Accuracy @ Freq = 8	MHz, 4 MH	lz, 2 MHz	, 1 MHz,	500 kHz	, 250 kHz, 125 k	Hz ⁽¹⁾			
F2	PIC18LF2331/2431/4331/4431	-15	+/-5	+15	%	25°C	VDD = 3.0V			
F3	All devices	-15	+/-5	+15	%	25°C VDD = 5.0V				
	INTRC Accuracy @ Freq = 31 kHz ⁽²⁾									
F5	PIC18LF2331/2431/4331/4431	26.562	_	35.938	kHz	łz 25°C VDD = 3.0V				
F6	All devices	26.562	—	35.938	kHz	25°C	VDD = 5.0V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		28		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D		17.90 BSC		
Chamfer (optional)	h	0.25	—	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Foot Angle Top	φ	0°	_	8°	
Lead Thickness	С	0.18	—	0.33	
Lead Width	b	0.31	—	0.51	
Mold Draft Angle Top	α	5°	_	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<u>PART NO.</u>	<u>x /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC18LF4431-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301.
Device	PIC18F2331/2431/4331/4431 ⁽¹⁾ , PIC18F2331/2431/4331/4431T ^(1,2) ; VDD range 4.2V to 5.5V PIC18LF2331/2431/4331/4431 ⁽¹⁾ , PIC18LF2331/2431/4331/44310T ^(1,2) ; VDD range 2.0V to 5.5V	 b) PIC18LF2331-I/SO = Industrial temp., SOIC package, Extended VDD limits. c) PIC18F4331-I/P = Industrial temp., PDIP package, normal VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	Note 1: F = Standard Voltage Range LF = Wide Voltage Range
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP P = PDIP ML = QFN	2: T = in Tape and Reel – SOIC and TQFP Packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	