

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

20000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2431t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

in Bu	Buffer
ре Ту	Type Description
	PORTB is a bidirectional I/O port. PORTB can be softw programmed for internal weak pull-ups on all inputs.
	TTL Digital I/O. TTL PWM Output 0.
	TTL Digital I/O. TTL PWM Output 1.
	TTL Digital I/O. TTL PWM Output 2.
-	TTL Digital I/O. TTL PWM Output 3.
T	TTL Digital I/O. TTL Interrupt-on-change pin. TTL PWM Output 5.
T T	 TTL Digital I/O. TTL Interrupt-on-change pin. TTL PWM Output 4. ST Single-Supply ICSP™ Programming entry pin.
Τ-	TTL Digital I/O. TTL Interrupt-on-change pin. ST In-Circuit Debugger and ICSP programming clock p
T	TTLDigital I/O.TTLInterrupt-on-change pin.STIn-Circuit Debugger and ICSP programming data pi
	0

TABLE 1-3:	PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels 0 = Output

Ρ = Power

Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin for SCK/SCL; RC7 is the alternate pin for SDO.

2: RD4 is the alternate pin for FLTA.

3: RD5 is the alternate pin for PWM4.

Pin Name				Pin	Buffer	Description
Pin Name	PDIP	TQFP	QFN	Туре	Туре	Description
						PORTC is a bidirectional I/O port.
RC0/T1OSO/T1CKI RC0 T1OSO T1CKI	15	32	34	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1 external clock input.
RC1/T1OSI/CCP2/ FLTA	16	35	35		-	
RC1 T1OSI <u>CCP2</u> FLTA				I/O I I/O I	ST CMOS ST ST	Digital I/O. Timer1 oscillator input. Capture 2 input, Compare 2 output, PWM2 output. Fault interrupt input pin.
RC2/CCP1/FLTB RC2 CCP1 FLTB	17	36	36	I/O I/O I	ST ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Fault interrupt input pin.
RC3/T0CKI/T5CKI/ INT0	18	37	37			
RC3 T0CKI ⁽¹⁾ T5CKI ⁽¹⁾ INT0				I/O I I	ST ST ST ST	Digital I/O. Timer0 alternate clock input. Timer5 alternate clock input. External Interrupt 0.
RC4/INT1/SDI/SDA RC4 INT1 SDI ⁽¹⁾ SDA ⁽¹⁾	23	42	42	I/O I I I/O	ST ST ST I ² C	Digital I/O. External Interrupt 1. SPI data in. I ² C™ data I/O.
RC5/INT2/SCK/SCL RC5 INT2 SCK ⁽¹⁾ SCL ⁽¹⁾	24	43	43	I/O I I/O I/O	ST ST ST I ² C	Digital I/O. External Interrupt 2. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.
RC6/TX/CK/ SS RC6 TX <u>CK</u> SS	25	44	44	I/O O I/O I	ST — ST ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX/DT). SPI slave select input.
RC7/RX/DT/SDO RC7 RX DT SDO ⁽¹⁾	26	1	1	I/O I I/O O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX/CK). SPI data out.
Legend: TTL = TTL ST = Schi O = Outp	mitt Tri	atible inp gger inp		CMOS	levels	CMOS = CMOS compatible input or output I = Input P = Power

TABLE 1-3: PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)

for SCK/SCL; RC7 is the alternate pin for SDO.

2: RD4 is the alternate pin for \overline{FLTA} .

3: RD5 is the alternate pin for PWM4.

4.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. Although its value is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC bit is set, the INTOSC output is enabled. The IOFS bit becomes set, after the INTOSC output becomes stable, after an interval of TIOBST (Parameter 39, Table 26-8). Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed, and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled, the IOFS bit will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD, following the wake event, the CPU begins executing code being clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes, is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in more detail in each of the sections that relate to the power-managed modes (see Section 4.2 "Run Modes", Section 4.3 "Sleep Mode" and Section 4.4 "Idle Modes").

4.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode or Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/ GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see **Section 10.0 "Interrupts"**).

A fixed delay of interval, TCSD, following the wake event, is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

4.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 4.2 "Run Modes" and Section 4.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 23.2 "Watchdog Timer (WDT)").

The WDT timer and postscaler are cleared by executing a SLEEP or CLRWDT instruction, the loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifying the IRCF bits in the OSCCON register if the internal oscillator block is the device clock source.

4.5.3 EXIT BY RESET

Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock becomes ready. At that time, the OSTS bit is set and the device begins executing code. If the internal oscillator block is the new clock source, the IOFS bit is set instead.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up, and the type of oscillator if the new clock source is the primary clock. Exit delays are summarized in Table 4-2.

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see **Section 23.3 "Two-Speed Start-up"**) or Fail-Safe Clock Monitor (see **Section 23.4 "Fail-Safe Clock Monitor"**) is enabled, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Execution is clocked by the internal oscillator block until either the primary clock becomes ready or a power-managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

6.5.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 6-1 and Table 6-2.

The SFRs can be classified into two sets: those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature.

The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations will be unimplemented and read as '0's.

TABLE 6-1: SPECIAL FUNCTION REGISTER MAP FOR PIC18F2331/2431/4331/4431 DEVICES

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1	F7Fh	PTCON0
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	CCPR1L	F9Eh	PIR1	F7Eh	PTCON1
FFDh	TOSL	FDDh	POSTDEC2(1)	FBDh	CCP1CON	F9Dh	PIE1	F7Dh	PTMRL
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	(2)	F7Ch	PTMRH
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR2L	F9Bh	OSCTUNE	F7Bh	PTPERL
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	ADCON3	F7Ah	PTPERH
FF9h	PCL	FD9h	FSR2L	FB9h	ANSEL1	F99h	ADCHS	F79h	PDC0L
FF8h	TBLPTRU	FD8h	STATUS	FB8h	ANSEL0	F98h	(2)	F78h	PDC0H
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	T5CON	F97h	(2)	F77h	PDC1L
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	QEICON	F96h	TRISE ⁽³⁾	F76h	PDC1H
FF5h	TABLAT	FD5h	T0CON	FB5h	(2)	F95h	TRISD ⁽³⁾	F75h	PDC2L
FF4h	PRODH	FD4h	(2)	FB4h	(2)	F94h	TRISC	F74h	PDC2H
FF3h	PRODL	FD3h	OSCCON	FB3h	(2)	F93h	TRISB	F73h	PDC3L ⁽³⁾
FF2h	INTCON	FD2h	LVDCON	FB2h	(2)	F92h	TRISA	F72h	PDC3H ⁽³⁾
FF1h	INTCON2	FD1h	WDTCON	FB1h	_(2)	F91h	PR5H	F71h	SEVTCMPL
FF0h	INTCON3	FD0h	RCON	FB0h	SPBRGH	F90h	PR5L	F70h	SEVTCMPH
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG	F8Fh	(2)	F6Fh	PWMCON0
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG	F8Eh	(2)	F6Eh	PWMCON1
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG	F8Dh	LATE ⁽³⁾	F6Dh	DTCON
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA	F8Ch	LATD ⁽³⁾	F6Ch	FLTCONFIG
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA	F8Bh	LATC	F6Bh	OVDCOND
FEAh	FSR0H	FCAh	T2CON	FAAh	BAUDCON	F8Ah	LATB	F6Ah	OVDCONS
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA	F69h	CAP1BUFH
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	TMR5H	F68h	CAP1BUFL
FE7h	INDF1 ⁽¹⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	TMR5L	F67h	CAP2BUFH
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSPCON	FA6h	EECON1	F86h	(2)	F66h	CAP2BUFL
FE5h	POSTDEC1 ⁽¹⁾	FC5h	(2)	FA5h	IPR3	F85h	(2)	F65h	CAP3BUFH
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE	F64h	CAP3BUFL
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD ⁽³⁾	F63h	CAP1CON
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	CAP2CON
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	CAP3CON
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA	F60h	DFLTCON

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on 28-pin devices.

REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0		
OSCFIF	_		EEIF	_	LVDIF		CCP2IF		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable I	bit	U = Unimpler	nented bit, rea	ad as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	known		
bit 7		scillator Fail Inter	1 0				<i></i>		
		oscillator failed, o clock operating	clock input has	s changed to IN	HOSC (must	be cleared in so	oftware)		
bit 6-5		ented: Read as '0	,						
bit 4	•	EEIF: EEPROM or Flash Write Operation Interrupt Flag bit							
		ite operation is co	•						
	0 = The wr	ite operation is no	ot complete or	has not been s	tarted				
bit 3	Unimpleme	ented: Read as '0	,						
bit 2	LVDIF: Low-Voltage Detect Interrupt Flag bit								
		pply voltage has f			• •	st be cleared in	software)		
		0 = The supply voltage is greater than the specified LVD voltage							
bit 1	•	ented: Read as '0							
bit 0		CP2 Interrupt Flag	g bit						
	Capture mo	<u>lae:</u> 1 register capture	occurred (mi	ist be cleared ii	n software)				
		R1 register captul			i continarc)				
	Compare m	iode:							
		1 register compar R1 register comp			leared in soft	ware)			
	PWM mode								
	Not used in	this mode.							

REGISTER 10-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—	PTIE	IC3DRIE	IC2QEIE	IC1IE	TMR5IE
pit 7				-			bit 0
_egend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
oit 7-5	Unimpleme	ented: Read as ')'				
oit 4	PTIE: PWM	1 Time Base Inter	rupt Enable bi	t			
	1 = PTIF e						
	0 = PTIF d						
bit 3		C3 Interrupt Enab		hange Interrupt	Enable bit		
		d (CAP3CON<3:	<u>)>):</u>				
		errupt enabled errupt disabled					
		ed (QEIM<2:0>):					
		e of direction inte	rrupt enabled				
	0	e of direction inte	•				
oit 2	IC2QEIE: I	C2 Interrupt Flag/	QEI Interrupt	Flag Enable bit			
	IC2 Enable	d (CAP2CON<3:(<u>)>):</u>				
		errupt enabled)					
		errupt disabled					
		<u>ed (QEIM<2:0>):</u>					
		errupt enabled errupt disabled					
.:+ 1		•	_: +				
oit 1		Interrupt Enable t	DIL				
		errupt enabled errupt disabled					
oit O		imer5 Interrupt Er	nable bit				
	1 = Timer5	•					
		Interrunt enabled	1				

14.0 TIMER2 MODULE

The Timer2 module has the following features:

- 8-bit Timer register (TMR2)
- 8-bit Period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match with PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register, shown in Register 14-1. TMR2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption. Figure 14-1 is a simplified block diagram of the Timer2 module. Register 14-1 shows the Timer2 Control register. The prescaler and postscaler selection of Timer2 are controlled by this register.

14.1 Timer2 Operation

Timer2 can be used as the PWM time base for the PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, T2CKPS<1:0> (T2CON<1:0>). The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt, latched in flag bit, TMR2IF (PIR1<1>).

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh.

The prescaler and postscaler counters are cleared when any of the following occurs:

- · A write to the TMR2 register
- A write to the T2CON register
- Any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

DIL 7	Unimplemented: Read as 0
bit 6-3	TOUTPS<3:0>: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

17.1.8 SPECIAL EVENT TRIGGER (CAP1 ONLY)

The Special Event Trigger mode of IC1 (CAP1M<3:0> = 1110 or 1111) enables the Special Event Trigger signal. The trigger signal can be used as the Special Event Trigger Reset input to TMR5, resetting the timer when the specific event happens on IC1. The events are summarized in Table 17-2.

CAP1M<3:0>	Description
1110	The trigger occurs on every falling edge on the CAP1 input.
1111	The trigger occurs on every rising edge on the CAP1 input.

17.1.9 OPERATING MODES SUMMARY

Table 17-3 shows a summary of the input capture configuration when used in conjunction with the TMR5 timer resource.

17.1.10 OTHER OPERATING MODES

Although the IC and QEI submodules are mutually exclusive, the IC can be reconfigured to work with the QEI module to perform specific functions. In effect, the QEI "borrows" hardware from the IC to perform these operations.

For velocity measurement, the QEI uses dedicated hardware in channel IC1. The CAP1BUF registers are remapped, becoming the VELR registers. Its operation and use are described in **Section 17.2.6** "**Velocity Measurement**".

While in QEI mode, the CAP2BUF and CAP3BUF registers of channel IC2 and IC3 are used for position determination. They are remapped as the POSCNT and MAXCNT Buffer registers, respectively.

Pin	CAPxM	Mode	Timer	Reset Timer on Capture	Description
CAP1	0001-0100	Edge Capture	TMR5	optional ⁽¹⁾	Simple Edge Capture mode (includes a selectable prescaler).
	0101	Period Measurement	TMR5	optional ⁽¹⁾	Captures Timer5 on period boundaries.
	0110-0111	Pulse-Width Measurement	TMR5	always	Captures Timer5 on pulse boundaries.
	1000	Input Capture on State Change	TMR5	optional ⁽¹⁾	Captures Timer5 on state change.
	1110-1111	Special Event Trigger (rising or falling edge)	TMR5	optional ⁽²⁾	Used as a Special Event Trigger to be used with the Timer5 or other peripheral modules.
CAP2	0001-0100	Edge Capture	TMR5	optional ⁽¹⁾	Simple Edge Capture mode (includes a selectable prescaler).
	0101	Period Measurement	TMR5	optional ⁽¹⁾	Captures Timer5 on period boundaries.
	0110-0111	Pulse-Width Measurement	TMR5	always	Captures Timer5 on pulse boundaries.
	1000	Input Capture on State Change	TMR5	optional ⁽¹⁾	Captures Timer5 on state change.
CAP3	0001-0100	Edge Capture	TMR5	optional ⁽¹⁾	Simple Edge Capture mode (includes a selectable prescaler).
	0101	Period Measurement	TMR5	optional ⁽¹⁾	Captures Timer5 on period boundaries.
	0110-0111	Pulse-Width Measurement	TMR5	always	Captures Timer5 on pulse boundaries.
	1000	Input Capture on State Change	TMR5	optional ⁽¹⁾	Captures Timer5 on state change.

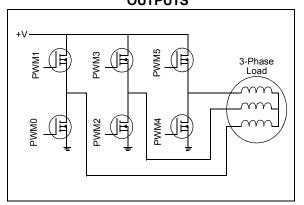
TABLE 17-3: INPUT CAPTURE TIME BASE RESET SUMMARY

Note 1: Timer5 may be reset on capture events only when CAPxREN = 1.

2: Trigger mode will not reset Timer5 unless $\overline{\text{RESEN}} = 0$ in the T5CON register.

18.6.5 COMPLEMENTARY PWM OPERATION

The Complementary mode of PWM operation is useful to drive one or more power switches in half-bridge configuration as shown in Figure 18-16. This inverter topology is typical for a 3-phase induction motor, brushless DC motor or a 3-phase Uninterruptible Power Supply (UPS) control applications.


Each upper/lower power switch pair is fed by a complementary PWM signal. Dead time may be optionally inserted during device switching, where both outputs are inactive for a short period (see **Section 18.7 "Dead-Time Generators"**).

In Complementary mode, the duty cycle comparison units are assigned to the PWM outputs as follows:

- PDC0 register controls PWM1/PWM0 outputs
- PDC1 register controls PWM3/PWM2 outputs
- · PDC2 register controls PWM5/PWM4 outputs
- PDC3 register controls PWM7/PWM6 outputs

PWM1/3/5/7 are the main PWMs that are controlled by the PDCx registers and PWM0/2/4/6 are the complemented outputs. When using the PWMs to control the half bridge, the odd numbered PWMs can be used to control the upper power switch and the even numbered PWMs used for the lower switches.

FIGURE 18-16: TYPICAL LOAD FOR COMPLEMENTARY PWM OUTPUTS

The Complementary mode is selected for each PWM I/O pin pair by clearing the appropriate PMODx bit in the PWMCON0 register. The PWM I/O pins are set to Complementary mode by default upon all kinds of device Resets.

18.7 Dead-Time Generators

In power inverter applications, where the PWMs are used in Complementary mode to control the upper and lower switches of a half-bridge, a dead-time insertion is highly recommended. The dead-time insertion keeps both outputs in inactive state for a brief time. This avoids any overlap in the switching during the state change of the power devices due to TON and TOFF characteristics.

Because the power output devices cannot switch instantaneously, some amount of time must be provided between the turn-off event of one PWM output in a complementary pair and the turn-on event of the other transistor. The PWM module allows dead time to be programmed. The following sections explain the dead-time block in detail.

18.7.1 DEAD-TIME INSERTION

Each complementary output pair for the PWM module has a 6-bit down counter used to produce the dead-time insertion. As shown in Figure 18-17, each dead-time unit has a rising and falling edge detector connected to the duty cycle comparison output. The dead time is loaded into the timer on the detected PWM edge event. Depending on whether the edge is rising or falling, one of the transitions on the complementary outputs is delayed until the timer counts down to zero. A timing diagram, indicating the dead-time insertion for one pair of PWM outputs, is shown in Figure 18-18.

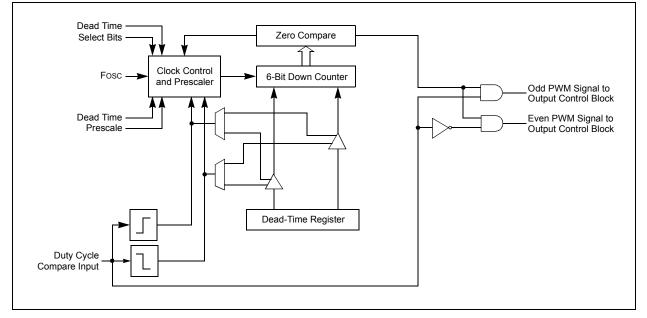
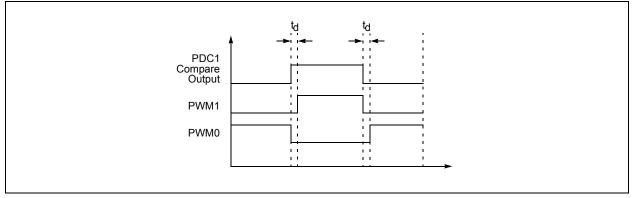



FIGURE 18-17: DEAD-TIME CONTROL UNIT BLOCK DIAGRAM FOR ONE PWM OUTPUT PAIR

FIGURE 18-18: DEAD-TIME INSERTION FOR COMPLEMENTARY PWM

18.10.3 OUTPUT OVERRIDE EXAMPLES

Figure 18-21 shows an example of a waveform that might be generated using the PWM output override feature. The figure shows a six-step commutation sequence for a BLDC motor. The motor is driven through a 3-phase inverter as shown in Figure 18-16. When the appropriate rotor position is detected, the PWM outputs are switched to the next commutation state in the sequence. In this example, the PWM outputs are driven to specific logic states. The OVDCOND and OVDCONS register values used to generate the signals in Figure 18-21 are given in Table 18-4. The PWM Duty Cycle registers may be used in conjunction with the OVDCOND and OVDCONS registers. The Duty Cycle registers control the average voltage across the load and the OVDCOND and OVDCONS registers control the commutation sequence. Figure 18-22 shows the waveforms, while Table 18-4 and Table 18-5 show the OVDCOND and OVDCONS register values used to generate the signals.

REGISTER 18-6: OVDCOND: OUTPUT OVERRIDE CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
POVD7 ⁽¹⁾	POVD6 ⁽¹⁾	POVD5	POVD4	POVD3	POVD2	POVD1	POVD0	
bit 7 bit								
Legend:								
R = Readable bit		W = Writable bit		U = Unimplem	ented bit, read	as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	

bit 7-0 **POVD<7:0>:** PWM Output Override bits

1 = Output on PWM I/O pin is controlled by the value in the Duty Cycle register and the PWM time base
 0 = Output on PWM I/O pin is controlled by the value in the corresponding POUT bit

Note 1: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear.

REGISTER 18-7: OVDCONS: OUTPUT STATE REGISTER^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
POUT7 ⁽¹⁾	POUT6 ⁽¹⁾	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 POUT<7:0>: PWM Manual Output bits

1 = Output on PWM I/O pin is active when the corresponding PWM output override bit is cleared
 0 = Output on PWM I/O pin is inactive when the corresponding PWM output override bit is cleared

Note 1: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear.

2: With PWMs configured in Complementary mode, the output of even numbered PWM (PM0,2,4) will be complementary of the output of odd PWM (PWM1,3,5), irrespective of the POUT bit setting.

18.11.3 PWM OUTPUT PIN RESET STATES

The PWMPIN Configuration bit determines the PWM output pins to be PWM output pins or digital I/O pins, after the device comes out of Reset. If the PWMPIN Configuration bit is unprogrammed (default), the PWMEN<2:0> control bits will be cleared on a device Reset. Consequently, all PWM outputs will be tri-stated and controlled by the corresponding PORT and TRIS registers. If the PWMPIN Configuration bit is programmed low, the PWMEN<2:0> control bits will be set, as follows, on a device Reset:

- PWMEN<2:0> = 101 if device has 8 PWM pins (PIC18F4331/4431 devices)
- PWMEN<2:0> = 100 if device has 6 PWM pins (PIC18F2331/2431 devices)

All PWM pins will be enabled for PWM output and will have the output polarity defined by the HPOL and LPOL Configuration bits.

18.12 PWM Fault Inputs

There are two Fault inputs associated with the PWM module. The main purpose of the input Fault pins is to disable the PWM output signals and drive them into an inactive state. The action of the Fault inputs is performed directly in hardware so that when a Fault occurs, it can be managed quickly and the PWM outputs are put into an inactive state to save the power devices connected to the PWMs.

The PWM Fault inputs are FLTA and FLTB, which can come from I/O pins, the CPU or another module. The FLTA and FLTB pins are active-low inputs so it is easy to "OR" many sources to the same input. FLTB and its associated logic are not implemented on PIC18F2331/2431 devices.

The FLTCONFIG register (Register 18-8) defines the settings of FLTA and FLTB inputs.

Note:	The inactive state of the PWM pins are
	dependent on the HPOL and LPOL Con-
	figuration bit settings, which define the
	active and inactive state for PWM outputs.

18.12.1 FAULT PIN ENABLE BITS

By setting the bits, FLTAEN and FLTBEN in the FLTCONFIG register, the corresponding Fault inputs are enabled. If both bits are cleared, then the Fault inputs have no effect on the PWM module.

18.12.2 MFAULT INPUT MODES

The FLTAMOD and FLTBMOD bits in the FLTCONFIG register determine the modes of PWM I/O pins that are deactivated when they are overridden by Fault input.

The FLTAS and FLTBS bits in the FLTCONFIG register give the status of Fault A and Fault B inputs.

Each of the Fault inputs have two modes of operation:

• Inactive Mode (FLTxMOD = 0)

This is a Catastrophic Fault Management mode. When the Fault occurs in this mode, the PWM outputs are deactivated. The PWM pins will remain in Inactivate mode until the Fault is cleared (Fault input is driven high) and the corresponding Fault Status bit has been cleared in software. The PWM outputs are enabled immediately at the beginning of the following PWM period, after the Fault Status bit (FLTxS) is cleared.

• Cycle-by-Cycle Mode (FLTxMOD = 1)

When the Fault occurs in this mode, the PWM outputs are deactivated. The PWM outputs will remain in the defined Fault states (all PWM outputs inactive) for as long as the Fault pin is held low. After the Fault pin is driven high, the PWM outputs will return to normal operation at the beginning of the following PWM period and the FLTxS bit is automatically cleared.

U-0	R-1	U-0	R/W-1	R/W-0	U-0	R/W-0	R/W-0					
—	RCIDL		SCKP	BRG16	—	WUE	ABDEN					
bit 7							bit					
Legend:												
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'						
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unki	nown					
bit 7	Unimplemen	ted: Read as	0'									
bit 6	RCIDL: Rece	eive Operation	Idle Status bit									
		1 = Receiver is Idle 0 = Receive in progress										
bit 5		ited: Read as '	0'									
bit 4	SCKP: Synchronous Clock Polarity Select bit											
	Asynchronous mode: Unused in this mode.											
	Synchronous mode:											
	 1 = Idle state for clock (CK) is a high level 0 = Idle state for clock (CK) is a low level 											
bit 3	BRG16: 16-Bit Baud Rate Register Enable bit											
				H and SPBRG	mode), SPBF	RGH value igno	ored					
bit 2	Unimplemen	ted: Read as	0'									
bit 1	WUE: Wake-	up Enable bit										
	hardware		ising edge	RX pin – interru etected	pt generated	on falling edge	; bit cleared i					
	Synchronous mode: Unused in this mode.											
bit 0	ABDEN: Auto-Baud Detect Enable bit											
	1 = Enable b cleared in	 <u>Asynchronous mode:</u> 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h) cleared in hardware upon completion. 0 = Baud rate measurement disabled or completed 										
	Synchronous Unused in thi	mode:		·								

REGISTER 23-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1		
—	_	_	_	CP3 ^(1,2)	CP2 ^(1,2)	CP1 ⁽²⁾	CP0 ⁽²⁾		
bit 7	bit 7								
Legend:									
R = Readable bit C = Clearable b			bit	U = Unimplem	nented bit, read	as '0'			

-n = Value when device is unprogrammed		U = Unchanged from programmed state
bit 7-4	Unimplemented: Read as '0'	
bit 3	CP3: Code Protection bit ^(1,2)	
	1 = Block 3 is not code-protected0 = Block 3 is code-protected	
bit 2	CP2: Code Protection bit ^(1,2)	
	 1 = Block 2 is not code-protected 0 = Block 2 is code-protected 	
bit 1	CP1: Code Protection bit ⁽²⁾	
	 1 = Block 1 is not code-protected 0 = Block 1 is code-protected 	
bit 0	CP0: Code Protection bit ⁽²⁾ 1 = Block 0 is not code-protected 0 = Block 0 is code-protected	

Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.

2: Refer to Figure 23-5 for block boundary addresses.

REGISTER 23-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD ⁽¹⁾	CPB ⁽¹⁾	—	—	—	—	—	_
bit 7							bit 0

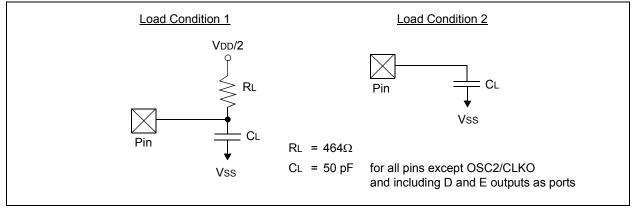
Legend:			
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'	
-n = Value when device	is unprogrammed	U = Unchanged from programmed state	

bit 7	CPD: Data EEPROM Code Protection bit ⁽¹⁾
	1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected
bit 6	CPB: Boot Block Code Protection bit ⁽¹⁾
	1 = Boot Block is not code-protected0 = Boot Block is code-protected
bit 5-0	Unimplemented: Read as '0'

Note 1: Refer to Figure 23-5 for block boundary addresses.

SLE	ΞP	Enter Sleep Mode			SUBFWB		Subtract f from W with Borrow					
Synta	X:	[label]	SLEEP		Synta	ax:	[label]	[<i>label</i>] SUBFWB f[,d[,a]]				
Opera		None			Oper	ands:	0 ≤ f ≤ 255					
Operation: $00h \rightarrow WDT$,						d ∈ [0,1]						
			postscaler,				a ∈ [0,1]					
		$1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD}$			•	ation:		$(\overline{C}) \rightarrow \text{dest}$				
Statu	s Affected:	TO, PD				is Affected:	N, OV, C,					
		0000	0000 000	0 0011	Enco	oding:	0101		ff ffff			
Enco	0				Desc	ription:		egister, 'f', and				
Desci	ription:		r-Down status he Time-out sta					om W (2's con f 'd' is '0', the r				
		is set. Wat	tchdog Timer a				in W. If 'd'	is '1', the resu	t is stored in			
		scaler are		Sloop modo					Access Bank			
			ssor is put into scillator stoppe					ected, overridir ' is '1', then the				
Word	s:	1	· · · · · · · · · · · · · · · · · · ·					s per the BSR				
Cycle		1			Word	ls:	1					
-	cle Activity:				Cycle	es:	1					
QO	Q1	Q2	Q3	Q4	QC	ycle Activity:						
Ī	Decode	No	Process	Go to		Q1	Q2	Q3	Q4			
		operation	Data	Sleep		Decode	Read	Process	Write to destination			
Exam	nle.	SLEEP			Exan	register 'f' Data destination Example 1: SUBFWB REG						
-	Before Instruc					Before Instru						
	<u>TO</u> =	?				REG	= 0x03					
	PD =	?				W C	= 0x02					
	After Instruction					After Instructi	= 0x01					
	<u>TO</u> = PD =	1† 0				REG	= 0xFF					
						W	= 0x02					
† If \	NDT causes	wake-up, this t	oit is cleared.			C Z	= 0x00 = 0x00					
						N	= 0x01	; result is neg	ative			
					Exar	nple 2:	SUBFWB	REG, 0, ()			
						Before Instru	ction					
						REG	= 2					
						W C	= 5 = 1					
						After Instructi						
						REG	= 2					
						W C	= 3 = 1					
						Z	= 0					
						Ν	= 0	; result is pos	itive			
					Exan	nple 3:	SUBFWB	REG, 1, ()			
						Before Instru						
						REG W	= 1 = 2					
						С	= 0					
						After Instructi						
						REG W	= 0 = 2					
							= 1					
						С	- 1					
						C Z N	= 1 = 0	; result is zer	D			

26.4.2 TIMING CONDITIONS


The temperature and voltages specified in Table 26-3 apply to all timing specifications unless otherwise noted. Figure 26-4 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXX31" and "PIC18LFXX31" are used throughout this section to refer to the PIC18F2331/2431/4331/4431 and PIC18LF2331/2431/4331/4431 families of devices specifically, and only those devices.

TABLE 26-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
	Operating voltage VDD range as described in DC spec Section 26.1 and Section 26.3. LF parts operate for industrial temperatures only.						

FIGURE 26-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
F10	Fosc	Oscillator Frequency Range	4	_	10	MHz	HS mode only			
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HS mode only			
F12	Tpll	PLL Start-up Time (Lock Time)	—	—	2	ms				
F13	ΔCLK	CLKO Stability (Jitter)	-2	_	+2	%				

TABLE 26-5: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

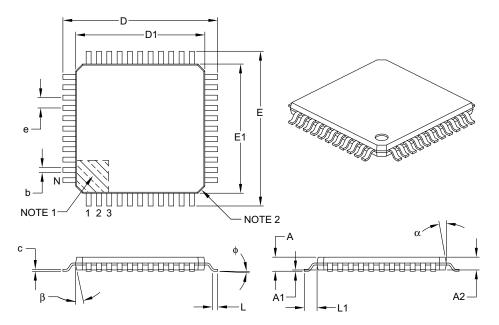
TABLE 26-6: INTERNAL RC ACCURACY

	F2331/2431/4331/4431 ustrial)	Standard Operating	•	0	•	nless otherwise $C \le TA \le +85^{\circ}C$ f	,			
	2331/2431/4331/4431 ustrial)	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$								
Param No.	Device	Min	Тур	Max	Units	Conditions				
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾									
F2	PIC18LF2331/2431/4331/4431	-15	+/-5	+15	%	25°C	VDD = 3.0V			
F3	All devices	-15	+/-5	+15	%	25°C VDD = 5.0V				
	INTRC Accuracy @ Freq = 31 kHz ⁽²⁾									
F5	PIC18LF2331/2431/4331/4431	26.562		35.938	kHz	25°C	VDD = 3.0V			
F6	All devices	26.562	_	35.938	kHz	25°C	VDD = 5.0V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.


TABLE 26-8:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2		_	μS	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	—	4.00	—	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	—	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	—	65.5	—	ms	
34	Tıoz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200		_	μS	$VDD \le BVDD$ (see D005)
36	TIRVST	Time for Internal Reference Voltage to become Stable	—	20	50	μS	
37	Tlvd	Low-Voltage Detect Pulse Width	200		_	μS	$VDD \leq VLVD$
38	TCSD	CPU Start-up Time	—	10	—	μS	
39	TIOBST	Time for INTOSC to Stabilize	_	1	—	ms	

NOTES:

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
C	Dimension Limits	MIN	NOM	MAX		
Number of Leads	N		44			
Lead Pitch	е		0.80 BSC			
Overall Height	A	_	_	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	¢	0° 3.5° 7°				
Overall Width	E	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09 – 0.20				
Lead Width	b	0.30	0.37	0.45		
Mold Draft Angle Top	α	11° 12° 13°				
Mold Draft Angle Bottom	β	11° 12° 13°				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B