

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4331-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pi	n Numl	ber	Pin	Buffer	Description
	PDIP	TQFP	QFN	Туре	Туре	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/PWM0 RB0 PWM0	33	8	9	I/O O	TTL TTL	Digital I/O. PWM Output 0.
RB1/PWM1 RB1 PWM1	34	9	10	I/O O	TTL TTL	Digital I/O. PWM Output 1.
RB2/PWM2 RB2 PWM2	35	10	11	I/O O	TTL TTL	Digital I/O. PWM Output 2.
RB3/PWM3 RB3 PWM3	36	11	12	I/O O	TTL TTL	Digital I/O. PWM Output 3.
RB4/KBI0/PWM5 RB4 KBI0 PWM5	37	14	14	I/O I O	TTL TTL TTL	Digital I/O. Interrupt-on-change pin. PWM Output 5.
RB5/KBI1/PWM4/ PGM RB5 KBI1 PWM4 PGM	38	15	15	I/O I O I/O	TTL TTL TTL ST	Digital I/O. Interrupt-on-change pin. PWM Output 4. Single-Supply ICSP™ Programming entry pin.
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL ST = Sch	. compa mitt Tri	atible inp gger inp	out out with	СМОЗ	S levels	CMOS = CMOS compatible input or output I = Input

ΤΔΒΙ Ε 1-3·	PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)	
IADLE I-J.	FICTOF4331/4431 FINOUT I/O DESCRIFTIONS (CONTINUED)	

ST = Schmitt Trigger input with CMOS levels 0 = Output

Ρ = Power

Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin for SCK/SCL; RC7 is the alternate pin for SDO.

2: RD4 is the alternate pin for FLTA.

3: RD5 is the alternate pin for PWM4.

4.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing-sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm-up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then clear the SCS bits and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<3:0> Configuration bits. The OSTS bit remains set (see Figure 4-7).

When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval, TCSD, is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 4-8).

4.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by

setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set the IDLEN bit first, then set the SCS<1:0> bits to '01' and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the T1RUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD, following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 4-8).

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled but not yet running, peripheral clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

FIGURE 4-7: TRANSITION TIMING FOR ENTRY TO IDLE MODE

5.0 RESET

The PIC18F2331/2431/4331/4431 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during Sleep
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR, and the operation of the various startup timers. Stack Reset events are covered in Section 6.1.2.4 "Stack Full/Underflow Resets". WDT Resets are covered in Section 23.2 "Watchdog Timer (WDT)".

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

7.7 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if either of these mechanisms are enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 23.0 "Special Features of the CPU" for additional information.

7.8 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM memory are blocked during the Power-up Timer period (TPWRT, Parameter 33).

The write/initiate sequence, and the WREN bit together, help prevent an accidental write during Brown-out Reset, power glitch or software malfunction.

7.9 Using the Data EEPROM

The data EEPROM is a high-endurance, byteaddressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than Specification D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 7-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See Specification D124.

	CLRF	EEADR	;	Start at address 0
	BCF	EECON1, CFGS	;	Set for memory
	BCF	EECON1, EEPGD	;	Set for Data EEPROM
	BCF	INTCON, GIE	;	Disable interrupts
	BSF	EECON1, WREN	;	Enable writes
LOOP			;	Loop to refresh array
	BSF	EECON1, RD	;	Read current address
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
Required	MOVLW	0AAh	;	
Sequence	MOVWF	EECON2	;	Write OAAh
	BSF	EECON1, WR	;	Set WR bit to begin write
	BTFSC	EECON1, WR	;	Wait for write to complete
	BRA	\$-2		
	INCFSZ	EEADR, F	;	Increment address
	BRA	LOOP	;	Not zero, do it again
	BCF	EECON1, WREN	;	Disable writes
	BSF	INTCON, GIE	;	Enable interrupts
1				

EXAMPLE 7-3: DATA EEPROM REFRESH ROUTINE

FIGURE 8-2: TABLE WRITE OPERATION

8.2 Control Registers

Several control registers are used in conjunction with the ${\tt TBLRD}$ and ${\tt TBLWT}$ instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

8.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit, EEPGD, determines if the access will be to program or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers, regardless of EEPGD. (See **Section 23.0 "Special Features of the CPU"**.) When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory. The FREE bit controls program memory erase operations. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

A write operation is allowed when the WREN bit (EECON1<2>) is set. On power-up, the WREN bit is clear. The WRERR bit (EECON1<3>) is set in hardware when the WR bit (EECON1<1>) is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR
	may read as '1'. This can indicate that a
	write operation was prematurely termi-
	nated by a Reset or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software. The bit is cleared in hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit (PIR2<4>) is set when the write is complete. It must be cleared in software.

10.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Request (Flag) Registers (PIR1, PIR2 and PIR3).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Levend				
P - Poodoble	, hit	M = Mritable bit	11 - Unimplomented bit	road as '0'
R = Readable		vv = vviilable bil	O = Onimplemented bit.	, reau as U
-n = value at	PUR	i = Bit is set	0 = Bit is cleared	x = Bit is unknown
bit 7	Unimplem	nented: Read as '0'		
bit 6	ADIF: A/D	Converter Interrupt Flag b	it	
	1 = An A/I 0 = The A	D conversion completed (m /D conversion is not compl	nust be cleared in software) ete	
bit 5	RCIF: EUS	SART Receive Interrupt Fla	ig bit	
	1 = The E	USART receive buffer, RC	REG, is full (cleared when RCF	REG is read)
	0 = The E	USART receive buffer is er	npty	
bit 4	TXIF: EUS	SART Transmit Interrupt Fla	ig bit	
	1 = The E 0 = The E	USART transmit buffer, TX USART transmit buffer is f	REG, is empty (cleared when ⁻ ull	TXREG is written)
bit 3	SSPIF: Sy	nchronous Serial Port Inter	rrupt Flag bit	
	1 = The tr	ansmission/reception is co	mplete (must be cleared in sof	tware)
	0 = Waitin	ig to transmit/receive		
bit 2	CCP1IF: C	CCP1 Interrupt Flag bit		
	Capture m	ode:		
	1 = A TMP 0 = No TM	R1 register capture occurre /IR1 register capture occurr	d (must be cleared in software ed)
	Compare r	<u>mode:</u>		
	1 = A TMI	R1 register compare match	occurred (must be cleared in s	software)
	0 = NO IN	/IR1 register compare mate	h occurred	
	Unused in	this mode.		
bit 1	TMR2IF: T	MR2 to PR2 Match Interru	ot Flag bit	
~	1 = TMR2	to PR2 match occurred (n	nust be cleared in software)	
	0 = No Th	/R2 to PR2 match occurred	d	
bit 0	TMR1IF: 7	MR1 Overflow Interrupt Fl	aq bit	
-	1 = TMR1	register overflowed (must	be cleared in software)	
	0 = TMR1	register did not overflow	/	

10.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Enable Registers (PIE1, PIE2 and PIE3). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 10-7: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

				V V - U	rt/vv-u	R/VV-0 I	≺/٧٧-0
—	ADIE F	RCIE T	XIE S	SPIE C	CP1IE T	MR2IE T	MR1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIE: A/D Converter Interrupt Enable bit
	1 = Enables the A/D interrupt0 = Disables the A/D interrupt
bit 5	RCIE: EUSART Receive Interrupt Enable bit
	1 = Enables the EUSART receive interrupt0 = Disables the EUSART receive interrupt
bit 4	TXIE: EUSART Transmit Interrupt Enable bit
	1 = Enables the EUSART transmit interrupt0 = Disables the EUSART transmit interrupt
bit 3	SSPIE: Synchronous Serial Port Interrupt Enable bit
	1 = Enables the SSP interrupt0 = Disables the SSP interrupt
bit 2	CCP1IE: CCP1 Interrupt Enable bit
	1 = Enables the CCP1 interrupt0 = Disables the CCP1 interrupt
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
	1 = Enables the TMR2 to PR2 match interrupt0 = Disables the TMR2 to PR2 match interrupt
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt

In Synchronous Counter mode configuration, the timer is clocked by the external clock (T5CKI) with the optional prescaler. The external T5CKI is selected by setting the TMR5CS bit (TMR5CS = 1); the internal clock is selected by clearing TMR5CS. The external clock is synchronized to the internal clock by clearing the T5SYNC bit. The input on T5CKI is sampled on every Q2 and Q4 of the internal clock. The low to rise transition is decoded on three adjacent samples and the Timer5 is incremented on the next Q1. The T5CKI minimum pulse-width high and low time must be greater than TcY/2.

In Asynchronous Counter mode configuration, Timer5 is clocked by the external clock (T5CKI) with the optional prescaler. In this mode, T5CKI is not synchronized to the internal clock. By setting TMR5CS, the external input clock (T5CKI) can be used as the counter sampling clock. When T5SYNC is set, the external clock is not synchronized to the internal device clock.

The timer count is not reset automatically when the module is disabled. The user may write the Counter register to initialize the counter.

Note: The Timer5 module does NOT prevent writes to the PR5 registers (PR5H:PR5L) while the timer is enabled. Writing to PR5 while the timer is enabled may result in unexpected period match events.

15.1.1 CONTINUOUS COUNT AND SINGLE-SHOT OPERATION

Timer5 has two operating modes: Continuous Count and Single-Shot.

Continuous Count mode is selected by clearing the T5MOD control bit (= 0). In this mode, the Timer5 time base will start incrementing according to the prescaler settings until a TMR5/PR5 match occurs, or until TMR5 rolls over (FFFFh to 0000h). The TMR5IF interrupt flag is set, the TMR5 register is reset on the following input clock edge and the timer continues to count for as long as the TMR5ON bit remains set.

Single-Shot mode is selected by setting T5MOD (= 1). In this mode, the Timer5 time base begins to increment according to the prescaler settings until a TMR5/PR5 match occurs. This causes the TMR5IF interrupt flag to be set, the TMR5 register pair to be cleared on the following input clock edge and the TMR5ON bit to be cleared by the hardware to halt the timer.

The Timer5 time base can only start incrementing in Single-Shot mode under two conditions:

- 1. Timer5 is enabled (TMR5ON is set), or
- Timer5 is disabled and a Special Event Trigger Reset is present on the Timer5 Reset input. (See Section 15.7 "Timer5 Special Event Trigger Reset Input" for additional information.)

15.2 16-Bit Read/Write and Write Modes

As noted, the actual high byte of the Timer5 register pair is mapped to TMR5H, which serves as a buffer. Reading TMR5L will load the contents of the high byte of the register pair into the TMR5H register. This allows the user to accurately read all 16 bits of the register pair without having to determine whether a read of the high byte, followed by the low byte, is valid due to a rollover between reads.

Since the actual high byte of the Timer5 register pair is not directly readable or writable, it must be read and written to through the Timer5 High Byte Buffer register (TMR5H). The T5 high byte is updated with the contents of TMR5H when a write occurs to TMR5L. This allows a user to write all 16 bits to both the high and low bytes of Timer5 at once. Writes to TMR5H do not clear the Timer5 prescaler. The prescaler is only cleared on writes to TMR5L.

15.2.1 16-BIT READ-MODIFY-WRITE

Read-modify-write instructions, like BSF and BCF, will read the contents of a register, make the appropriate changes and place the result back into the register. The write portion of a read-modify-write instruction of TMR5H will not update the contents of the high byte of TMR5 until a write of TMR5L takes place. Only then will the contents of TMR5H be placed into the high byte of TMR5.

15.3 Timer5 Prescaler

The Timer5 clock input (either TCY or the external clock) may be divided by using the Timer5 programmable prescaler. The prescaler control bits, T5PS<1:0> (T5CON<4:3>), select a prescale factor of 2, 4, 8 or no prescale.

The Timer5 prescaler is cleared by any of the following:

- A write to the Timer5 register
- Disabling Timer5 (TMR5ON = 0)
- A device Reset such as Master Clear, POR or BOR

Note: Writing to the T5CON register does not clear the Timer5.

17.1 Input Capture

The Input Capture (IC) submodule implements the following features:

- Three channels of independent input capture (16-bits/channel) on the CAP1, CAP2 and CAP3 pins
- Edge-Trigger, Period or Pulse-Width Measurement Operating modes for each channel
- Programmable prescaler on every input capture channel
- Special Event Trigger output (IC1 only)
- · Selectable noise filters on each capture input

Input Channel 1 (IC1) includes a Special Event Trigger that can be configured for use in Velocity Measurement mode. Its block diagram is shown in Figure 17-2. IC2 and IC3 are similar, but lack the Special Event Trigger features or additional velocity measurement logic. A representative block diagram is shown in Figure 17-3. Please note that the time base is Timer5.

FIGURE 17-2: INPUT CAPTURE BLOCK DIAGRAM FOR IC1

When in Counter mode, the counter must be configured as the synchronous counter only (T5SYNC = 0). When configured in Asynchronous mode, the IC module will not work properly.

- Note 1: Input capture prescalers are reset (cleared) when the input capture module is disabled (CAPxM = 0000).
 - 2: When the Input Capture mode is changed, without first disabling the module and entering the new Input Capture mode, a false interrupt (or Special Event Trigger on IC1) may be generated. The user should either: (1) disable the input capture before entering another mode, or (2) disable IC interrupts to avoid false interrupts during IC mode changes.
 - 3: During IC mode changes, the prescaler count will not be cleared, therefore, the first capture in the new IC mode may be from the non-zero prescaler.

EDGE CAPTURE MODE TIMING

17.1.1 EDGE CAPTURE MODE

In this mode, the value of the time base is captured either on every rising edge, every falling edge, every 4th rising edge, or every 16th rising edge. The edge present on the input capture pin (CAP1, CAP2 or CAP3) is sampled by the synchronizing latch. The signal is used to load the Input Capture Buffer (ICxBUF register) on the following Q1 clock (see Figure 17-4). Consequently, Timer5 is either reset to '0' (Q1 immediately following the capture event) or left free running, depending on the setting of the Capture Reset Enable bit, CAPxREN, in the CAPxCON register.

Note: On the first capture edge following the setting of the Input Capture mode (i.e., MOVWF CAP1CON), Timer5 contents are always captured into the corresponding Input Capture Buffer (i.e., CAPxBUF). Timer5 can optionally be reset; however, this is dependent on the setting of the Capture Reset Enable bit, CAPxREN (see Figure 17-4).

080		aselailes VVVV	cejezicejcejcej VVVVV	celaslador VVVV	oziosiosiosiosiosio AAAAAAAA	klaricejaeja VVVVV	nda tasta Niji Mini	ipdodozicaj MMM	oficitation NNNN
794825 ⁶⁹	X	()		0015	0000 X 0003	() ()	X 0000	((((()))))))))))))))))))))))))))))	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
CAP1 Pin ⁽²⁾					٦	; ; ; ; ;	ξ ξ		v v v v v v v v v v v v v v v v v v v
CAP1EUP ⁽³⁾					QENE	; ; ; ;			8002
MRS Reset ⁽⁴⁾			•••••••••••			: 1 :		: 	Note S
Instruction MOV Execution	KF CAPLCON)	<			RCF	CAPICON .	CAPIRE	аў. Т	
Note 1: TMBS is	i a synchron	ous time b	ase incut to t	he input o	aplure; prescaler	= 1:1. 8 in:	rements	on the Q1	rising edge.
2: 101 is ((CAP19	sonfigured i⊧ ÆM ≈ 1 \ env	n Edge Ca Eno noise i	pture mode. Star	(∰A}P13A<	3:¢> ≈ (0010) «4	th the Sm	e bass (reset upon	edge capb.

3: TMRS value is latched by CAP1BUF on Toy. In the event that a write to TMRS coincides with an input capture event, the write will always take precedence. All input Capture Buffers, CAP1EUF, CAP2EUF and CAP3BUF, are updated with the incremented value of the time case on the next YOV clock edge when the capture event takes place (see Note 4 when Reset occurs).

At TMRS Reset is normally an asynchronous Reset signal to TMR5. When used with the input cepture, it is active immediately after the time base value is captured.

5: TMR5 Reset pulse is disabled by clearing the CAP1REN bit (e.g., BOF CAP1CON, CAP1REM).

FIGURE 17-4:

FIGURE 17-13: VELOCITY MEASUREMENT TIMING⁽¹⁾

- **Note 1:** Timing shown is for QEIM<2:0> = 101, 110 or 111 (x4 Update mode enabled) and the velocity postscaler divide ratio is set to divide-by-4 (PDEC<1:0> = 01).
 - 2: The VELR register latches the TMR5 count on the "velcap" capture pulse. Timer5 must be set to the Synchronous Timer or Counter mode. In this example, it is set to the Synchronous Timer mode, where the TMR5 prescaler divide ratio = 1 (i.e., Timer5 Clock = TcY).
 - 3: The TMR5 counter is reset on the next Q1 clock cycle following the "velcap" pulse. The TMR5 value is unaffected when the Velocity Measurement mode is first enabled (VELM = 0). The velocity postscaler values must be reconfigured to their previous settings when re-entering Velocity Measurement mode. While making speed measurements of very slow rotational speeds (e.g., servo-controller applications), the Velocity Measurement mode may not provide sufficient precision. The Pulse-Width Measurement mode may have to be used to provide the additional precision. In this case, the input pulse is measured on the CAP1 input pin.
 - 4: IC1IF interrupt is enabled by setting IC1IE as follows: BSF PIE2, IC1IE. Assume IC1E bit is placed in the PIE2 (Peripheral Interrupt Enable 2) register in the target device. The actual IC1IF bit is written on the Q2 rising edge.
 - 5: The post decimation value is changed from PDEC = 01 (decimate by 4) to PDEC = 00 (decimate by 1).

17.2.6.2 Velocity Postscaler

The velocity event pulse (velcap, see Figure 17-12) serves as the TMR5 capture trigger to IC1 while in the Velocity mode. The number of velocity events are reduced by the velocity postscaler before they are used as the input capture clock. The velocity event reduction ratio can be set with the PDEC<1:0> control bits (QEICON<1:0>) to 1:4, 1:16, 1:64 or no reduction (1:1).

The velocity postscaler settings are automatically reloaded from their previous values as the Velocity mode is re-enabled.

17.2.6.3 CAP1REN in Velocity Mode

The TMR5 value can be reset (TMR5 register pair = 0000h) on a velocity event capture by setting the CAP1REN bit (CAP1CON<6>). When CAP1REN is cleared, the TMR5 time base will not be reset on any velocity event capture pulse. The VELR register pair, however, will continue to be updated with the current TMR5 value.

18.0 POWER CONTROL PWM MODULE

The Power Control PWM module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs for use in the control of motor controllers and power conversion applications. In particular, the following power and motion control applications are supported by the PWM module:

- Three-Phase and Single-Phase AC Induction Motors
- Switched Reluctance Motors
- Brushless DC (BLDC) Motors
- Uninterruptible Power Supplies (UPS)
- Multiple DC Brush Motors

The PWM module has the following features:

- Up to eight PWM I/O pins with four duty cycle generators. Pins can be paired to get a complete half-bridge control.
- Up to 14-bit resolution, depending upon the PWM period.
- "On-the-fly" PWM frequency changes.
- Edge and Center-Aligned Output modes.
- Single-Pulse Generation mode.
- Programmable dead-time control between paired PWMs.
- Interrupt support for asymmetrical updates in Center-Aligned mode.
- Output override for Electrically Commutated Motor (ECM) operation; for example, BLDC.
- Special Event Trigger comparator for scheduling other peripheral events.
- PWM outputs disable feature sets PWM outputs to their inactive state when in Debug mode.

The Power Control PWM module supports three PWM generators and six output channels on PIC18F2331/2431 devices, and four generators and eight channels on PIC18F4331/4431 devices. A simplified block diagram of the module is shown in Figure 18-1. Figure 18-2 and Figure 18-3 show how the module hardware is configured for each PWM output pair for the Complementary and Independent Output modes.

Each functional unit of the PWM module will be discussed in subsequent sections.

18.6.4 CENTER-ALIGNED PWM

Center-aligned PWM signals are produced by the module when the PWM time base is configured in a Continuous Up/Down Count mode (see Figure 18-15). The PWM compare output is driven to the active state when the value of the Duty Cycle register matches the value of PTMR and the PWM time base is counting downwards (PTDIR = 1). The PWM compare output will be driven to the inactive state when the PWM time base is counting upwards (PTDIR = 0) and the value in the PTMR register matches the duty cycle value. If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be

inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is equal to or greater than the value in the PTPER register.

MUL	LW	Multiply Literal with W							
Synta	ax:	[label] N	IULLW k						
Oper	ands:	$0 \le k \le 255$	$0 \le k \le 255$						
Oper	ation:	(W) x k \rightarrow f	PRODH:PROI	DL					
Statu	is Affected:	None							
Enco	oding:	0000	1101 kk	kk kkkk					
Desc	ription:	An unsigne out betwee the 8-bit lite is placed in pair. PROD W is uncha None of the Note that n is possible result is pos	An unsigned multiplication is carried out between the contents of W and the 8-bit literal, 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected						
Words:		1							
Cycles:		1							
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Decode	Read literal 'k'	Process Data	Write registers PRODH: PRODL					
Exan	nple:	MULLW	0xC4						
	Before Instruct W PRODH PRODL	tion = 0x = ? = ?	E2						
	After Instructio W PRODH PRODL	n = 0x = 0x = 0x	E2 AD 08						

MULWF	Multiply V	V with f			
Syntax:	[label] M	IULWF f[,a]			
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]				
Operation:	(W) x (f) \rightarrow	(W) x (f) \rightarrow PRODH:PRODL			
Status Affected:	None				
Encoding:	0000	001a fff	f ffff		
	out between the register 16-bit result PRODH:PF PRODH co Both W and None of the Note that nu is possible result is pos 'a' is '0', the selected, ov 'a'= 1, then as per the E	in the contents file location, "I t is stored in th RODL register ntains the high I 'f are unchar Status flags a either Overflow in this operation sible but not of e Access Bank verriding the B the bank will the BSR value.	of W and of W and i. The he pair. hyte.		
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write registers PRODH: PRODL		
Example:	MULWF H	REG			
Before Instruc W REG PRODH PRODL	tion = 0x0 = 0x1 = ? = ?	C4 35			

After Instruction		
W	=	0xC4
REG	=	0xB5
PRODH	=	0x8A
PRODL	=	0x94

					_			
RRNCF	Rotate Ri	ight f (No Ca	rry)	SET	F	Set f		
Syntax:	[<i>label</i>] F	RRNCF f[,d[,a]]	Synta	ax:	[label] SE	TF f[,a]	
Operands:	$0 \leq f \leq 255$			Oper	ands:	$0 \leq f \leq 255$		
	d ∈ [0,1]					a ∈ [0,1]		
Onenetien	a ∈ [0,1]			Oper	ation:	$FFh\tof$		
Operation:	$(f < n >) \rightarrow d$ $(f < 0 >) \rightarrow d$	est <n 1="" –="">, est<7></n>		Statu	s Affected:	None		
Status Affected:	N, Z			Enco	ding:	0110	100a ff	ff ffff
Encodina:	0100	00da ff	ff ffff	Desc	ription:	The conten	ts of the spec	ified register
Description:	The conter	nts of register	f' are rotated			Bank will be	e selected ov	, the Access verriding the
Becomption	one bit to th	he right. If 'd' is	6'0', the result			BSR value.	If 'a' is '1', the	en the bank will
	is placed ir	W. If 'd' is '1',	the result is			be selected	l as per the B	SR value.
	the Access	R in register, 'f Bank will be s	elected over-	Word	s:	1		
	riding the E	BSR value. If 'a	i' is '1', then	Cycle	es:	1		
	the bank w	ill be selected	as per the	QC	vcle Activity:			
	BSR value	•			Q1	Q2	Q3	Q4
	 •	 register 	r f 🗖		Decode	Read	Process	Write
Words [.]	1					register t	Data	register t
Cycles:	1			Evan	nlo [.]	0000 I	D.T.C.	
	1				<u>ipic.</u> Roforo Instruc	tion	(19	
	02	03	04		REG	= 0x	5A	
Decode	Read	Process	Write to		After Instruction	on		
	register 'f'	Data	destination		REG	= 0x	FF	
European de Au								
Example 1:	RRNCF	REG, 1, 0						
Before Instruct REG	tion = 1101 (0111						
After Instructio	n							
REG	= 1110 3	1011						
Example 2:	RRNCF	REG. W						
Before Instruct	tion	1120, 11						
W	= ?							
REG	= 1101 (0111						
After Instructio	n							
vv REG	= 1110 1 = 1101 (1011 0111						

TABLE 26-20: A/D CONVERTER CHARACTERISTICS

PIC18LF2331/2431/4331/4431 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18F2331/2431/4331/4431 (Industrial)		$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
Device	Supply	·					•
	AVDD	Analog VDD Supply	VDD - 0.3	_	VDD + 0.3	V	
	AVss	Analog Vss Supply	Vss – 0.3	_	Vss + 0.3	V	
	IAD	Module Current	_	500	_	μA	VDD = 5V
		(during conversion)	—	250	—	μA	VDD = 2.5V
	IADO	Module Current Off	—		1.0	μA	
AC Tim	ing Parame	eters			1		1
A10	Fthr	Throughput Rate	_	_	200 75	ksps ksps	VDD = 5V, single channel VDD < 3V, single channel
A11	Tad	A/D Clock Period	385	_	20,000	ns	VDD = 5V
	_		1000	_	20,000	ns	VDD = 3V
A12	TRC	A/D Internal RC Oscillator Period	_	500 750	1500 2250	ns	PIC18F parts
			_	10000	20000	ns	AVDD < 3.0V
A13	TCNV	Conversion Time ⁽¹⁾	12	12	12	TAD	
A14	TACQ	Acquisition Time ⁽²⁾	2 ⁽²⁾	_	_	TAD	
A16	Ттс	Conversion Start from External	1/4 Tcy	_	_		
Referen	ice Inputs	•					
A20	Vref	Reference Voltage for 10-Bit Resolution (VREF+ – VREF-)	1.5 1.8	_	AVDD – AVSS AVDD – AVSS	V V	$VDD \ge 3V$ VDD < 3V
A21	Vrefh	Reference Voltage High (AVDD or VREF+)	1.5V	_	AVDD	V	$VDD \ge 3V$
A22	VREFL	Reference Voltage Low (AVss or VREF-)	AVss	_	VREFH – 1.5V	V	
A23	IREF	Reference Current	_	150 μA 75 μA			VDD = 5V VDD = 2.5V
Analog	Input Char	acteristics		·			I
A26	Vain	Input Voltage ⁽³⁾	AVss - 0.3		AVDD + 0.3	V	
A30	Zain	Recommended Impedance of Analog Voltage Source	—	—	2.5	kΩ	
A31	ZCHIN	Analog Channel Input Impedance	_	_	10.0	kΩ	VDD = 3.0V
DC Per	formance						
A41	NR	Resolution		10 bits		_	
A42	EIL	Integral Nonlinearity	—	—	<±1	LSb	$VDD \ge 3.0V$ VREFH $\ge 3.0V$
A43	EIL	Differential Nonlinearity	—	—	<±1	LSb	$VDD \ge 3.0V$ VREFH $\ge 3.0V$
A45	EOFF	Offset Error	—	±0.5	<±1.5	LSb	$\begin{array}{l} VDD \geq 3.0V \\ VREFH \geq 3.0V \end{array}$
A46	EGA	Gain Error	—	±0.5	<±1.5	LSb	$\begin{array}{l} VDD \geq 3.0V \\ VREFH \geq 3.0V \end{array}$
A47	—	Monotonicity ⁽⁴⁾	guaranteed			—	$VDD \ge 3.0V$ VREFH $\ge 3.0V$

Note 1: Conversion time does not include acquisition time. See Section 21.0 "10-Bit High-Speed Analog-to-Digital Converter (A/D) Module" for a full discussion of acquisition time requirements.

2: In Sequential modes, TACQ should be 12 TAD or greater.

3: For VDD < 2.7V and temperature below 0°C, VAIN should be limited to range < VDD/2.

4: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	ILLIMETER	S	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7 <u>.</u> 40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

DEVID2 (Device ID 2)	273
DELTCON (Digital Filter Control)	169
DTCON (Dead Time Centrel)	100
DICON (Dead-Time Control)	192
EECON1 (Data EEPROM Control 1)	87
EECON1 (EEPROM Control 1)	80
FLTCONFIG (Fault Configuration)	201
INTCON (Interrupt Control)	00
INTCON2 (Interrupt Control 2)	100
INTCON3 (Interrupt Control 3)	101
IPR1 (Peripheral Interrupt Priority 1)	108
IPR2 (Perinheral Interrunt Priority 2)	100
IDD2 (Device and Interrupt Priority 2)	100
IPR3 (Peripheral Interrupt Priority 3)	110
LVDCON (Low-Voltage Detect Control)	257
OSCCON (Oscillator Control)	36
OSCTUNE (Oscillator Tuning)	33
	196
	100
	190
PIE1 (Peripheral Interrupt Enable 1)	105
PIE2 (Peripheral Interrupt Enable 2)	106
PIE3 (Peripheral Interrupt Enable 3)	107
PIP1 (Peripheral Interrunt Request (Flag) 1)	102
DID2 (Deripheral Interrupt Deguest (Flag) 2)	102
PIRZ (Peripheral Interrupt Request (Flag) 2)	103
PIR3 (Peripheral Interrupt Request (Flag) 3)	104
PTCON0 (PWM Timer Control 0)	178
PTCON1 (PWM Timer Control 1)	178
PWMCON0 (PWM Control 0)	179
PW/MCON1 (PW/M Control 1)	180
	160
	102
RCON (Reset Control)	48, 111
RCSTA (Receive Status and Control)	219
SSPCON (SSP Control)	207
SSPSTAT (SSP Status)	206
STATUS	74
STKDTP (Stock Dointor)	
Summary	.70–73
TRISE	124
TXSTA (Transmit Status and Control)	218
T0CON (Timer0 Control)	127
T1CON (Timer1 Control)	131
T2CON (Timer? Control)	126
	130
15CON (Timers Control)	139
WDTCON (Watchdog Timer Control)	275
RESET	313
Reset	47
Resets	263
	214
REILW	314
RETURN	315
Return Address Stack	62
Return Stack Pointer (STKPTR)	62
Revision History	
RICE	315
	246
	310
	316
RRNCF	317

S

	005
Serial Data Out (SDO) Pin	205
SETF	. 317
Single-Supply ICSP Programming	. 282
Slave Select (SS) Pin	205
SLEEP	. 318
Sleep	
OSC1 and OSC2 Pin States	37
Software Simulator (MPLAB SIM)	327
Special Event Trigger, See Compare (CCP Module).	
Special Features of the CPU	263
Special Function Registers	
Man	69
SPI Mode (SSP)	205
Associated Registers	211
Serial Clock	205
Serial Data In	205
Serial Data III	205
Serial Data Out	205
	205
00 0 0	205
55P	
Overview.	
I MR2 Output for Clock Shift 136	, 137
SSPEN Bit	. 207
SSPM<3:0> Bits	. 208
SSPOV Bit	. 207
Stack Full/Underflow Resets	64
Status Bits, Significance and Initialization for	
RCON Register	53
SUBFWB	. 318
SUBLW	. 319
SUBWF	. 319
SUBWFB	320
SWAPF	. 320
Synchronous Serial Port. See SSP.	

Т

TABLAT Register	88
Table Pointer Operations (table)	88
TBLPTR Register	88
TBLRD	321
TBLWT	322
Time-out in Various Situations (table)	50
Timer0	127
Associated Registers	129
Clock Source Edge Select (T0SE Bit)	129
Clock Source Select (T0CS Bit)	129
Interrupt	129
Operation	129
Prescaler	129
Switching Assignment	129
Prescaler. See Prescaler, Timer0.	
16-Bit Mode Timer Reads and Writes	129
Timer1	131
Associated Registers	135
Interrupt	134
Operation	132
Oscillator	131, 133
Layout Considerations	133
Overflow Interrupt	131
Resetting, Using a Special Event Trigger	
Output (CCP)	134
Special Event Trigger (CCP)	147
TMR1H Register	131
TMR1L Register	131
Use as a Real-Time Clock (RTC)	134
16-Bit Read/Write Mode	134

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10