



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 40MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                         |
| Peripherals                | Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT        |
| Number of I/O              | 36                                                                        |
| Program Memory Size        | 8KB (4K x 16)                                                             |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 256 x 8                                                                   |
| RAM Size                   | 768 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                               |
| Data Converters            | A/D 9x10b                                                                 |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 44-VQFN Exposed Pad                                                       |
| Supplier Device Package    | 44-QFN (8x8)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f4331-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 5.0 RESET

The PIC18F2331/2431/4331/4431 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during Sleep
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR, and the operation of the various startup timers. Stack Reset events are covered in Section 6.1.2.4 "Stack Full/Underflow Resets". WDT Resets are covered in Section 23.2 "Watchdog Timer (WDT)".

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

#### FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT



### 6.4 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). Figure 6-5 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0'.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction 2 in Figure 6-5 shows how the instruction, 'GOTO 00006h', is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. **Section 24.0 "Instruction Set Summary"** provides further details of the instruction set.

#### 6.4.1 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the four MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence, immediately after the first word, the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 shows how this works.

Note: For information on two-word instructions in the extended instruction set, see Section 24.2 "Instruction Set".

|                |            |                    | LSB = 1 | LSB = 0 | Word Address $\downarrow$ |
|----------------|------------|--------------------|---------|---------|---------------------------|
|                | Program N  | 1emory             |         |         | 000000h                   |
|                | Byte Locat | ions $\rightarrow$ |         |         | 000002h                   |
|                |            |                    |         |         | 000004h                   |
|                |            |                    |         |         | 000006h                   |
| Instruction 1: | MOVLW      | 055h               | 0Fh     | 55h     | 000008h                   |
| Instruction 2: | GOTO       | 000006h            | EFh     | 03h     | 00000Ah                   |
|                |            |                    | F0h     | 00h     | 00000Ch                   |
| Instruction 3: | MOVFF      | 123h, 456h         | C1h     | 23h     | 00000Eh                   |
|                |            |                    | F4h     | 56h     | 000010h                   |
|                |            |                    |         |         | 000012h                   |
|                |            |                    |         |         | 000014h                   |

#### FIGURE 6-5: INSTRUCTIONS IN PROGRAM MEMORY

#### EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

| CASE 1:             |                  |                              |
|---------------------|------------------|------------------------------|
| Object Code         | Source Code      |                              |
| 0110 0110 0000 0000 | TSTFSZ REG1      | ; is RAM location 0?         |
| 1100 0001 0010 0011 | MOVFF REG1, REG2 | ; No, skip this word         |
| 1111 0100 0101 0110 |                  | ; Execute this word as a NOP |
| 0010 0100 0000 0000 | ADDWF REG3       | ; continue code              |
| CASE 2:             | _                |                              |
| Object Code         | Source Code      |                              |
| 0110 0110 0000 0000 | TSTFSZ REG1      | ; is RAM location 0?         |
| 1100 0001 0010 0011 | MOVFF REG1, REG2 | ; Yes, execute this word     |
| 1111 0100 0101 0110 |                  | ; 2nd word of instruction    |
| 0010 0100 0000 0000 | ADDWF REG3       | ; continue code              |

#### 6.5 Data Memory Organization

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4,096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each. PIC18F2331/2431/4331/4431 devices implement all 16 banks.

Figure 6-6 shows the data memory organization for the PIC18F2331/2431/4331/4431 devices. The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to SFRs and the lower portion of GPR Bank 0 without using the BSR. **Section 6.5.2** "Access Bank" provides a detailed description of the Access RAM.



# 8.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

While writing or erasing program memory, instruction fetches cease until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

#### 8.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)





Table read operations retrieve data from program memory and place it into TABLAT in the data RAM space. Figure 8-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from TABLAT in the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 8.5 "Writing to Flash Program Memory"**. Figure 8-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word-aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word-aligned, (TBLPTRL<0> = 0).



### 8.5 Writing to Flash Program Memory

The programming block size is 4 words or 8 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 8 holding registers used by the table writes for programming.

Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction has to be executed 8 times for each programming operation. All of the table write operations will essentially be short writes, because only the holding registers are written. At the end of updating 8 registers, the EECON1 register must be written to, to start the programming operation with a long write. The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the modification does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 64 holding registers before executing a write operation.





#### 10.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Request (Flag) Registers (PIR1, PIR2 and PIR3).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
  - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

## REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

| U-0   | R/W-0 | R-0  | R-0  | R/W-0 | R/W-0  | R/W-0  | R/W-0  |
|-------|-------|------|------|-------|--------|--------|--------|
| _     | ADIF  | RCIF | TXIF | SSPIF | CCP1IF | TMR2IF | TMR1IF |
| bit 7 |       |      |      |       |        |        | bit 0  |

| Levend        |                         |                                                             |                                                 |                    |
|---------------|-------------------------|-------------------------------------------------------------|-------------------------------------------------|--------------------|
| P - Poodoble  | , hit                   | M = Mritable bit                                            | 11 - Unimplomented bit                          | road as '0'        |
| R = Readable  |                         | vv = vviilable bil                                          | O = Onimplemented bit.                          | , reau as U        |
| -n = value at | PUR                     | i = Bit is set                                              | 0 = Bit is cleared                              | x = Bit is unknown |
|               |                         |                                                             |                                                 |                    |
| bit 7         | Unimplem                | nented: Read as '0'                                         |                                                 |                    |
| bit 6         | ADIF: A/D               | Converter Interrupt Flag b                                  | it                                              |                    |
|               | 1 = An A/I<br>0 = The A | D conversion completed (m<br>/D conversion is not compl     | nust be cleared in software)<br>ete             |                    |
| bit 5         | RCIF: EUS               | SART Receive Interrupt Fla                                  | ig bit                                          |                    |
|               | 1 = The E               | USART receive buffer, RC                                    | REG, is full (cleared when RCF                  | REG is read)       |
|               | 0 = The E               | USART receive buffer is er                                  | npty                                            |                    |
| bit 4         | TXIF: EUS               | SART Transmit Interrupt Fla                                 | ig bit                                          |                    |
|               | 1 = The E<br>0 = The E  | USART transmit buffer, TX<br>USART transmit buffer is f     | REG, is empty (cleared when <sup>-</sup><br>ull | TXREG is written)  |
| bit 3         | SSPIF: Sy               | nchronous Serial Port Inter                                 | rrupt Flag bit                                  |                    |
|               | 1 = The tr              | ansmission/reception is co                                  | mplete (must be cleared in sof                  | tware)             |
|               | 0 = Waitin              | ig to transmit/receive                                      |                                                 |                    |
| bit 2         | CCP1IF: C               | CCP1 Interrupt Flag bit                                     |                                                 |                    |
|               | Capture m               | ode:                                                        |                                                 |                    |
|               | 1 = A TMP<br>0 = No TM  | R1 register capture occurre<br>/IR1 register capture occurr | d (must be cleared in software<br>ed            | )                  |
|               | Compare r               | <u>mode:</u>                                                |                                                 |                    |
|               | 1 = A TMI               | R1 register compare match                                   | occurred (must be cleared in s                  | software)          |
|               | 0 = NO IN               | /IR1 register compare mate                                  | h occurred                                      |                    |
|               | Unused in               | this mode.                                                  |                                                 |                    |
| bit 1         | TMR2IF: T               | MR2 to PR2 Match Interru                                    | ot Flag bit                                     |                    |
| ~             | 1 = TMR2                | to PR2 match occurred (n                                    | nust be cleared in software)                    |                    |
|               | 0 = No Th               | /R2 to PR2 match occurred                                   | d                                               |                    |
| bit 0         | TMR1IF: 7               | MR1 Overflow Interrupt Fl                                   | aq bit                                          |                    |
| -             | 1 = TMR1                | register overflowed (must                                   | be cleared in software)                         |                    |
|               | 0 = TMR1                | register did not overflow                                   | ,                                               |                    |

### 10.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Enable Registers (PIE1, PIE2 and PIE3). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

#### REGISTER 10-7: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

|       |        |        |       | V V - U | rt/vv-u | R/VV-0 I | ≺/٧٧-0 |
|-------|--------|--------|-------|---------|---------|----------|--------|
| —     | ADIE F | RCIE T | XIE S | SPIE C  | CP1IE T | MR2IE T  | MR1IE  |
| bit 7 |        |        |       |         |         |          | bit 0  |

| Legend:           |                                                     |                      |                    |
|-------------------|-----------------------------------------------------|----------------------|--------------------|
| R = Readable bit  | W = Writable bit U = Unimplemented bit, read as '0' |                      |                    |
| -n = Value at POR | '1' = Bit is set                                    | '0' = Bit is cleared | x = Bit is unknown |

| bit 7 | Unimplemented: Read as '0'                                                                                                               |
|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| bit 6 | ADIE: A/D Converter Interrupt Enable bit                                                                                                 |
|       | <ul><li>1 = Enables the A/D interrupt</li><li>0 = Disables the A/D interrupt</li></ul>                                                   |
| bit 5 | RCIE: EUSART Receive Interrupt Enable bit                                                                                                |
|       | <ul><li>1 = Enables the EUSART receive interrupt</li><li>0 = Disables the EUSART receive interrupt</li></ul>                             |
| bit 4 | TXIE: EUSART Transmit Interrupt Enable bit                                                                                               |
|       | <ul><li>1 = Enables the EUSART transmit interrupt</li><li>0 = Disables the EUSART transmit interrupt</li></ul>                           |
| bit 3 | SSPIE: Synchronous Serial Port Interrupt Enable bit                                                                                      |
|       | <ul><li>1 = Enables the SSP interrupt</li><li>0 = Disables the SSP interrupt</li></ul>                                                   |
| bit 2 | CCP1IE: CCP1 Interrupt Enable bit                                                                                                        |
|       | <ul><li>1 = Enables the CCP1 interrupt</li><li>0 = Disables the CCP1 interrupt</li></ul>                                                 |
| bit 1 | TMR2IE: TMR2 to PR2 Match Interrupt Enable bit                                                                                           |
|       | <ul><li>1 = Enables the TMR2 to PR2 match interrupt</li><li>0 = Disables the TMR2 to PR2 match interrupt</li></ul>                       |
| bit 0 | <b>TMR1IE:</b> TMR1 Overflow Interrupt Enable bit<br>1 = Enables the TMR1 overflow interrupt<br>0 = Disables the TMR1 overflow interrupt |

# 10.5 RCON Register

The RCON register contains bits used to determine the cause of the last Reset or wake-up from a powermanaged mode. RCON also contains the bit that enables interrupt priorities (IPEN).

# REGISTER 10-13: RCON: RESET CONTROL REGISTER

| R/W-0 | U-0 | U-0 | R/W-1 | R-1 | R-1 | R/W-0 | R/W-0 |
|-------|-----|-----|-------|-----|-----|-------|-------|
| IPEN  | —   | _   | RI    | TO  | PD  | POR   | BOR   |
| bit 7 |     |     |       |     |     |       | bit 0 |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

| bit 7   | IPEN: Interrupt Priority Enable bit                                      |
|---------|--------------------------------------------------------------------------|
|         | 1 = Enable priority levels on interrupts                                 |
|         | 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode) |
| bit 6-5 | Unimplemented: Read as '0'                                               |
| bit 4   | RI: RESET Instruction Flag bit                                           |
|         | For details of bit operation, see Register 5-1.                          |
| bit 3   | TO: Watchdog Timer Time-out Flag bit                                     |
|         | For details of bit operation, see Register 5-1.                          |
| bit 2   | PD: Power-Down Detection Flag bit                                        |
|         | For details of bit operation, see Register 5-1.                          |
| bit 1   | POR: Power-on Reset Status bit                                           |
|         | For details of bit operation, see Register 5-1.                          |
| bit 0   | BOR: Brown-out Reset Status bit                                          |
|         | For details of bit operation, see Register 5-1.                          |

# 13.0 TIMER1 MODULE

The Timer1 timer/counter module has the following features:

- 16-bit timer/counter (two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (both registers)
- · Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP module Special Event Trigger
- Status of system clock operation

Figure 13-1 is a simplified block diagram of the Timer1 module.

Register 13-1 details the Timer1 Control register. This register controls the operating mode of the Timer1 module and contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

The Timer1 oscillator can be used as a secondary clock source in power-managed modes. When the T1RUN bit is set, the Timer1 oscillator provides the system clock. If the Fail-Safe Clock Monitor is enabled and the Timer1 oscillator fails while providing the system clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

| R/W-0 | R-0   | R/W-0   | R/W-0   | R/W-0   | R/W-0  | R/W-0  | R/W-0  |
|-------|-------|---------|---------|---------|--------|--------|--------|
| RD16  | T1RUN | T1CKPS1 | T1CKPS0 | T1OSCEN | T1SYNC | TMR1CS | TMR10N |
| bit 7 |       |         |         |         |        |        | bit 0  |

## REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

| <b></b>       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                    |  |  |  |  |  |
|---------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|--|--|--|--|--|
| Legend:       |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                    |  |  |  |  |  |
| R = Readable  | e bit                         | W = Writable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U = Unimplemented bit,          | read as '0'        |  |  |  |  |  |
| -n = Value at | POR                           | '1' = Bit is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | '0' = Bit is cleared            | x = Bit is unknown |  |  |  |  |  |
|               |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                    |  |  |  |  |  |
| bit 7         | RD16: 16-Bit                  | Read/Write Mode Enable b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | it                              |                    |  |  |  |  |  |
|               | 1 = Enables                   | register read/write of TImer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 in one 16-bit operation       |                    |  |  |  |  |  |
|               | 0 = Enables                   | register read/write of Timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 in two 8-bit operations       |                    |  |  |  |  |  |
| bit 6         | T1RUN: Time                   | er1 System Clock Status bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                    |  |  |  |  |  |
|               | 1 = Device c                  | 1 = Device clock is derived from Timer1 oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                    |  |  |  |  |  |
|               |                               | lock is derived from anothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | source                          |                    |  |  |  |  |  |
| bit 5-4       | T1CKPS<1:0                    | Interaction in the second s | cale Select bits                |                    |  |  |  |  |  |
|               | 11 = 1:8 Pres                 | 1 = 1:8 Prescale value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                    |  |  |  |  |  |
|               | 10 = 1.4 Fies                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                    |  |  |  |  |  |
|               | 00 = 1:1 Pres                 | scale value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                    |  |  |  |  |  |
| bit 3         | T1OSCEN: ⊺                    | imer1 Oscillator Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                    |  |  |  |  |  |
|               | 1 = Timer1 o                  | scillator is enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                    |  |  |  |  |  |
|               | 0 = Timer1 o                  | scillator is shut off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                    |  |  |  |  |  |
|               | The oscillator                | inverter and feedback resi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stor are turned off to eliminat | e power drain.     |  |  |  |  |  |
| bit 2         | T1SYNC: Tim                   | ner1 External Clock Input S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ynchronization Select bit       |                    |  |  |  |  |  |
|               | When TMR10                    | <u>CS = 1 (External Clock):</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |                    |  |  |  |  |  |
|               | 1 = Do not sy<br>0 = Synchron | nchronize external clock in<br>ize external clock input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | out                             |                    |  |  |  |  |  |
|               | When TMR1                     | S = 0 (Internal Clock):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                    |  |  |  |  |  |
|               | This bit is ign               | ored. Timer1 uses the inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nal clock when TMR1CS = 0       | ı.                 |  |  |  |  |  |
| bit 1         | TMR1CS: Tin                   | ner1 Clock Source Select b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | it                              |                    |  |  |  |  |  |
|               | 1 = External                  | clock from pin RC0/T1OSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /T1CKI (on the rising edge)     |                    |  |  |  |  |  |
|               | 0 = Internal o                | clock (Fosc/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                    |  |  |  |  |  |
| bit 0         | TMR1ON: Tir                   | mer1 On bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                    |  |  |  |  |  |
|               | 1 = Enables                   | Timer1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                    |  |  |  |  |  |
|               | 0 = Stops Tir                 | ner1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                    |  |  |  |  |  |

## 14.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF (PIR1<1>).

The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>). A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0> (T2CON<6:3>).

FIGURE 14-1: TIMER2 BLOCK DIAGRAM

### 14.3 Output of TMR2

The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode. Timer2 can be optionally used as the shift clock source for the SSP module operating in SPI mode.

For additional information, see Section 19.0 "Synchronous Serial Port (SSP) Module".



#### TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

| Name   | Bit 7           | Bit 6         | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1   | Bit 0   | Reset Values<br>on Page: |
|--------|-----------------|---------------|---------|---------|---------|--------|---------|---------|--------------------------|
| INTCON | GIE/GIEH        | PEIE/GIEL     | TMR0IE  | INT0IE  | RBIE    | TMR0IF | INT0IF  | RBIF    | 54                       |
| PIR1   | —               | ADIF          | RCIF    | TXIF    | SSPIF   | CCP1IF | TMR2IF  | TMR1IF  | 57                       |
| PIE1   | —               | ADIE          | RCIE    | TXIE    | SSPIE   | CCP1IE | TMR2IE  | TMR1IE  | 57                       |
| IPR1   | —               | ADIP          | RCIP    | TXIP    | SSPIP   | CCP1IP | TMR2IP  | TMR1IP  | 57                       |
| TMR2   | Timer2 Register |               |         |         |         |        |         |         |                          |
| T2CON  | —               | TOUTPS3       | TOUTPS2 | TOUTPS1 | TOUTPS0 | TMR2ON | T2CKPS1 | T2CKPS0 | 55                       |
| PR2    | Timer2 Pe       | riod Register | ſ       |         |         |        |         |         | 55                       |

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

| Name    | Bit 7     | Bit 6         | Bit 5      | Bit 4       | Bit 3   | Bit 2  | Bit 1  | Bit 0  | Reset Values<br>on Page: |
|---------|-----------|---------------|------------|-------------|---------|--------|--------|--------|--------------------------|
| INTCON  | GIE/GIEH  | PEIE/GIEL     | TMR0IE     | INT0IE      | RBIE    | TMR0IF | INT0IF | RBIF   | 54                       |
| PIR1    | _         | ADIF          | RCIF       | TXIF        | SSPIF   | CCP1IF | TMR2IF | TMR1IF | 57                       |
| PIE1    | —         | ADIE          | RCIE       | TXIE        | SSPIE   | CCP1IE | TMR2IE | TMR1IE | 57                       |
| IPR1    | —         | ADIP          | RCIP       | TXIP        | SSPIP   | CCP1IP | TMR2IP | TMR1IP | 57                       |
| TRISC   | PORTC D   | ata Direction | Register   |             |         |        |        |        | 57                       |
| TMR1L   | Timer1 Re | gister Low B  | Syte       |             |         |        |        |        | 55                       |
| TMR1H   | Timer1 Re | gister High E | Byte       |             |         |        |        |        | 55                       |
| T1CON   | RD16      | T1RUN         | T1CKPS1    | T1CKPS0     | T1OSCEN | T1SYNC | TMR1CS | TMR10N | 55                       |
| CCPR1L  | Capture/C | ompare/PWI    | M Register | 1 Low Byte  |         |        |        |        | 56                       |
| CCPR1H  | Capture/C | ompare/PWI    | M Register | 1 High Byte |         |        |        |        | 56                       |
| CCP1CON | _         | _             | DC1B1      | DC1B0       | CCP1M3  | CCP1M2 | CCP1M1 | CCP1M0 | 56                       |
| CCPR2L  | Capture/C | ompare/PWI    | M Register | 2 Low Byte  |         |        |        |        | 56                       |
| CCPR2H  | Capture/C | ompare/PWI    | M Register | 2 High Byte |         |        |        |        | 56                       |
| CCP2CON | _         | _             | DC2B1      | DC2B0       | CCP2M3  | CCP2M2 | CCP2M1 | CCP2M0 | 56                       |
| PIR2    | OSCFIF    | _             | _          | EEIF        | _       | LVDIF  | —      | CCP2IF | 57                       |
| PIE2    | OSCFIE    | _             | _          | EEIE        | —       | LVDIE  | —      | CCP2IE | 57                       |
| IPR2    | OSCFIP    | —             | _          | EEIP        | —       | LVDIP  | —      | CCP2IP | 57                       |

#### TABLE 16-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture, Compare and Timer1.

#### FIGURE 18-1: POWER CONTROL PWM MODULE BLOCK DIAGRAM



| REGISTER 10-3. FWWICONU. FWWICONTROL REGISTER U | REGISTER 18-3: | <b>PWMCON0: PWM CONTROL REGISTER 0</b> |
|-------------------------------------------------|----------------|----------------------------------------|
|-------------------------------------------------|----------------|----------------------------------------|

| U-0   | R/W-1 <sup>(1)</sup> | R/W-1 <sup>(1)</sup> | R/W-1 <sup>(1)</sup> | R/W-0                | R/W-0 | R/W-0 | R/W-0 |
|-------|----------------------|----------------------|----------------------|----------------------|-------|-------|-------|
|       | PWMEN2               | PWMEN1               | PWMEN0               | PMOD3 <sup>(3)</sup> | PMOD2 | PMOD1 | PMOD0 |
| bit 7 |                      |                      |                      |                      |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | as '0'             |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 7   | Unimplemented: Read as '0'                                                                                                 |  |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| bit 6-4 | PWMEN<2:0>: PWM Module Enable bits <sup>(1)</sup>                                                                          |  |  |  |  |  |  |  |
|         | 111 = All odd PWM I/O pins are enabled for PWM output <sup>(2)</sup>                                                       |  |  |  |  |  |  |  |
|         | 110 = PWM1, PWM3 pins are enabled for PWM output                                                                           |  |  |  |  |  |  |  |
|         | 101 = All PWM I/O pins are enabled for PWM output <sup>(2)</sup>                                                           |  |  |  |  |  |  |  |
|         | 100 = PWM0, PWM1, PWM2, PWM3, PWM4 and PWM5 pins are enabled for PWM output                                                |  |  |  |  |  |  |  |
|         | 011 = PWM0, PWM1, PWM2 and PWM3 I/O pins are enabled for PWM output                                                        |  |  |  |  |  |  |  |
|         | 010 = PWMU and PWM1 pins are enabled for PWM output                                                                        |  |  |  |  |  |  |  |
|         | 001 = PWM regimes an end of PWM output                                                                                     |  |  |  |  |  |  |  |
| h:+ 0 0 | <b>DNOD</b> 200 - DWW Output Deir Made bite                                                                                |  |  |  |  |  |  |  |
| DII 3-0 |                                                                                                                            |  |  |  |  |  |  |  |
|         | <u>FOF PMUDU:</u>                                                                                                          |  |  |  |  |  |  |  |
|         | I = PWM I/O pin pair (PWMO, PWMI) is in the Complementary mode                                                             |  |  |  |  |  |  |  |
|         | 5 - F WWWWO pin pair (F WWWO, F WWWT) is in the Complementary mode                                                         |  |  |  |  |  |  |  |
|         | FOLPWIDDT:<br>1 - DW/M I/O pin pair (DW/M2, DW/M2) is in the Independent mode                                              |  |  |  |  |  |  |  |
|         | = PWM I/O pin pair (PWM2, PWM3) is in the Complementary mode  = PWM I/O pin pair (PWM2, PWM3) is in the Complementary mode |  |  |  |  |  |  |  |
|         | $\sigma = 1$ with the pair (1 with 2, 1 with 0) is in the complementary mode<br>For PMOD2.                                 |  |  |  |  |  |  |  |
|         | 1 = PWM I/O pin pair (PWM4_PWM5) is in the Independent mode                                                                |  |  |  |  |  |  |  |
|         | $\alpha = PWM I/O pin pair (PWM4, PWM5) is in the Complementary mode$                                                      |  |  |  |  |  |  |  |
|         |                                                                                                                            |  |  |  |  |  |  |  |
|         | 1 = PWM I/O pin pair (PWM6, PWM7) is in the Independent mode                                                               |  |  |  |  |  |  |  |
|         | 0 = PWM I/O pin pair (PWM6, PWM7) is in the Complementary mode                                                             |  |  |  |  |  |  |  |
| Note 1: | Reset condition of the PWMEN bits depends on the PWMPIN Configuration bit.                                                 |  |  |  |  |  |  |  |
| 2:      | When PWMEN<2:0> = 101, PWM<5:0> outputs are enabled for PIC18F2331/2431 devices; PWM<7:0>                                  |  |  |  |  |  |  |  |

outputs are enabled for PIC18F4331/4431 devices. When PWMEN<2:0> = 111, PWM Outputs 1, 3 and 5 are enabled in PIC18F2331/2431 devices; PWM Outputs 1, 3, 5 and 7 are enabled in PIC18F4331/4431 devices.

3: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear.

# 18.6.2 DUTY CYCLE REGISTER BUFFERS

The four PWM Duty Cycle registers are double-buffered to allow glitchless updates of the PWM outputs. For each duty cycle block, there is a Duty Cycle Buffer register that is accessible by the user and a second Duty Cycle register that holds the actual compare value used in the present PWM period.

In Edge-Aligned PWM Output mode, a new duty cycle value will be updated whenever a PTMR match with the PTPER register occurs and PTMR is reset as shown in Figure 18-12. Also, the contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers when the PWM time base is disabled (PTEN = 0).

When the PWM time base is in the Continuous Up/Down Count mode, new duty cycle values will be updated when the value of the PTMR register is zero and the PWM time base begins to count upwards. The contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers when the PWM time base is disabled (PTEN = 0). Figure 18-13 shows the timings when the duty cycle update occurs for the Continuous Up/Down Count mode. In this mode, up to one entire PWM period is available for calculating and loading the new PWM duty cycle before changes take effect.

When the PWM time base is in the Continuous Up/Down Count mode with double updates, new duty cycle values will be updated when the value of the PTMR register is zero and when the value of the PTMR register matches the value in the PTPER register. The contents of the duty cycle buffers are automatically loaded into the Duty Cycle registers during both of the previously described conditions. Figure 18-14 shows the duty cycle updates for Continuous Up/Down Count mode with double updates. In this mode, only up to half of a PWM period is available for calculating and loading the new PWM duty cycle before changes take effect.

#### 18.6.3 EDGE-ALIGNED PWM

Edge-aligned PWM signals are produced by the module when the PWM time base is in the Free-Running mode or the Single-Shot mode. For edge-aligned PWM outputs, the output for a given PWM channel has a period specified by the value loaded in PTPER and a duty cycle specified by the appropriate Duty Cycle register (see Figure 18-12). The PWM output is driven active at the beginning of the period (PTMR = 0) and is driven inactive when the value in the Duty Cycle register matches PTMR. A new cycle is started when PTMR matches the PTPER as explained in the PWM period section.

If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is greater than the value held in the PTPER register.





#### FIGURE 18-13: DUTY CYCLE UPDATE TIMES IN CONTINUOUS UP/DOWN COUNT MODE



# 21.4 A/D Voltage References

If external voltage references are used instead of the internal AVDD and AVSS sources, the source impedance of the VREF+ and VREF- voltage sources must be considered. During acquisition, currents supplied by these sources are insignificant. However, during conversion, the A/D module sinks and sources current through the reference sources.

In order to maintain the A/D accuracy, the voltage reference source impedances should be kept low to reduce voltage changes. These voltage changes occur as reference currents flow through the reference source impedance.

**Note:** When using external references, the source impedance of the external voltage references must be less than  $75\Omega$  in order to achieve the specified ADC resolution. A higher reference source impedance will increase the ADC offset and gain errors. Resistive voltage dividers will not provide a low enough source impedance. To ensure the best possible ADC performance, external VREF inputs should be buffered with an op amp or other low-impedance circuit.

# 21.5 Selecting and Configuring Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time an A/D conversion is triggered.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and the start of conversion. This occurs when the ACQT<3:0> bits (ADCON2<6:3>) remain in their Reset state ('0000'). If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When triggered, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and triggering the A/D. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

#### 21.6 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are eight possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator
- Internal RC Oscillator/4

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD (approximately 416 ns, see parameter A11 for more information).

Table 21-2 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

| AD Clock Sou        | Irce (TAD) | Maximum Device Frequency |                            |  |  |
|---------------------|------------|--------------------------|----------------------------|--|--|
| Operation           | ADCS<2:0>  | PIC18FXX31               | PIC18LFXX31 <sup>(4)</sup> |  |  |
| 2 Tosc              | 000        | 4.8 MHz                  | 666 kHz                    |  |  |
| 4 Tosc              | 100        | 9.6 MHz                  | 1.33 MHz                   |  |  |
| 8 Tosc              | 001        | 19.2 MHz                 | 2.66 MHz                   |  |  |
| 16 Tosc             | 101        | 38.4 MHz                 | 5.33 MHz                   |  |  |
| 32 Tosc             | 010        | 40.0 MHz                 | 10.65 MHz                  |  |  |
| 64 Tosc             | 110        | 40.0 MHz                 | 21.33 MHz                  |  |  |
| RC/4 <sup>(3)</sup> | 011        | 1.00 MHz <sup>(1)</sup>  | 1.00 MHz <sup>(2)</sup>    |  |  |
| RC <sup>(3)</sup>   | 111        | 4.0 MHz <sup>(2)</sup>   | 4.0 MHz <sup>(2)</sup>     |  |  |

TABLE 21-2: TAD VS. DEVICE OPERATING FREQUENCIES

Note 1: The RC source has a typical TAD time of 2-6  $\mu$ s.

**2:** The RC source has a typical TAD time of 0.5-1.5 μs.

**3:** For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D accuracy may be out of specification unless in Single-Shot mode.

4: Low-power devices only.

# 23.2 Watchdog Timer (WDT)

For PIC18F2331/2431/4331/4431 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H (see Register 23-3). Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: execute a SLEEP or CLRWDT instruction, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred (see Section 23.4.1 "FSCM and the Watchdog Timer").

Adjustments to the internal oscillator clock period using the OSCTUNE register also affect the period of the WDT by the same factor. For example, if the INTRC period is increased by 3%, then the WDT period is increased by 3%.

#### FIGURE 23-1: WDT BLOCK DIAGRAM



- Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
- **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.
- 4: If WINEN = 0, then CLRWDT must be executed only when WDTW = 1; otherwise, a device Reset will result.

#### 23.2.1 CONTROL REGISTER

Register 23-15 shows the WDTCON register. This is a readable and writable register. The SWDTEN bit allows software to enable or disable the WDT, but only if the Configuration bit has disabled the WDT. The WDTW bit is a read-only bit that indicates when the WDT count is in the fourth quadrant (i.e., when the 8-bit WDT value is b'11000000' or greater).



#### 23.5.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits external writes to data EEPROM. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

#### 23.5.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

#### 23.6 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions, or during program/verify. The ID locations can be read when the device is code-protected.

# 23.7 In-Circuit Serial Programming

PIC18F2331/2431/4331 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

## 23.8 In-Circuit Debugger

When the DEBUG bit in the CONFIG4L Configuration register is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB<sup>®</sup> IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 23-4 shows which resources are required by the background debugger.

| I/O pins:       | RB6, RB7  |
|-----------------|-----------|
| Stack:          | 2 levels  |
| Program Memory: | <1 Kbytes |
| Data Memory:    | 16 bytes  |

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to  $\overline{\text{MCLR}/\text{VPP}}$ , VDD, VSS, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

## 23.9 Single-Supply ICSP™ Programming

The LVP bit in Configuration Register 4L (CONFIG4L<2>) enables Single-Supply ICSP Programming. When LVP is enabled, the microcontroller can be programmed without requiring high voltage being applied to the MCLR/VPP pin, but the RB5/PGM pin is then dedicated to controlling Program mode entry and is not available as a general purpose I/O pin.

LVP is enabled in erased devices.

While programming, using Single-Supply Programming, VDD is applied to the MCLR/VPP pin as in normal execution mode. To enter Programming mode, VDD is applied to the PGM pin.

- Note 1: High-voltage programming is always available, regardless of the state of the LVP bit or the PGM pin, by applying VIHH to the MCLR pin.
  - 2: When Single-Supply Programming is enabled, the RB5 pin can no longer be used as a general purpose I/O pin.
  - **3:** When LVP is enabled externally, pull the PGM pin to Vss to allow normal program execution.

If Single-Supply ICSP Programming mode will not be used, the LVP bit can be cleared and RB5/PGM becomes available as the digital I/O pin RB5. The LVP bit may be set or cleared only when using standard high-voltage programming (VIHH applied to the MCLR/ VPP pin). Once LVP has been disabled, only the standard high-voltage programming is available and must be used to program the device.

Memory that is not code-protected can be erased using either a block erase, or erased row by row, then written at any specified VDD. If code-protected memory is to be erased, a block erase is required. If a block erase is to be performed when using Single-Supply Programming, the device must be supplied with VDD of 4.5V to 5.5V.

# PIC18F2331/2431/4331/4431

| DAW        |                  | Decimal A                                                                   | Adjust W Re                       | gister          | DEC       | F                              | Decreme                  | nt f                                       |                       |               |  |
|------------|------------------|-----------------------------------------------------------------------------|-----------------------------------|-----------------|-----------|--------------------------------|--------------------------|--------------------------------------------|-----------------------|---------------|--|
| Synta      | X:               | [label] DA                                                                  | AW .                              |                 | Synta     | ax:                            | [label] D                | ECF f[,d[,a                                | a]]                   |               |  |
| Opera      | ands:            | None                                                                        |                                   | Oper            | Operands: |                                | $0 \le f \le 255$        |                                            |                       |               |  |
| Operation: |                  | If $[W<3:0> > 9]$ or $[DC = 1]$ then,<br>$(W<3:0>) + 6 \rightarrow W<3:0>;$ |                                   |                 |           |                                |                          | d ∈ [0,1]                                  |                       |               |  |
|            |                  |                                                                             |                                   |                 | 0         |                                | a ∈ [0,1]                |                                            |                       |               |  |
|            |                  | eise,<br>(W<3:0>) –                                                         | → W<3:0>:                         |                 | Oper      |                                | $(1) - 1 \rightarrow 00$ | est                                        |                       |               |  |
|            |                  | (                                                                           | ,,                                |                 | Statu     | s Affected:                    | C, DC, N, C              | JV, Z                                      |                       |               |  |
|            |                  | If [W<7:4> §                                                                | 9] or [C = 1] th                  | ien,            | Enco      | ding:                          | 0000                     | 01da f                                     | fff                   | ffff          |  |
|            |                  | (W<7.4~) +<br>else.                                                         | $0 \rightarrow VV < 7.4^{\circ},$ |                 | Desc      | ription:                       | Decrement                | register, 'f',.                            | lf 'd' is<br>d' is '1 | '0', the      |  |
|            |                  | (W<7:4>) –                                                                  | → W<7:4>                          |                 |           |                                | result is sto            | red back in r                              | egiste                | , "f'. If 'a' |  |
| Status     | Affected:        | C, DC                                                                       |                                   |                 |           |                                | is '0', the A            | ccess Bank                                 | will be               | selected,     |  |
| Encod      | ding:            | 0000 0000 0000 0111                                                         |                                   |                 |           |                                | overriding t             | overriding the BSR value. If 'a' = 1, then |                       |               |  |
| Descr      | iption:          | DAW adjust                                                                  | s the 8-bit val                   | ue in W,        |           |                                | BSR value.               |                                            | u uo pi               |               |  |
|            |                  | resulting fro                                                               | om the earlier a                  | addition of two | Word      | ls:                            | 1                        |                                            |                       |               |  |
|            |                  | and produce                                                                 | acn in pacкес<br>es a correct p   | acked BCD       | Cycle     | es:                            | 1                        | 1                                          |                       |               |  |
|            |                  | result. The                                                                 | Carry bit may                     | be set by DAW   | QC        | ycle Activity:                 |                          |                                            |                       |               |  |
|            |                  | regardless of                                                               | of its setting p                  | rior to the DAW |           | Q1                             | Q2                       | Q3                                         |                       | Q4            |  |
| \A/e nel   |                  |                                                                             |                                   |                 |           | Decode                         | Read                     | Process                                    | N                     | rite to       |  |
| vvoras     | 5.               | 1                                                                           |                                   |                 |           |                                | register 'f'             | Data                                       | des                   | stination     |  |
| Cycle      | S.               | 1                                                                           |                                   |                 | Even      | anla                           | DECE                     |                                            |                       |               |  |
| QCy        |                  | 02                                                                          | 03                                | 04              | Exar      | <u>lipie.</u><br>Defens lastau | DECF                     | CINT,                                      |                       |               |  |
| Г          | Decode           | Read                                                                        | Process                           | Q4<br>Write     |           | CNT                            | = 0x01                   |                                            |                       |               |  |
|            | Decoue           | register W                                                                  | Data                              | W               |           | Z                              | = 0                      |                                            |                       |               |  |
| Exam       | ple 1:           | DAW                                                                         |                                   |                 |           | After Instructi                | ion                      |                                            |                       |               |  |
| E          | Before Instruc   | tion                                                                        |                                   |                 |           | CNT                            | = 0x00                   |                                            |                       |               |  |
|            | W                | = 0xA5                                                                      |                                   |                 |           | 2                              | - 1                      |                                            |                       |               |  |
|            | DC               | = 0                                                                         |                                   |                 |           |                                |                          |                                            |                       |               |  |
| A          | After Instructio | on -                                                                        |                                   |                 |           |                                |                          |                                            |                       |               |  |
|            | W                | = 0x05                                                                      |                                   |                 |           |                                |                          |                                            |                       |               |  |
|            | C                | = 1                                                                         |                                   |                 |           |                                |                          |                                            |                       |               |  |
|            | DC               | = 0                                                                         |                                   |                 |           |                                |                          |                                            |                       |               |  |
| Exam       | ple 2:           |                                                                             |                                   |                 |           |                                |                          |                                            |                       |               |  |
| E          | Before Instruc   | tion                                                                        |                                   |                 |           |                                |                          |                                            |                       |               |  |
|            | W                | = 0xCE<br>= 0                                                               |                                   |                 |           |                                |                          |                                            |                       |               |  |
|            | DC               | = 0                                                                         |                                   |                 |           |                                |                          |                                            |                       |               |  |
| A          | After Instructio | on                                                                          |                                   |                 |           |                                |                          |                                            |                       |               |  |
|            | W                | = 0x34                                                                      |                                   |                 |           |                                |                          |                                            |                       |               |  |
|            | C                | = 1<br>= 0                                                                  |                                   |                 |           |                                |                          |                                            |                       |               |  |
|            | 00               | - 0                                                                         |                                   |                 |           |                                |                          |                                            |                       |               |  |

# PIC18F2331/2431/4331/4431







#### 26.2 DC Characteristics: Power-Down and Supply Current PIC18F2331/2431/4331/4431 (Industrial, Extended) PIC18LF2331/2431/4331/4431 (Industrial) (Continued)

| PIC18LF2331/2431/4331/4431<br>(Industrial)          |                                       |     |                          | Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial                                                                                                                             |        |             |                                                            |  |  |
|-----------------------------------------------------|---------------------------------------|-----|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|------------------------------------------------------------|--|--|
| PIC18F2331/2431/4331/4431<br>(Industrial, Extended) |                                       |     | <b>Standa</b><br>Operati | $\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$ |        |             |                                                            |  |  |
| Param<br>No.                                        | Device                                | Тур | Max                      | C Units Conditions                                                                                                                                                                                                                                             |        |             |                                                            |  |  |
|                                                     | Supply Current (IDD) <sup>(2,3)</sup> |     |                          |                                                                                                                                                                                                                                                                |        |             |                                                            |  |  |
|                                                     | PIC18LF2X31/4X31                      | 35  | 50                       | μA                                                                                                                                                                                                                                                             | -40°C  |             |                                                            |  |  |
|                                                     |                                       | 35  | 50                       | μA                                                                                                                                                                                                                                                             | +25°C  | VDD = 2.0V  |                                                            |  |  |
|                                                     |                                       | 35  | 60                       | μA                                                                                                                                                                                                                                                             | +85°C  |             |                                                            |  |  |
|                                                     | PIC18LF2X31/4X31                      | 55  | 80                       | μA                                                                                                                                                                                                                                                             | -40°C  |             |                                                            |  |  |
|                                                     |                                       | 50  | 80                       | μA                                                                                                                                                                                                                                                             | +25°C  | VDD = 3.0V  | FOSC = 1 MHz                                               |  |  |
|                                                     |                                       | 60  | 100                      | μA                                                                                                                                                                                                                                                             | +85°C  |             | EC oscillator)                                             |  |  |
|                                                     | All devices                           | 105 | 150                      | μA                                                                                                                                                                                                                                                             | -40°C  |             |                                                            |  |  |
|                                                     |                                       | 110 | 150                      | μA                                                                                                                                                                                                                                                             | +25°C  | Vpp = 5 0V  |                                                            |  |  |
|                                                     |                                       | 115 | 150                      | μA                                                                                                                                                                                                                                                             | +85°C  | 100 0.01    |                                                            |  |  |
|                                                     |                                       | 300 | 400                      | μA                                                                                                                                                                                                                                                             | +125°C |             |                                                            |  |  |
|                                                     | PIC18LF2X31/4X31                      | 135 | 180                      | μA                                                                                                                                                                                                                                                             | -40°C  |             |                                                            |  |  |
|                                                     |                                       | 140 | 180                      | μA                                                                                                                                                                                                                                                             | +25°C  | VDD = 2.0V  |                                                            |  |  |
|                                                     |                                       | 140 | 180                      | μA                                                                                                                                                                                                                                                             | +85°C  |             |                                                            |  |  |
|                                                     | PIC18LF2X31/4X31                      | 215 | 280                      | μA                                                                                                                                                                                                                                                             | -40°C  | _           |                                                            |  |  |
|                                                     |                                       | 225 | 280                      | μA                                                                                                                                                                                                                                                             | +25°C  | VDD = 3.0V  | ( <b>PRI IDLE</b> mode                                     |  |  |
|                                                     |                                       | 230 | 280                      | μA                                                                                                                                                                                                                                                             | +85°C  |             | EC oscillator)                                             |  |  |
|                                                     | All devices                           | 410 | 525                      | μA                                                                                                                                                                                                                                                             | -40°C  | _           |                                                            |  |  |
|                                                     |                                       | 420 | 525                      | μA                                                                                                                                                                                                                                                             | +25°C  | VDD = 5 0V  |                                                            |  |  |
|                                                     |                                       | 430 | 525                      | μA                                                                                                                                                                                                                                                             | +85°C  |             |                                                            |  |  |
|                                                     |                                       | 1.2 | 1.7                      | mA                                                                                                                                                                                                                                                             | +125°C |             |                                                            |  |  |
|                                                     | All devices                           | 18  | 22                       | mA                                                                                                                                                                                                                                                             | +125°C | VDD = 5.0V  | Fosc = 25 MHz<br>( <b>PRI_IDLE</b> mode,<br>EC oscillator) |  |  |
|                                                     | All devices                           | 3.2 | 4.1                      | mA                                                                                                                                                                                                                                                             | -40°C  |             |                                                            |  |  |
|                                                     |                                       | 3.2 | 4.1                      | mA                                                                                                                                                                                                                                                             | +25°C  | VDD = 4.2 V |                                                            |  |  |
|                                                     |                                       | 3.3 | 4.1                      | mA                                                                                                                                                                                                                                                             | +85°C  | ]           | Fosc = 40 MHz                                              |  |  |
|                                                     | All devices                           | 4.0 | 5.1                      | mA                                                                                                                                                                                                                                                             | -40°C  |             | (PRI_IDLE mode,<br>EC oscillator)                          |  |  |
|                                                     |                                       | 4.1 | 5.1                      | mA                                                                                                                                                                                                                                                             | +25°C  | VDD = 5.0V  |                                                            |  |  |
|                                                     |                                       | 4.1 | 5.1                      | mA                                                                                                                                                                                                                                                             | +85°C  | ]           |                                                            |  |  |

Legend: Shading of rows is to assist in readability of the table.

**Note 1:** The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula: Ir = VDD/2REXT (mA) with REXT in kΩ.

4: Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.