

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	36
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4331t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Din Nome	Pi	n Numl	ber	Pin	Buffer	Description
	PDIP	TQFP	QFN	Туре	Туре	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/PWM0 RB0 PWM0	33	8	9	I/O O	TTL TTL	Digital I/O. PWM Output 0.
RB1/PWM1 RB1 PWM1	34	9	10	I/O O	TTL TTL	Digital I/O. PWM Output 1.
RB2/PWM2 RB2 PWM2	35	10	11	I/O O	TTL TTL	Digital I/O. PWM Output 2.
RB3/PWM3 RB3 PWM3	36	11	12	I/O O	TTL TTL	Digital I/O. PWM Output 3.
RB4/KBI0/PWM5 RB4 KBI0 PWM5	37	14	14	I/O I O	TTL TTL TTL	Digital I/O. Interrupt-on-change pin. PWM Output 5.
RB5/KBI1/PWM4/ PGM RB5 KBI1 PWM4 PGM	38	15	15	I/O I O I/O	TTL TTL TTL ST	Digital I/O. Interrupt-on-change pin. PWM Output 4. Single-Supply ICSP™ Programming entry pin.
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL ST = Sch	. compa mitt Tri	atible inp gger inp	out out with	СМОЗ	S levels	CMOS = CMOS compatible input or output I = Input

ΤΔΒΙ Ε 1-3·	PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)	
IADLE I-J.	FICTOF4331/4431 FINOUT I/O DESCRIFTIONS (CONTINUED)	

ST = Schmitt Trigger input with CMOS levels 0 = Output

Ρ = Power

Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin for SCK/SCL; RC7 is the alternate pin for SDO.

2: RD4 is the alternate pin for FLTA.

3: RD5 is the alternate pin for PWM4.

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18F MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F2331/2431/4331/4431 family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin
 (see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.2.3 CONSIDERATIONS WHEN USING BOR

When the Brown-out Reset (BOR) feature is enabled, a sudden change in VDD may result in a spontaneous BOR event. This can happen when the microcontroller is operating under normal operating conditions, regardless of what the BOR set point has been programmed to, and even if VDD does not approach the set point. The precipitating factor in these BOR events is a rise or fall in VDD with a slew rate faster than $0.15V/\mu s$.

An application that incorporates adequate decoupling between the power supplies will not experience such rapid voltage changes. Additionally, the use of an electrolytic tank capacitor across VDD and Vss, as described above, will be helpful in preventing high slew rate transitions.

If the application has components that turn on or off, and share the same VDD circuit as the microcontroller, the BOR can be disabled in software by using the SBOREN bit before switching the component. Afterwards, allow a small delay before re-enabling the BOR. By doing this, it is ensured that the BOR is disabled during the interval that might cause high slew rate changes of VDD.

Note: Not all devices incorporate software BOR control. See Section 5.0 "Reset" for device-specific information.

NOTES:

					1 200 1/240	1/400 1/44	51)		
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
TOSU	_	— — Top-of-Stack Upper Byte (TOS<20:16>)							0 0000
TOSH	Top-of-Stack H	ligh Byte (TOS	<15:8>)	•					0000 0000
TOSL	Top-of-Stack L	ow Byte (TOS·	<7:0>)						0000 0000
STKPTR	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0	00-0 0000
PCLATU	_	—	bit 21 ⁽³⁾	Holding Regis	ter for PC<20:	16>			0 0000
PCLATH	Holding Regis	ter for PC<15:8	}>						0000 0000
PCL	PC Low Byte	(PC<7:0>)							0000 0000
TBLPTRU	_	—	bit 21 ⁽³⁾	Program Mem	ory Table Poin	ter Upper Byte	(TBLPTR<20:1	6>)	00 0000
TBLPTRH	Program Mem	ory Table Point	ter High Byte (BLPTR<15:8>)				0000 0000
TBLPTRL	Program Mem	ory Table Point	ter Low Byte (T	BLPTR<7:0>)					0000 0000
TABLAT	Program Mem	ory Table Latch	า						0000 0000
PRODH	Product Regis	ter High Byte							xxxx xxxx
PRODL	Product Regis	ter Low Byte							xxxx xxxx
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00
INDF0	Uses contents	of FSR0 to ad	dress data mei	nory – value of	FSR0 not char	nged (not a phy	sical register)		N/A
POSTINC0	Uses contents	of FSR0 to ad	dress data mei	nory – value of	FSR0 post-inc	remented (not	a physical regis	ter)	N/A
POSTDEC0	Uses contents	of FSR0 to ad	dress data mei	nory – value of	FSR0 post-dec	cremented (not	a physical regi	ster)	N/A
PREINC0	Uses contents	of FSR0 to ad	dress data mei	mory – value of	FSR0 pre-incre	emented (not a	physical regist	er)	N/A
PLUSW0	Uses contents	of FSR0 to ad	dress data mei	mory – value of	FSR0 offset by	/ W (not a phys	ical register)		N/A
FSR0H	_	—	—	_	Indirect Data I	Memory Addres	ss Pointer 0 Hig	h	xxxx
FSR0L	Indirect Data I	Memory Addres	s Pointer 0 Lo	w Byte					xxxx xxxx
WREG	Working Regis	ster							xxxx xxxx
INDF1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 not char	nged (not a phy	sical register)		N/A
POSTINC1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 post-inc	remented (not	a physical regis	ter)	N/A
POSTDEC1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 post-dec	cremented (not	a physical regi	ster)	N/A
PREINC1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 pre-incre	emented (not a	physical regist	er)	N/A
PLUSW1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 offset by	/ W (not a phys	ical register)		N/A
FSR1H	—	—	_	_	Indirect Data I	Memory Addres	ss Pointer 1 Hig	h Byte	0000
FSR1L	Indirect Data I	Memory Addres	s Pointer 1 Lo	w Byte					xxxx xxxx
BSR	—	—	_	_	Bank Select R	legister			0000
INDF2	Uses contents	of FSR2 to ad	dress data mei	nory – value of	FSR2 not char	nged (not a phy	vsical register)		N/A
POSTINC2	Uses contents	of FSR2 to ad	dress data mei	mory – value of	FSR2 post-inc	remented (not	a physical regis	ter)	N/A
POSTDEC2	Uses contents	of FSR2 to ad	dress data mei	mory – value of	FSR2 post-dec	cremented (not	a physical regi	ster)	N/A
PREINC2	Uses contents	of FSR2 to ad	dress data mei	mory – value of	FSR2 pre-incre	emented (not a	physical regist	er)	N/A
PLUSW2	Uses contents	of FSR2 to ad	dress data mei	mory – value of	FSR2 offset by	/ W (not a phys	ical register)		N/A
FSR2H	_	_	_	_	Indirect Data I	Memory Addres	ss Pointer 2 Hig	h Byte	0000
FSR2L	Indirect Data I	Memory Addres	s Pointer 2 Lo	w Byte					xxxx xxxx
STATUS		_	_	Ν	OV	Z	DC	С	x xxxx
TMR0H	Timer0 Regist	er High Byte							0000 0000
TMR0L	Timer0 Regist	er Low Byte							xxxx xxxx
TOCON	TMR0ON	T016BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111

TABLE 6-2: REGISTER FILE SUMMARY (PIC18F2331/2431/4331/4431)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented.

Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator modes only and read '0' in all other oscillator modes.

2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read '0' in all other modes.

3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

4: These registers and/or bits are not implemented on the PIC18F2331/2431 devices and read as '0'.

5: The RE3 port bit is only available for PIC18F4331/4431 devices when the MCLRE fuse (CONFIG3H<7>) is programmed to '0'; otherwise, RE3 reads '0'. This bit is read-only.

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available for the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation). The basic process is shown in Example 7-1.

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware. After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

7.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, the WREN bit is cleared. Also, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch, or software malfunction.

EXAMPLE 7-1: DATA EEPROM READ

MOVLW DATA_EE_ADDR MOVWF EEADR BCF EECON1, EEPGD BSF EECON1, RD MOVF EEDATA, W

; Data Memory Address to read ; Point to DATA memory ; EEPROM Read ; W = EEDATA

:

EXAMPLE 7-2: DATA EEPROM WRITE

	MOVLW MOVWF MOVLW MOVWF BCF BCF BSF	DATA_EE_ADDR EEADR DATA_EE_DATA EEDATA EECON1, EEPGD EECON1, CFGS EECON1, WREN	; ; Data Memory Address to write ; ; Data Memory Value to write ; Point to DATA memory ; Access EEPROM ; Enable writes
Required Sequence	BCF MOVLW MOVWF MOVLW MOVWF	INTCON, GIE 55h EECON2 0AAh EECON2	; Disable Interrupts ; ; Write 55h ; ; Write 0AAh
	BSF BTFSC GOTO BSF	EECON1, WR EECON1, WR \$-2 INTCON, GIE	<pre>; Set WR bit to begin write ; Wait for write to complete ; ; Enable interrupts</pre>

8.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer with address being erased.
- 4. Do the row erase procedure (see Section 8.4.1 "Flash Program Memory Erase Sequence").
- 5. Load Table Pointer with the address of the first byte being written.
- 6. Write the first 8 bytes into the holding registers with auto-increment.

- 7. Set the EECON1 register for the write operation by doing the following:
 - Set the EEPGD bit to point to program memory
 - Clear the CFGS bit to access program memory
 - · Set the WREN bit to enable byte writes
- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for the duration of the write (about 2 ms using internal timer).
- 13. Execute a NOP.
- 14. Re-enable interrupts.
- 15. Repeat Steps 6-14 seven times to write 64 bytes.
- 16. Verify the memory (table read).

This procedure will require about 18 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 8-3.

10.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit
	When IPEN = 0:
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
	When IPEN = 1:
	1 = Enables all high-priority interrupts
1.11.0	0 = Disables all high-phonity interrupts
DIT 6	
	<u>When IPEN = 0:</u>
	0 = Disables all peripheral interrupts
	When IPEN = 1:
	1 = Enables all low-priority peripheral interrupts
	0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt
	0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	1 = Enables the INTO external interrupt
	0 = Disables the INT0 external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	1 = Enables the RB port change interrupt for RB<7:4> pins
	0 = D is ables the RB port change interrupt for RB<7:4> pins
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = TMR0 register has overflowed (must be cleared in software)0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit
	1 = The INT0 external interrupt occurred (must be cleared in software)0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit
	1 = At least one of the RB<7:4> pins changed state (must be cleared in software)0 = None of the RB<7:4> pins have changed state

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	PTIF	IC3DRIF	IC2QEIF	IC1IF	TMR5IF				
bit 7							bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unk	nown				
DIT 7-5	Unimpleme	nted: Read as	0								
bit 4	PIIF: PWM	Time Base Inte	rrupt bit								
	1 = PWM ti	me base match	ed the value in	the PIPER re	egisters. Interri	upt is issued a	ccording to the				
	0 = PWM ti	me base has no	it matched the	value in the PTI	PFR registers						
bit 3	IC3DRIF: IC	3 Interrupt Flag	Direction Cha	nge Interrupt Fla	ag bit						
Sit C	IC3 Enabled	I (CAP3CON<3)	:()>):	igo intorrapt i k							
	1 = TMR5	alue was captu	ue was captured by the active edge on CAP3 input (must be cleared in software)								
	0 = TMR5 c	apture has not	pture has not occurred								
	QEI Enabled	<u>d (QEIM<2:0>):</u>									
	1 = Directio	n of rotation has	s changed (mu	st be cleared in	software)						
hit O			of rotation has not changed								
DIL Z				Flag bit							
	1 = TMR5	/alue was captu	<u>.02).</u> red by the activ	ve edae on CAF	2 input (must	be cleared in s	oftware)				
	0 = TMR5 c	capture has not	occurred	e euge en en a	pat (aet		0.1110.0)				
	QEI Enabled	d (QEIM<2:0>):									
	1 = The QE	I position count	ter has reache	d the MAXCNT	value, or the	index pulse, IN	NDX, has been				
		d. Depends on I	the QEI operation	ing mode enable	ed. Must be cl	eared in softwa	re.				
	detecte	d	lei nas not rea				e nas not been				
bit 1	IC1 Enabled	- L(CAP1CON<3)	·0>).								
	1 = TMR5 v	alue was captu	red by the activ	/e edge on CAF	1 input (must	be cleared in s	oftware)				
	0 = TMR5 c	capture has not occurred									
	QEI Enabled	<u>I (QEIM<2:0>), \</u>	/elocity Measur	ement Mode En	abled (VELM =	= 0 in QEICON	<u>register):</u>				
	1 = Timer5	value was capti	ured by the act	ive velocity edg	e (based on P	HA or PHB inp	out). CAP1REN				
	0 = Timer5	value was not c	aptured by the	active velocity	edae	ware.					
bit 0		ner5 Interrunt F	lan hit	active velocity							
	1 = Timer5	time base mate	hed the PR5 v	alue (must be cl	eared in softw	are)					
	0 = Timer5	time base did n	ot match the Pl	R5 value							

REGISTER 10-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

NOTES:

17.2 Quadrature Encoder Interface

The Quadrature Encoder Interface (QEI) decodes speed and motion sensor information. It can be used in any application that uses a quadrature encoder for feedback. The interface implements these features:

- Three QEI inputs: two phase signals (QEA and QEB) and one index signal (INDX)
- Direction of movement detection with a direction change interrupt (IC3DRIF)
- 16-bit up/down position counter
- Standard and High-Precision Position Tracking modes
- Two Position Update modes (x2 and x4)
- Velocity measurement with a programmable
 postscaler for high-speed velocity measurement
- Position counter interrupt (IC2QEIF in the PIR3 register)
- Velocity control interrupt (IC1IF in the PIR3 register)

The QEI submodule has three main components: the QEI control logic block, the position counter and velocity postscaler.

The QEI control logic detects the leading edge on the QEA or QEB phase input pins and generates the count pulse, which is sent to the position counter logic. It also samples the index input signal (INDX) and generates the direction of the rotation signal (up/down) and the velocity event signals.

The position counter acts as an integrator for tracking distance traveled. The QEA and QEB input edges serve as the stimulus to create the input clock which advances the Position Counter register (POSCNT). The register is incremented on either the QEA input edge, or the QEA and QEB input edges, depending on the operating mode. It is reset either by a rollover on match to the Period register, MAXCNT, or on the external index pulse input signal (INDX). An interrupt is generated on a Reset of POSCNT if the position counter interrupt is enabled.

The velocity postscaler down samples the velocity pulses used to increment the velocity counter by a specified ratio. It essentially divides down the number of velocity pulses to one output per so many inputs, preserving the pulse width in the process.

A simplified block-diagram of the QEI module is shown in Figure 17-8.

FIGURE 17-8: QEI BLOCK DIAGRAM

21.9 A/D Conversions

Figure 21-3 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins. The internal A/D RC oscillator must be selected to perform a conversion in Sleep.

Figure 21-4 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT<3:0> bits are set to '010' and a 4 TAD acquisition time is selected before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The resulting buffer location will contain the partially completed A/D conversion sample. This will not set the ADIF flag, therefore, the user must read the buffer location before a conversion sequence overwrites it.

After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

FIGURE 21-3: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, Tacq = 0)

GO/DONE bit is	TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	TAD9	TAD10	TAD11	
set and holding	♦ b9	b8	b7	b6	b5	b4	b3	b2	b1	b0		
disconnected from analog input	l Conver	sion St	arts									
				GC)/DONE	Ē bit cle	eared c	on the r	ising e	dge of	Q1 afte	er the first Q3
				1011	owing	IADII				Jaueu.		
Note 1: Conve	ersion tin	ne is a	minimu	um of 1	1 Tad +	2 TCY	and a	maxim	um of	11 Tad	+ 6 TC	Υ.

FIGURE 21-4: A/D CONVERSION TAD CYCLES (ACQT<3:0> = 0010, TACQ = 4 TAD)

REGISTER 23-9: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
—	—	—	—	WRT3 ^(1,2)	WRT2 ^(1,2)	WRT1 ⁽²⁾	WRT0 ⁽²⁾
bit 7							bit 0

	Legend:		
R = Readable bit		bit P = Programmable bit	U = Unimplemented bit, read as '0'
	-n = Value wh	en device is unprogrammed	U = Unchanged from programmed state
	bit 7-4	Unimplemented: Read as '0'	
	bit 3	WRT3: Write Protection bit ^(1,2)	
		1 = Block 3 is not write-protected 0 = Block 3 is write-protected	
	bit 2	WRT2: Write Protection bit ^(1,2)	
		1 = Block 2 is not write-protected 0 = Block 2 is write-protected	
	bit 1	WRT1: Write Protection bit ⁽²⁾	
		1 = Block 1 is not write-protected	
		0 = Block 1 is write-protected	
	bit 0	WRT0: Write Protection bit ⁽²⁾	
		1 = Block 0 is not write-protected	
		0 = Block 0 is write-protected	

Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.

2: Refer to Figure 23-5 for block boundary addresses.

REGISTER 23-10: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

R/P-1	R/P-1	R-1	U-0	U-0	U-0	U-0	U-0		
WRTD ⁽²⁾	WRTB ⁽²⁾	WRTC ^(1,2)	_	—	—	_	—		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	P = Programn	nable bit	U = Unimplem	nented bit, read	as '0'			
-n = Value	when device is ur	nprogrammed		U = Unchange	ed from prograr	nmed state			
bit 7WRTD: Data EEPROM Write Protection bit ⁽²⁾ 1 = Data EEPROM is not write-protected 0 = Data EEPROM is write-protectedbit 6WRTB: Boot Block Write Protection bit ⁽²⁾									
	0 = Boot bloc	k is write-protec	ted						
bit 5	WRTC: Confi	guration Regist	er Write Protec	ction bit ^(1,2)					
	 1 = Configuration registers are not write-protected 0 = Configuration registers are write-protected 								
bit 4-0 Unimplemented: Read as '0'									
Note 1:	Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.								

2: Refer to Figure 23-5 for block boundary addresses.

вто	Bit Toggle f		BOV		Branch if Overflow						
Synt	ax:	[<i>label</i>] BT	G f,b[,a]		Synta	IX:	[<i>label</i>] BC	[<i>label</i>] BOV n			
Ореі	ands:	$0 \leq f \leq 255$			Operands: $-128 \le n \le 127$						
0 ≤ b < 7 a ∈ [0,1]		Oper	ation:	if Overflow (PC) + 2 + 2	if Overflow bit is '1', (PC) + 2 + 2n \rightarrow PC						
Oper	ation:	$(f \le b >) \rightarrow f \le b \le$	b>		Statu	s Affected:	None				
Statu	is Affected:	None			Enco	ding:	1110	0100 1	nnn	nnnn	
Enco	oding:	0111	bbba f	fff ffff	Desc	ription [.]	If the Overf	low bit is '1'	then t	he.	
Description: Words:		Bit 'b' in dat inverted. If ' be selected 'a' = 1, ther per the BSF	Bit 'b' in data memory location, 'f', is inverted. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.				program will branch. The 2's complement number, '2n', is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a				
Cvcl	28.	1					two-cycle in	istruction.			
00	vcle Activity				Word	s:	1				
QU	Q1	Q2	Q3	Q4	Cycle	S:	1(2)				
	Decode	Read register 'f'	Process Data	Write register 'f'	Q Cy If Ju	/cle Activity: mp:					
				-5		Q1	Q2	Q3		Q4	
Exar	nple:	BTG P	PORTC, 4			Decode	Read literal 'n'	Process Data	V	Vrite to PC	
	Before Instruc PORTC	tion: = 0111 0	101 [0x75]			No operation	No operation	No operation	op	No peration	
	After Instruction	on:			lf No	Jump:					
	PORTC	= 0110 0	101 [0x65]			Q1	Q2	Q3		Q4	
						Decode	Read literal 'n'	Process Data	op	No peration	

Example:	HERE	BOV	JUMP
Before Instructio PC	on =	address	(HERE)
After Instruction If Overflow PC If Overflow PC	= = =	1; address 0; address	(JUMP) (HERE + 2)

GO	го	Uncondit	ional Branc	h	INC	F	Incremen	tf	
Synt	ax:	[label] G	OTO k		Synt	ax:	[<i>label</i>] INCF f [,d [,a]]		
Ореі	rands:	$0 \le k \le 104$	8575		Ope	rands:	$0 \leq f \leq 255$		
Ope	ration:	$k \rightarrow PC<20$):1>				d ∈ [0,1] a ∈ [0,1]		
Statu	is Affected:	None	-		Ope	ration:	(f) + 1 \rightarrow de	est	
Enco 1st v 2nd v	oding: vord (k<7:0>) word(k<19:8>)	1110 1111	1111 k ₇ k	kk kkkk ₀	State	us Affected: odina:	C, DC, N, 0	OV,Z	ff ffff
Description:		GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value, 'k', is loaded into PC<20:1>. GOTO is always a two-cycle instruction.		Des	cription:	The contents of register, 'f', are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register, 'f'. If 'a' is '0', the Access Bank will be selected, over- riding the BSR value. If 'a' = 1, then the			
Word	ds:	2					value.	e selecteu as p	
Cycl	es:	2			Wor	ds.	1		
QC	ycle Activity:				Cve	00.	1		
	Q1	Q2	Q3	Q4			I		
	Decode	Read literal 'k'<7:0>,	No operation	Read literal 'k'<19:8>, Write to PC	QC	Q1	Q2 Read	Q3 Process	Q4 Write to
	No	No	No	No		Decode	register 'f'	Data	destination
	operation	operation	operation	operation	Exa	mple:	INCF	CNT,	
Exar	<u>nple:</u>	GOTO THE	RE			Before Instruc	tion		
	After Instructio PC =	n Address (T	HERE)			CNT Z C DC	= 0xFF = 0 = ? = ?		
						After Instructio CNT Z C DC	on = 0x00 = 1 = 1 = 1		

RET	FIE	Return fro	Return from Interrupt					
Synta	ax:	[label] R	ETFIE [s]					
Oper	ands:	$s \in [0,1]$						
Oper	ation:	$(TOS) \rightarrow Pei$ $1 \rightarrow GIE/GI$ if s = 1: $(WS) \rightarrow W$, (STATUSS) $(BSRS) \rightarrow I$ PCLATU, P	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL};$ if s = 1: $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged					
Statu	s Affected:	GIE/GIEH,	PEIE/GIEL.					
Enco	ding:	0000	0000 00	01 000s				
Desc	ription:	Return from and Top-of- the PC. Inte global intern contents of STATUSS a their corres STATUS an of these reg	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low-priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, STATUS and BSR. If 's' = 0, no update					
Word	Is:	1	1					
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	No operation	No operation	POP PC from stack Set GIEH or GIEL				
	No	No	No	No				
	operation	operation	operation	operation				
Example: RETFIE 1 After Interrupt PC = TOS								
	W BSR STATUS GIE/GIEH	I, PEIE/GIEL	= WS = BSRS = STAT = 1	S USS				

Syntax: [label] RETLW k Operands: $0 \le k \le 255$ Operation: $k \to W$, (TOS) \to PC, PCLATU, PCLATH are unchanged Status Affected: None Encoding: 0000 1100 kkk kkkk Description: W is loaded with the 8-bit literal, 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged. Words: 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process POP PC from stack, Write to W No No No No No operation operation operation operation Vertex 2 QA QA Decode Read Process POP PC Iteral 'k' Data from stack, Write to W Write to W No No No No No operation operation operation operation operation Example: : : table value :	RETLW	Return Li	teral to	W				
Operands: $0 \le k \le 255$ Operation: $k \to W$, (TOS) \to PC, PCLATU, PCLATH are unchangedStatus Affected:NoneEncoding: 0000 1100 kkkk kkkkDescription:W is loaded with the 8-bit literal, 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.Words:1Cycles:2Q Cycle Activity:Q1Q2Q3Q4ProcessPOP PC from stack, Write to WNoNoNoNoNoNooperationoperationoperationoperationoperationoperationoperationoperationexample:CALL TABLE ; W contains table ; offset value ; W now has ; table value:TABLEADDWF PCL; W = offset RETLW k1 ;RETLW k1 ;;::: <td>Syntax:</td> <td>[label] R</td> <td colspan="6">[<i>label</i>] RETLW k</td>	Syntax:	[label] R	[<i>label</i>] RETLW k					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Operands:	$0 \leq k \leq 255$	$0 \le k \le 255$					
Status Affected: None Encoding: 0000 1100 kkkk kkkk Description: W is loaded with the 8-bit literal, 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged. Words: 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process POP PC Iteral 'k' Data from stack, Write to W No No No No No No No operation operation Operation operation operation operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value ; RETLW k0 ; Begin table RETLW k1 ; ::: RETLW kn ; End of table ::	Operation:	$k \rightarrow W$, (TOS) $\rightarrow P_{c}$ PCLATU, P	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged					
Encoding: 0000 1100 kkkk kkkk Description: W is loaded with the 8-bit literal, 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged. Words: 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process POP PC literal 'k' Data from stack, Write to W No No No No No operation operation operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : RETLW kn ; End of table	Status Affected:	None						
Description: W is loaded with the 8-bit literal, 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged. Words: 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process POP PC from stack, Write to W No No No No No No operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : RETLW kn ; End of table	Encoding:	0000	1100	kkkk	kkkk			
<pre>Words: 1 Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process POP PC from stack, Write to W No No No No No operation operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; RETLW kn ; End of table</pre>	Description:	W is loaded program co of the stack high addres unchanged	W is loaded with the 8-bit literal, 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.					
Cycles: 2 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process POP PC from stack, Write to W No No No No No operation operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : RETLW kn ; End of table	Words:	1						
Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process POP PC literal 'k' Data from stack, Write to W No No No No No operation operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : RETLW kn ; End of table	Cycles:	2						
Q1 Q2 Q3 Q4 Decode Read Process POP PC literal'k' Data from stack, Write to W No No No No operation operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; :	Q Cycle Activity:							
Decode Read literal 'k' Process Data POP PC from stack, Write to W No No No operation operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value ; TABLE : W contains table ; offset value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : : : : : : : : : : : : : : : : : : : : : : : : : :	Q1	Q2	Q3		Q4			
No No No operation operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : : RETLW kn ; End of table	Decode	Read literal 'k'	Proces Data	ss P fro W	OP PC m stack, rite to W			
operation operation operation Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : <t< td=""><td>No</td><td>No</td><td>No</td><td></td><td>No</td></t<>	No	No	No		No			
<pre>Example: CALL TABLE ; W contains table ; offset value ; W now has ; table value : TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : RETLW kn ; End of table</pre>	operation	operation	operati	on o	peration			
: TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : : RETLW kn ; End of table	Example: CALL TABLE	; W contai ; offset v ; W now ha ; table va	ins tabi value as alue	le				
TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; : : RETLW kn ; End of table	:							
RETLW kn ; End of table	TABLE ADDWF PCL ; W = offset RETLW k0 ; Begin table RETLW k1 ; :							
	RETLW kn	; End of t	able					
	Refore Instruc	tion						

Before Instru	lction	
W	=	0x07
After Instruc	tion	
W	=	value of kn

26.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iικ (Vι < 0 or Vι > VDD)	±20 mA
Output clamp current, Iок (Vo < 0 or Vo > Voo)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

Note 1: Power dissipation is calculated as follows:

 $Pdis = VDD x \{IDD - \sum IOH\} + \sum \{(VDD - VOH) x IOH\} + \sum (VOL x IOL)$

2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μS	PIC18FXX31 must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	PIC18FXX31 must operate at a minimum of 10 MHz
			SSP module	1.5 TCY	—		
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	PIC18FXX31 must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	PIC18FXX31 must operate at a minimum of 10 MHz
			SSP Module	1.5 TCY	—		
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition Setup	100 kHz mode	4.7	—	μs	Only relevant for Repeated
		Time	400 kHz mode	0.6	—	μS	Start condition
91	THD:STA	Start Condition Hold	100 kHz mode	4.0	—	μs	After this period, the first clock
		Time	400 kHz mode	0.6	—	μs	pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107	TSU:DAT	Data Input Setup	100 kHz mode	250	—	ns	(Note 2)
		Time	400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup	100 kHz mode	4.7	—	μs	
		Time	400 kHz mode	0.6	—	μs	
109	ΤΑΑ	Output Valid From	100 kHz mode	—	3500	ns	(Note 1)
		Clock	400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3	—	μS	start
D102	Св	Bus Capacitive Loadin	g	—	400	pF	

TABLE 26-16: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but the requirement, Tsu:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line,. TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

BOTTOM VIEW

	MILLIMETERS				
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	44			
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B