

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4431-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pin Number			Pin	Buffer	Description
	PDIP	TQFP	QFN	Туре	Туре	Description
						PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/PWM0 RB0 PWM0	33	8	9	I/O O	TTL TTL	Digital I/O. PWM Output 0.
RB1/PWM1 RB1 PWM1	34	9	10	I/O O	TTL TTL	Digital I/O. PWM Output 1.
RB2/PWM2 RB2 PWM2	35	10	11	I/O O	TTL TTL	Digital I/O. PWM Output 2.
RB3/PWM3 RB3 PWM3	36	11	12	I/O O	TTL TTL	Digital I/O. PWM Output 3.
RB4/KBI0/PWM5 RB4 KBI0 PWM5	37	14	14	I/O I O	TTL TTL TTL	Digital I/O. Interrupt-on-change pin. PWM Output 5.
RB5/KBI1/PWM4/ PGM RB5 KBI1 PWM4 PGM	38	15	15	I/O I O I/O	TTL TTL TTL ST	Digital I/O. Interrupt-on-change pin. PWM Output 4. Single-Supply ICSP™ Programming entry pin.
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I = Input						

ΤΔΒΙ Ε 1-3·	PIC18F4331/4431 PINOUT I/O DESCRIPTIONS (CONTINUED)	
IADLE I-J.	FICTOF4331/4431 FINOUT I/O DESCRIFTIONS (CONTINUED)	

ST = Schmitt Trigger input with CMOS levels 0 = Output

Ρ = Power

Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin for SCK/SCL; RC7 is the alternate pin for SDO.

2: RD4 is the alternate pin for FLTA.

3: RD5 is the alternate pin for PWM4.

TABLE 1-3:	PIC18F4331/4431 PINOUT I/O DES	CRIPTIONS (CONTINUED)

Din Nomo	Pin Number			Pin B	Buffer	Description	
Pin Name	PDIP	TQFP	QFN	Туре	Туре	Description	
						PORTE is a bidirectional I/O port.	
RE0/AN6	8	25	25				
RE0				I/O	ST	Digital I/O.	
AN6				I	Analog	Analog Input 6.	
RE1/AN7	9	26	26				
RE1				I/O	ST	Digital I/O.	
AN7				I	Analog	Analog Input 7.	
RE2/AN8	10	27	27				
RE2				I/O	ST	Digital I/O.	
AN8				1	Analog	Analog Input 8.	
Vss	12,	6, 29	6, 30,	Р	_	Ground reference for logic and I/O pins.	
	31		31				
Vdd	11,	7, 28	7, 8,	Р	_	Positive supply for logic and I/O pins.	
	32		28, 29				
NC	_	12, 13,	13	NC	NC	No connect.	
		33, 34					

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels O = Output CMOS = CMOS compatible input or output

P = Power

Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin for SCK/SCL; RC7 is the alternate pin for SDO.

L

2: RD4 is the alternate pin for FLTA.

3: RD5 is the alternate pin for PWM4.

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 3.0 "Oscillator Configurations"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-4. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals in close proximity to the oscillator are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

5.5 Device Reset Timers

PIC18F2331/2431/4331/4431 devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

5.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of PIC18F2331/2431/ 4331/4431 devices is an 11-bit counter that uses the INTRC source as the clock input. This yields an approximate time interval of 2,048 x 32 μ s = 65.6 ms.

While the PWRT is counting, the device is held in Reset. The power-up time delay depends on the INTRC clock and will vary from chip to chip due to temperature and process variation. See DC Parameter 33 for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

5.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1,024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (Parameter 33). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes, and on Power-on Reset or on exit from most power-managed modes.

5.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL Lock Time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

5.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR pulse has cleared, the PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 5-3 through Figure 5-7 depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figure 5-3 through Figure 5-6 also apply to devices operating in XT or LP modes.

For devices in RC mode, and with the PWRT disabled, there will be no time-out at all. Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, all time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 5-5). This is useful for testing purposes or synchronization of more than one PIC18FXXXX device operating in parallel.

Oscillator	Power-up ⁽²⁾ a	Exit From		
Configuration	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode	
HSPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	
HS, XT, LP	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc	
EC, ECIO	66 ms ⁽¹⁾	_	—	
RC, RCIO	66 ms ⁽¹⁾	_	—	
INTIO1, INTIO2	66 ms ⁽¹⁾		—	

TABLE 5-1: TIME-OUT IN VARIOUS SITUATIONS

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the 4x PLL to lock.

TABLE J-J.										
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt					
ADRESH	2331	2431	4331	4431	xxxx xxxx	սսսս սսսս	սսսս սսսս			
ADRESL	2331	2431	4331	4431	xxxx xxxx	սսսս սսսս	սսսս սսսս			
ADCON0	2331	2431	4331	4431	00 0000	00 0000	uu uuuu			
ADCON1	2331	2431	4331	4431	00-0 0000	00-0 0000	uu-u uuuu			
ADCON2	2331	2431	4331	4431	0000 0000	0000 0000	uuuu uuuu			
ADCON3	2331	2431	4331	4431	00-0 0000	00-0 0000	uu-u uuuu			
ADCHS	2331	2431	4331	4431	0000 0000	0000 0000	uuuu uuuu			
CCPR1H	2331	2431	4331	4431	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCPR1L	2331	2431	4331	4431	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCP1CON	2331	2431	4331	4431	00 0000	00 0000	uu uuuu			
CCPR2H	2331	2431	4331	4431	xxxx xxxx	սսսս սսսս	սսսս սսսս			
CCPR2L	2331	2431	4331	4431	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCP2CON	2331	2431	4331	4431	00 0000	00 0000	uu uuuu			
ANSEL1	2331	2431	4331	4431	1	1	u			
ANSEL0	2331	2431	4331	4431	1111 1111	1111 1111	սսսս սսսս			
T5CON	2331	2431	4331	4431	0000 0000	0000 0000	սսսս սսսս			
QEICON	2331	2431	4331	4431	0000 0000	0000 0000	սսսս սսսս			
SPBRGH	2331	2431	4331	4431	0000 0000	0000 0000	uuuu uuuu			
SPBRG	2331	2431	4331	4431	0000 0000	0000 0000	սսսս սսսս			
RCREG	2331	2431	4331	4431	0000 0000	0000 0000	սսսս սսսս			
TXREG	2331	2431	4331	4431	0000 0000	0000 0000	սսսս սսսս			
TXSTA	2331	2431	4331	4431	0000 -010	0000 -010	uuuu -uuu			
RCSTA	2331	2431	4331	4431	0000 000x	0000 000x	սսսս սսսս			
BAUDCON	2331	2431	4331	4431	-1-1 0-00	-1-1 0-00	-u-u u-uu			
EEADR	2331	2431	4331	4431	0000 0000	0000 0000	սսսս սսսս			
EEDATA	2331	2431	4331	4431	0000 0000	0000 0000	սսսս սսսս			
EECON2	2331	2431	4331	4431	0000 0000	0000 0000	0000 0000			
EECON1	2331	2431	4331	4431	xx-0 x000	uu-0 u000	uu-0 u000			
IPR3	2331	2431	4331	4431	1 1111	1 1111	u uuuu			
PIE3	2331	2431	4331	4431	0 0000	0 0000	u uuuu			
PIR3	2331	2431	4331	4431	0 0000	0 0000	u uuuu			

TABLE 5-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 5-2 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: Bit 3 of PORTE and LATE are enabled if MCLR functionality is disabled. When not enabled as the PORTE pin, they are disabled and read as '0'. The 28-pin devices do not have only RE3 implemented.

TABLE 5-3:	INITIALIZATION CO	NDITIONS FOR AL	L REGISTERS (CONTI	NUED)

Register Applicable Devices			ces	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
CAP3BUFL/ MAXCNTL	2331	2431	4331	4431	XXXX XXXX	սսսս սսսս	uuuu uuuu
CAP1CON	2331	2431	4331	4431	-0 0000	-0 0000	-u uuuu
CAP2CON	2331	2431	4331	4431	-0 0000	-0 0000	-u uuuu
CAP3CON	2331	2431	4331	4431	-0 0000	-0 0000	-u uuuu
DFLTCON	2331	2431	4331	4431	-000 0000	-000 0000	-uuu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 5-2 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6: Bit 3 of PORTE and LATE are enabled if MCLR functionality is disabled. When not enabled as the PORTE pin, they are disabled and read as '0'. The 28-pin devices do not have only RE3 implemented.

6.1.1 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and contained in three 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte (PCH register) contains the PC<15:8> bits and is not directly readable or writable.

Updates to the PCH register are performed through the PCLATH register. The upper byte is the PCU register and contains the bits, PC<20:16>. This register is also not directly readable or writable. Updates to the PCU register are performed through the PCLATU register.

The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes to the PCL. Similarly, the upper two bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 6.1.4.1 "Computed GOTO**").

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit of the PCL is fixed to a value of '0'. The PC increments by two to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

6.1.2 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC (Program Counter) is pushed onto the stack when a CALL or RCALL instruction is executed, or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction. PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions.

The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer, with the Stack Pointer initialized to 00000b after all Resets. There is no RAM associated with Stack Pointer, 00000b. This is only a Reset value. During a CALL type instruction, causing a push onto the stack, the Stack Pointer is first incremented and the RAM location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction, causing a pop from the stack, the contents of the RAM location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The stack space is not part of either program or data space. The Stack Pointer is readable and writable, and the address on the top of the stack is readable and writable through the Top-of-Stack (TOS) Special Function Registers. Data can also be pushed to, or popped from, the stack using the Top-of-Stack SFRs. Status bits indicate if the stack is full, has overflowed or underflowed.

6.1.2.1 Top-of-Stack Access

The top of the stack is readable and writable. Three register locations, TOSU, TOSH and TOSL, hold the contents of the stack location pointed to by the STKPTR register (Figure 6-3). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt, the software can read the pushed value by reading the TOSU, TOSH and TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can replace the TOSU, TOSH and TOSL and do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption.

6.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 6-1) contains the Stack Pointer value, the STKFUL (Stack Full) status bit and the STKUNF (Stack Underflow) status bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. At Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 23.1 "Configuration Bits**" for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

11.4 PORTD, TRISD and LATD Registers

Note:	PORTD is only available on PIC18F4331/
	4431 devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins are
	configured as digital inputs.

PORTD includes PWM<7:6> complementary fourth channel PWM outputs. PWM4 is the complementary output of PWM5 (the third channel), which is multiplexed with the RB5 pin. This output can be used as the alternate output using the PWM4MX Configuration bit in CONFIG3H when the Single-Supply Programming pin (PGM) is used on RB5.

RD1, RD2 and RD3 can be used as the alternate output for SDO, SDI/SDA and SCK/SCL using the SSPMX Configuration bit in CONFIG3H.

RD4 an be used as the alternate output for FLTA using the FLTAMX Configuration bit in CONFIG3H.

EXAMPLE 11-4:	INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by ; clearing output : data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

17.1.2 PERIOD MEASUREMENT MODE

The Period Measurement mode is selected by setting CAPxM < 3:0 > = 0101. In this mode, the value of Timer5 is latched into the CAPxBUF register on the rising edge of the input capture trigger and Timer5 is subsequently reset to 0000h (optional by setting CAPxREN = 1) on the next TCY (see capture and Reset relationship in Figure 17-4).

17.1.3 PULSE-WIDTH MEASUREMENT MODE

The Pulse-Width Measurement mode can be configured for two different edge sequences, such that the pulse width is based on either the falling to rising edge of the CAPx input pin (CAPxM<3:0> = 0110), or on the rising to falling edge (CAPxM<3:0> = 0111).

Timer5 is always reset on the edge when the measurement is first initiated. For example, when the measurement is based on the falling to rising edge, Timer5 is first reset on the falling edge, and thereafter, the timer value is captured on the rising edge. Upon entry into the Pulse-Width Measurement mode, the very first edge detected on the CAPx pin is always captured. The TMR5 value is reset on the first active edge (see Figure 17-5).

FIGURE 17-5: PULSE-WIDTH MEASUREMENT MODE TIMING

			en costeco	স্কে	02030		kataztasta		lasian antan a	a-o-a-oso		nadada	dorlosios	i ka	01020204
			NNN	Λħ	MN	www	innn	U	hhhhh	hnn	L.	w	WWW	j.	NVVL
TMR:	5 ⁽³⁾				6013	X	; {015)	***		; ;()(_)(0000	0000	Ķ	0002
CAP	{ ?}};	{\$} _{		}		:	1 1 1	· · ·	} { {	<u>_</u> §	· · ·		÷.	} 	
CAP	130	ga(3)				:	} }		{ - 50:455 -	; ; ;		1.0001			3262
Take:	5 89	-56} ^{{4,5} }		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		:)	·····		{ 	·····	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		8 [
Instra Exec	iotia utia	10% (\$};	WE CAPIC) (100 (100 (100) (10) (1		:			,	\$					
Nette	18 ::	TMRS is	a synchro	NICKIS	stme b	ase input t	o the input	<08	pture; presceier :	≈ 1:1. It ince	3 33	Hantsi om	avery Q	t H	sing edge.
	0.5 1 1 1	IC1 is a measure	configures ment). Na	d in nois	Pulse- e fiter :	Midth - Mei on CAPri Ir	esurement iput is use	d. ¹	vods (CAP1M <s The sovwy instru</s 	5.0> == 01.: ofien loads	u, Çá	grieh 2001:94	to fallin when W	성 [=	pulss-width 0111.
	505 2.1	TMRS ve ture ever updated (see Not	iue is isto at, the writ with the is e 4 when	hed b te vell scren Rese	ly CAP always sented - s occur	fBUF on Tr take prece value of the s).	ty rising ex adence. Al a time bas	dgk Hei 8-0). In the event the put Capture Buth n the next Toy of	t a write to ars, CAP18 ock adga w	YM UF hei	R5 coinc , CAP28 n the cap	ides with UF and (store eve	n ar CAB BHÍ I	r input cap P3BUF, are takes piace
	đ.::	TMRS Ro Is always failing Pu Measure	sast is no i present ilse-Widt ment moi	rmalij on th 1 Mee te, it i	y an as e edge isuremo s active	ynchronou that ârst is ent mode): e on each f	s Reset si utistes the it is active ating edge	gna pi or d	ai to TMR5, Whe dise-width measu r each rising edge atectad.	n used in P rement (Le cliciteded.	uis ., x 33	e-Wickh vhen oor fBe fattin	Measure Higured g to risin	sme in ti Ig F	int mode, it he rising to fulse-Wikith
	R	WRADIG (3)	icad va disa	- in ar	die oo too of	nn 100 nm	eer v. aaba arub			hee on hos	viva	a ta inia .	cordo		

is activated on the capture edge. The UAH

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
SEVOPS3	SEVOPS2	SEVOPS1	SEVOPS0	SEVTDIR		UDIS	OSYNC
bit 7			•			•	bit 0
Legend:							
R = Readab	le bit	W = Writable	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7-4	SEVOPS<3:0 0000 = 1:1 P 0001 = 1:2 P	 PWM Special ostscale ostscale Postscale 	al Event Trigge	r Output Postsc	ale Select bits		
bit 3	SEVTDIR: Sp 1 = A Specia 0 = A Specia	ecial Event Trig I Event Trigger I Event Trigger	ger Time Base will occur wher will occur wher	e Direction bit n the PWM time n the PWM time	e base is countii e base is countii	ng downwards ng upwards	
bit 2	Unimplemen	ted: Read as '0	3				
bit 1	UDIS: PWM L	Jpdate Disable	bit				
	1 = Updates0 = Updates	from Duty Cycle from Duty Cycle	e and Period B e and Period B	uffer registers a uffer registers a	are disabled are enabled		
bit 0	OSYNC: PWI	M Output Overr	ide Synchroniz	ation bit			
	1 = Output ov 0 = Output ov	verrides via the verrides via the	OVDCON regi OVDCON regi	ster are synchr ster are asynch	onized to the P ironous	WM time base	

REGISTER 18-4: PWMCON1: PWM CONTROL REGISTER 1

18.3.1 FREE-RUNNING MODE

In the Free-Running mode, the PWM Time Base registers (PTMRL and PTMRH) will begin counting upwards until the value in the PWM Time Base Period register, PTPER (PTPERL and PTPERH), is matched. The PTMR registers will be reset on the following input clock edge and the time base will continue counting upwards as long as the PTEN bit remains set.

18.3.2 SINGLE-SHOT MODE

In the Single-Shot mode, the PWM time base will begin counting upwards when the PTEN bit is set. When the value in the PTMR register matches the PTPER register, the PTMR register will be reset on the following input clock edge and the PTEN bit will be cleared by the hardware to halt the time base.

18.3.3 CONTINUOUS UP/DOWN COUNT MODES

In Continuous Up/Down Count modes, the PWM time base counts upwards until the value in the PTPER register matches with the PTMR register. On the following input clock edge, the timer counts downwards. The PTDIR bit in the PTCON1 register is read-only and indicates the counting direction. The PTDIR bit is set when the timer counts downwards. Note: Since the PWM compare outputs are driven to the active state when the PWM time base is counting downwards and matches the duty cycle value, the PWM outputs are held inactive during the first half of the first period of the Continuous Up/Down Count mode until PTMR begins to count down from the PTPER value.

18.3.4 PWM TIME BASE PRESCALER

The input clock to PTMR (Fosc/4) has prescaler options of 1:1, 1:4, 1:16 or 1:64. These are selected by control bits, PTCKPS<1:0>, in the PTCON0 register. The prescaler counter is cleared when any of the following occurs:

- · Write to the PTMR register
- Write to the PTCON (PTCON0 or PTCON1)
 register
- Any device Reset

Note: The PTMR register is not cleared when PTCONx is written.

19.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

19.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

An overview of I²C operations and additional information on the SSP module can be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

Refer to application note AN578, "Use of the SSP Module in the I^2C^{TM} Multi-Master Environment" (DS00578).

19.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module. Additional information on the SPI module can be found in the *"PIC[®] Mid-Range MCU Family Reference Manual"* (DS33023).

SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- · Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

• Slave Select (SS)

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON (SSPCON<5:0>) and SSPSTAT<7:6> registers. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock polarity (Idle state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- Clock rate (Master mode only)
- Slave Select mode (Slave mode only)

FIGURE 19-3: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)

REGISTER 23-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
—	—	—	—	BORV1	BORV0	BOREN ⁽¹⁾	PWRTEN ⁽¹⁾
bit 7		•					bit 0
Legend:							
R = Readable	bit	P = Programn	nable bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value whe	en device is un	programmed		U = Unchange	ed from program	nmed state	
bit 7-4	Unimplement	ted: Read as 'd)'				
bit 3-2	BORV<1:0>:	Brown-out Res	et Voltage bits				
	11 = Reserve	d					
	10 = VBOR se	t to 2.7V					
	01 = VBOR se	t to 4.2V					
b :4							
DICI	BUREN: BIOV	Mi-out Reset E	hable bit				
	1 = Brown-out	t Reset is enab					
hit 0			-nable hit(1)				
DILU	1 - DWDT is	wer-up timer c					
	$\perp = PWRT is 0$	enabled					
	0 1 101(13)						

Note 1: Having BOREN = 1 does not automatically override the PWRTEN to '0', nor automatically enables the Power-up Timer.

REGISTER 23-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
_	_	—	—	CP3 ^(1,2)	CP2 ^(1,2)	CP1 ⁽²⁾	CP0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Readable	bit	C = Clearable	bit	U = Unimplem	nented bit, read	l as '0'	

-n = Value when device is unprogrammed		U = Unchanged from programmed state
bit 7-4	Unimplemented: Read as '0'	
bit 3	CP3: Code Protection bit ^(1,2)	
	1 = Block 3 is not code-protected0 = Block 3 is code-protected	
bit 2	CP2: Code Protection bit ^(1,2)	
	1 = Block 2 is not code-protected0 = Block 2 is code-protected	
bit 1	CP1: Code Protection bit ⁽²⁾	
	1 = Block 1 is not code-protected0 = Block 1 is code-protected	
bit 0	CP0: Code Protection bit ⁽²⁾	
	1 = Block 0 is not code-protected0 = Block 0 is code-protected	

Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.

2: Refer to Figure 23-5 for block boundary addresses.

REGISTER 23-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD ⁽¹⁾	CPB ⁽¹⁾	—	_	_	—	_	—
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is	unprogrammed	U = Unchanged from programmed state

bit 7	CPD: Data EEPROM Code Protection bit ⁽¹⁾
	1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected
bit 6	CPB: Boot Block Code Protection bit ⁽¹⁾
	1 = Boot Block is not code-protected0 = Boot Block is code-protected
bit 5-0	Unimplemented: Read as '0'

Note 1: Refer to Figure 23-5 for block boundary addresses.

23.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation, in the event of an external oscillator failure, by automatically switching the system clock to the internal oscillator block. The FSCM function is enabled by setting the Fail-Safe Clock Monitor Enable bit, FCMEN (CONFIG1H<6>).

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provide an instant backup clock in the event of a clock failure. Clock monitoring (shown in Figure 23-3) is accomplished by creating a sample clock signal, which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral system clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the system clock source, but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while the CM is still set, a clock failure has been detected (Figure 23-4). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the system clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the fail-safe condition); and
- the WDT is reset.

Since the postscaler frequency from the internal oscillator block may not be sufficiently stable, it may be desirable to select another clock configuration and enter an alternate power-managed mode (see Section 23.3.1 "Special Considerations for Using Two-Speed Start-up" and Section 4.1.4 "Multiple Sleep Commands" for more details). This can be done to attempt a partial recovery or execute a controlled shutdown.

To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF<2:0>, immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF<2:0> bits prior to entering Sleep mode.

Adjustments to the internal oscillator block using the OSCTUNE register also affect the period of the FSCM by the same factor. This can usually be neglected, as the clock frequency being monitored is generally much higher than the sample clock frequency.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

23.4.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTOSC clock when a clock failure is detected. Depending on the frequency selected by the IRCF<2:0> bits, this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock Monitor events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

23.4.2 EXITING FAIL-SAFE OPERATION

The fail-safe condition is terminated by either a device Reset, or by entering a power-managed mode. On Reset, the controller starts the primary clock source specified in Configuration Register 1H (with any required start-up delays that are required for the oscillator mode, such as the OST or PLL timer). The INTOSC multiplexer provides the system clock until the primary clock source becomes ready (similar to a Two-Speed Start-up). The clock system source is then switched to the primary clock (indicated by the OSTS bit in the OSCCON register becoming set). The Fail-Safe Clock Monitor then resumes monitoring the peripheral clock.

The primary clock source may never become ready during start-up. In this case, operation is clocked by the INTOSC multiplexer. The OSCCON register will remain in its Reset state until a power-managed mode is entered.

Entering a power-managed mode by loading the OSCCON register and executing a SLEEP instruction will clear the fail-safe condition. When the fail-safe condition is cleared, the clock monitor will resume monitoring the peripheral clock.

MOVLW Move Literal to W						
Synta	ax:	[label] N	MOVLW	k		
Oper	ands:	$0 \le k \le 255$	5			
Oper	ation:	$k\toW$				
Statu	s Affected:	None				
Enco	ding:	0000	1110	kkk	k	kkkk
Desc	ription:	The 8-bit li	teral, 'k',	is load	led i	nto W.
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	5		Q4
	Decode	Read literal 'k'	Proce Data	:SS a	V	/rite to W
Exan	nple:	MOVLW	0x5A			
	After Instructio	n				

= 0x5A

W

MO	/WF	Move W	to f		
Synta	ax:	[label]	IOVWF	f [,a]	
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]			
Oper	ation:	$(W) \to f$			
Statu	is Affected:	None			
Enco	oding:	0110	111a	ffff	ffff
Description: Move data from Location, 'f', can 256-byte bank. I Bank will be sele BSR value. If 'a' be selected as p				anywhere is '0', the d, overrid , then the ne BSR v	in the Access ing the bank will alue.
Cycle	es:	1			
Q Cycle Activity:		02	03		04
	Decode	Read register 'f'	Proce Data	ss i re	Write gister 'f'
Exan	nple:	MOVWF	REG		

Before Instru	iction	
W	=	0x4F
REG	=	0xFF
After Instruct	ion	
W	=	0x4F
REG	=	0x4F

© 2010 Microchip Technology Inc.

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү		ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A			Single byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A			Single byte	40		ns	(Note 1)
73A	Тв2в	st Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		40	_	ns	
75	TdoR	SDO Data Output Rise Time	PIC18FXX31	—	25	ns	
			PIC18LFXX31	—	45	ns	
76	TdoF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	\overline{SS} \uparrow to SDO Output High-Impedance		10	50	ns	
80	TscH2doV,	SDO Data Output Valid after SCK	PIC18FXX31	—	50	ns	
	TscL2doV	Edge	PIC18LFXX31	—	100	ns	
82	TssL2doV	SDO Data Output Valid after $\overline{ ext{SS}}\downarrow$	PIC18FXX31	—	50	ns	
		Edge	PIC18LFXX31	—	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40	—	ns	

TABLE 26-14: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Note 1: Requires the use of Parameter 73A.

2: Only if Parameter 71A and 72A are used.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

Timer2	6
Associated Registers13	37
Interrupt	37
Operation 13	86
Postscaler See Postscaler Timer?	
Proscolor, Soo Proscolor, Timor?	
PD2 Degister 12	6
	00
SSP Clock Snift	57
TMR2 Register13	6
TMR2 to PR2 Match Interrupt 136, 14	.9
Timer513	9
Associated Registers 14	3
Interrupt14	2
Noise Filter 14	2
Operation 14	0
Continuous Count and Single-Shot	1
Continuous Count and Single-Shot	1
	-2
Prescaler14	1
Special Event Trigger	
Output14	-2
Reset Input14	2
16-Bit Read/Write and Write Modes14	1
16-Bit Read-Modify-Write 14	1
Timing Diagrams	
Automatic Paud Pate Calculation 22	55
	.5
Auto-wake-up Bit (wUE) During	
Normal Operation23	51
Auto-Wake-up Bit (WUE) During Sleep23	51
Brown-out Reset (BOR)	-9
Capture/Compare/PWM (All CCP Modules)	52
CAPx Interrupts and IC1 Special Event Trigger 15	59
CLKO and I/O 34	8
Clock Instruction Cycle	5
Dead-Time Insertion for Complementary PWM 10	11
Dead-Time insertion for Complementary PWW	' '
Up/Down Count Mode	8
Duty Cycle Update Times in Continuous	
Up/Down Count Mode with	
Double Updates 18	9
Edge Capture Mode15	6
Edge-Aligned PWM	88
FUSART Asynchronous Reception 23	30
EUSART Asynchronous Transmission 22	7
EUSART Asynchronous Transmission	.,
	~
(Back to Back)	
EUSART Synchronous Receive (Master/Slave) 36	i0
EUSART Synchronous Reception	
(Master Mode, SREN)23	5
EUSART Synchronous Transmission	33
EUSART Synchronous Transmission	
(Through TXEN) 23	34
FUSART Synchronous Transmission	
(Master/Clave) 26	20
(Waster/Slave)	-0
Example SPI Master Mode (CKE = 0)	03
Example SPI Master Mode (CKE = 1)	4
Example SPI Slave Mode (CKE = 0)	5
Example SPI Slave Mode (CKE = 1)	6
External Clock (All Modes Except PLL)	6
Fail-Safe Clock Monitor27	8
Input Capture on State Change, Hall Effect	
Sensor Mode 15	8
I ² C Bus Data	.7
I O Duo Dala	'' .7
1 C Bus Start/Stop Bits	1
I ⁻ C Reception (7-Bit Address)21	4
I ⁻ C Transmission (7-Bit Address)21	5

Low-Voltage Detect	260
Low-Voltage Detect Characteristics	342
Noise Filter	170
Pulse-Width Measurement Mode	157
PWM Output	149
PWM Output Override (Example 1)	197
PWM Output Override (Example 2)	107
DWM Override Bits in Complementary Mede	105
PWW Overhoe Bits in Complementary Mode	195
PWM Period Buffer Updates in	
Continuous Up/Down Count Mode	186
PWM Period Buffer Updates in	
Free-Running Mode	186
PWM Time Base Interrupt, Continuous	
Up/Down Count Mode	183
PWM Time Base Interrupt, Continuous	
Up/Down Count Mode with	
Double Undates	184
Double Opdates	
PWW Time Dase Interrupt, Free-Running Wood	101
PWW Time Base Interrupt, Single-Shot Mode	102
QEI Inputs When Sampled by Filter	165
QEI Reset on Period Match	165
QEI Reset with the Index Input	166
Reset, Watchdog Timer (WDT), Oscillator	
Start-up Timer (OST), Power-up	
Timer (PWRT)	349
Send Break Character Sequence	232
Slow Rise Time (MCLR Tied to VDD	
$V_{DD} \operatorname{Pico} > \operatorname{Tewpt}$	52
VDD RISE > TPWRT)	
SPI Mode (Master Mode)	
SPI Mode (Slave Mode with CKE = 0)	
SPI Mode (Slave Mode with CKE = 1)	211
Start of Center-Aligned PWM	189
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled	189
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD)	189
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up	189 53
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1	189 53 51
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up	189 53 51
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCL R Not Tied to VDD): Case 2	189 53 51 52
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2	
Start of Center-Aligned PWM Time- <u>out Sequence on POR w/PLL Enabled</u> (MCLR Tied to VDD) Time- <u>out Sequence on Power-up</u> (MCLR Not Tied to VDD): Case 1 Time- <u>out Sequence on Power-up</u> (MCLR Not Tied to VDD): Case 2 Time- <u>out Sequence on Power-up</u> (MCLR Tied to VDD): Case 2	
Start of Center-Aligned PWM Time- <u>out Sequence on POR w/PLL Enabled</u> (MCLR Tied to VDD) Time- <u>out Sequence on Power-up</u> (MCLR Not Tied to VDD): Case 1 Time- <u>out Sequence on Power-up</u> (MCLR Not Tied to VDD): Case 2 Time- <u>out Sequence on Power-up</u> (MCLR Tied to VDD, VDD Rise TPWRT)	
Start of Center-Aligned PWM Time- <u>out Sequence on POR w/PLL Enabled</u> (MCLR Tied to VDD) Time- <u>out Sequence on Power-up</u> (MCLR Not Tied to VDD): Case 1 Time- <u>out Sequence on Power-up</u> (MCLR Not Tied to VDD): Case 2 Time- <u>out Sequence on Power-up</u> (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock	
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode	
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode	
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode	
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up	
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL)	
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode	
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode	189 53 51 52 51 52 51 351 44 41 43
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to	189 53 51 52 51 52 51 351 44 41 43 276 44 43
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to Sleep Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI RUN Mode	
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to	189 53 51 52 51 51 51 51 51 51 51 51
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode	189 53 51 52 51 51 51 44 41 43 276 44 43 42 42
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL)	189 53 51 52 51 51 44 41 43 42 42 41
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition for C_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL)	189 53 51 52 51 51 44 41 43 42 42 42 41 42
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL)	189 53 51 52 51 52 51 44 41 43 43 42 44 43 42 42 41 42 41 42 41 42 41 42
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL)	189 53 51 52 51 51 51 44 43 43 43 44 43 42 41 42 41 42 41 42 44 43
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to PRI_RUN MODE (HSPLL)	189 53 51 52 51 51 44 43 43 44 43 42 44 43 42 41 42 41 42 41 42 41 42 44 43
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode Capture/Compare/PWM Requirements (All CCP Modules)	189 53 51 52 51 51 44 43 43 43 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 44 43 42 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 42 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 43
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to Sleep Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to CLKO and I/O Requirements	189 53 51 52 51 51 351 44 43 43 43 42 41 42 41 42 41 42 41 42 41 42 41 42 44 43 42 44 43 42 44 43 42 44 43
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to Sleep Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to CLKO and I/O Requirements EUSART Synchronous Receive Requirements	189 53 51 52 51 52 51 44 43 43 42 43 42 43 42 41 42 41 42 41 42 41 42 44 43 42 44 43 42 44 43 42 44 43 44 44 346 346 346 346
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to CLKO and I/O Requirements EUSART Synchronous Receive Requirements EUSART Synchronous Transmission	189 53 51 52 51 51 44 41 43 42 44 43 42 41 42 41 42 41 42 41 42 41 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 44 44 43 44 44 43 44 44 43 44 44 44 44 44 44 346 346
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From SEC_RUN Mode to PRI_RUN Mode Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN Mode to CLKO and I/O Requirements EUSART Synchronous Receive Requirements EUSART Synchronous Transmission Requirements	189 53 51 52 51 52 51 44 43 42 43 42 41 42 41 42 41 42 41 42 41 42 41 42 43 42 43 42 43 42 44 43 42 43 44 43 42 44 43 42 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From SEC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN MODE (HSP	189 53 51 52 51 44 43 42 42 41 42 42 41 42 42 41 42 42 41 42 42 41 42 43 42 43 42 43 42 43 42 44 43 42 43 44 43 42 44 43 42 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 346 346 360 360 360 360 360 360 360 360
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN MODE (HSPLL) Transition to RC_RUN MODE (HSPLL) Transition to RC_RUN MODE (HSPLL) Transition to RC_RUN MODE (HSPLL) Transition to	189 53 51 52 51 52 51 44 41 43 42 44 43 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 44 43 42 44 43 42 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 44 43 42 44 43 44 43 42 44 43 42 346 346 360
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN MODE (HSPLL) Transition to RC_RUN MODE (HSPLL) Transitie (HARC	189 53 51 52 51 44 43 43 44 43 44 43 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 41 42 44 43 42 44 43 42 346 360 360 360 360 360 360 360 360 360
Start of Center-Aligned PWM Time-out Sequence on POR w/PLL Enabled (MCLR Tied to VDD) Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 1 Time-out Sequence on Power-up (MCLR Not Tied to VDD): Case 2 Time-out Sequence on Power-up (MCLR Tied to VDD, VDD Rise TPWRT) Timer0 and Timer1 External Clock Transition for Entry to Idle Mode Transition for Entry to SEC_RUN Mode Transition for Entry to Sleep Mode Transition for Entry to Sleep Mode Transition for Two-Speed Start-up (INTOSC to HSPLL) Transition for Wake From Idle to Run Mode Transition for Wake From Sleep (HSPLL) Transition From RC_RUN Mode to PRI_RUN Mode Transition From SEC_RUN Mode to PRI_RUN Mode (HSPLL) Transition to RC_RUN MODE (HSPLL) EXAMPLE SPI Mode Require	189 53 51 52 51 44 41 43 43 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 42 44 43 352 360 360 360 360 360 360 352 360 352 360