

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4431t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-490-2

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

TABLE 1-2: PIC18F2331/2431 PINOUT I/O DESCRIPTIONS

	Pin Number		D !	Duffe	
Pin Name	SPDIP, SOIC	QFN	Pin Type	Type	Description
MCLR/Vpp MCLR Vpp	1	26	I P	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device. High-voltage ICSP™ programming enable pin
OSC1/CLKI/RA7	9	6		ST	Oscillator crystal or external clock input.
CLKI				CMOS	ST buffer when configured in RC mode; CMOS otherwise. External clock source input. Always associated with pin function OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.)
RA7			I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6 OSC2 CLKO	10	7	0 0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction
RA6			1/0	тті	cycle rate. General purpose I/O pin
10.0			1/0		PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	27	I/O I	TTL Analog	Digital I/O. Analog Input 0.
RA1/AN1 RA1 AN1	3	28	I/O I	TTL Analog	Digital I/O. Analog Input 1.
RA2/AN2/VREF-/CAP1/INDX RA2 AN2 VREF- CAP1 INDX	4	1	I/O I I I	TTL Analog Analog ST ST	Digital I/O. Analog Input 2. A/D reference voltage (low) input. Input Capture Pin 1. Quadrature Encoder Interface index input pin.
RA3/AN3/VREF+/CAP2/QEA RA3 AN3 VREF+ CAP2 QEA	5	2	I/O I I I	TTL Analog Analog ST ST	Digital I/O. Analog Input 3. A/D reference voltage (high) input. Input Capture Pin 2. Quadrature Encoder Interface Channel A input pin.
RA4/AN4/CAP3/QEB RA4 AN4 CAP3 QEB Legend: TTL = TTL compa	6 atible inp	3 put	I/O I I	TTL Analog ST ST	Digital I/O. Analog Input 4. Input Capture Pin 3. Quadrature Encoder Interface Channel B input pin. CMOS = CMOS compatible input or output

0 = Output Р

= Power

NOTES:

					1 200 1/240	1/400 1/44	51)				
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR		
TOSU	— — Top-of-Stack Upper Byte (TOS<20:16>)										
TOSH	Top-of-Stack H	ligh Byte (TOS	<15:8>)	•					0000 0000		
TOSL	Top-of-Stack L	ow Byte (TOS·	<7:0>)						0000 0000		
STKPTR	STKFUL	STKUNF	—	SP4	SP3	SP2	SP1	SP0	00-0 0000		
PCLATU	— — bit 21 ⁽³⁾ Holding Register for PC<20:16>										
PCLATH	Holding Regis	ter for PC<15:8	}>						0000 0000		
PCL	PC Low Byte (PC<7:0>)										
TBLPTRU	_	— — bit 21 ⁽³⁾ Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)									
TBLPTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)										
TBLPTRL	Program Mem	ory Table Point	ter Low Byte (T	BLPTR<7:0>)					0000 0000		
TABLAT	Program Mem	ory Table Latch	า						0000 0000		
PRODH	Product Regis	ter High Byte							xxxx xxxx		
PRODL	Product Regis	ter Low Byte							xxxx xxxx		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x		
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1		
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00		
INDF0	Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)										
POSTINC0	Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)										
POSTDEC0	Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)										
PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)										
PLUSW0	Uses contents	of FSR0 to ad	dress data mei	mory – value of	FSR0 offset by	/ W (not a phys	ical register)		N/A		
FSR0H	_	—	—	_	Indirect Data I	Memory Addres	ss Pointer 0 Hig	h	xxxx		
FSR0L	Indirect Data I	Memory Addres	s Pointer 0 Lo	w Byte					xxxx xxxx		
WREG	Working Regis	ster							xxxx xxxx		
INDF1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 not char	nged (not a phy	sical register)		N/A		
POSTINC1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 post-inc	remented (not	a physical regis	ter)	N/A		
POSTDEC1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 post-dec	cremented (not	a physical regi	ster)	N/A		
PREINC1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 pre-incre	emented (not a	physical regist	er)	N/A		
PLUSW1	Uses contents	of FSR1 to ad	dress data mei	mory – value of	FSR1 offset by	/ W (not a phys	ical register)		N/A		
FSR1H	—	—	_	_	Indirect Data I	Memory Addres	ss Pointer 1 Hig	h Byte	0000		
FSR1L	Indirect Data I	Memory Addres	s Pointer 1 Lo	w Byte					xxxx xxxx		
BSR	—	_	_	_	Bank Select R	legister			0000		
INDF2	Uses contents	of FSR2 to ad	dress data mei	nory – value of	FSR2 not char	nged (not a phy	vsical register)		N/A		
POSTINC2	Uses contents	of FSR2 to ad	dress data mei	mory – value of	FSR2 post-inc	remented (not	a physical regis	ter)	N/A		
POSTDEC2	Uses contents	of FSR2 to ad	dress data mei	mory – value of	FSR2 post-dec	cremented (not	a physical regi	ster)	N/A		
PREINC2	Uses contents	of FSR2 to ad	dress data mei	mory – value of	FSR2 pre-incre	emented (not a	physical regist	er)	N/A		
PLUSW2	Uses contents	of FSR2 to ad	dress data mei	mory – value of	FSR2 offset by	/ W (not a phys	ical register)		N/A		
FSR2H	_	_	_	_	Indirect Data I	Memory Addres	ss Pointer 2 Hig	h Byte	0000		
FSR2L	Indirect Data I	Memory Addres	s Pointer 2 Lo	w Byte					xxxx xxxx		
STATUS		_	_	N	OV	Z	DC	С	x xxxx		
TMR0H	Timer0 Regist	er High Byte							0000 0000		
TMR0L	Timer0 Regist	er Low Byte							xxxx xxxx		
TOCON	TMR0ON	T016BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0	1111 1111		

TABLE 6-2: REGISTER FILE SUMMARY (PIC18F2331/2431/4331/4431)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented.

Note 1: RA6 and associated bits are configured as port pins in RCIO, ECIO and INTIO2 (with port function on RA6) Oscillator modes only and read '0' in all other oscillator modes.

2: RA7 and associated bits are configured as port pins in INTIO2 Oscillator mode only and read '0' in all other modes.

3: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

4: These registers and/or bits are not implemented on the PIC18F2331/2431 devices and read as '0'.

5: The RE3 port bit is only available for PIC18F4331/4431 devices when the MCLRE fuse (CONFIG3H<7>) is programmed to '0'; otherwise, RE3 reads '0'. This bit is read-only.

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in four registers, RES<3:0>.

EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES<3:0>	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		$(ARG1L \bullet ARG2L)$

EXAMPLE 9-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L ->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	;
	MOVFF	PRODL, RESO	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H ->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	i
	CLRF	WREG	;
	ADDWFC	RES3, F	;

Example 9-4 shows the sequence to do a 16 x 16 signed multiply. Equation 9-2 shows the algorithm used. The 32-bit result is stored in four registers, RES<3:0>. To account for the sign bits of the arguments, each argument pair's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 9-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES<3:	0>

=	ARG1H:ARG1L • ARG2H:ARG2L
=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H ^2 2^8) +$
	$(ARG1L \bullet ARG2L)+$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 9-4: 16 x 16 SIGNED MULTIPLY ROUTINE

I	MOVF	ARG1L, W		
I	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH:PRODL
I	MOVFF	PRODH, RES1	;	
I	MOVFF	PRODL, RESO	;	
;				
1	MOVF	ARG1H, W		
1	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH:PRODL
I	MOVFF	PRODH, RES3	;	
I	MOVFF	PRODL, RES2	;	
;				
1	MOVF	ARG1L,W		
1	MULWF	ARG2H	;	ARG1L * ARG2H ->
			;	PRODH:PRODL
I	MOVF	PRODL, W	;	
ī	ADDWF	RES1, F	;	Add cross
I	MOVF	PRODH, W	;	products
;	ADDWFC	RES2. F	;	1
(CLRF	WREG	;	
ž	ADDWFC	RES3, F	;	
;				
. 1	MOVF	ARG1H, W	;	
I	MULWF	ARG2L	;	ARG1H * ARG2L ->
			;	PRODH:PRODL
I	MOVF	PRODL, W	;	
,	ADDWF	RES1. F	;	Add cross
1	MOVE	PRODH. W	;	products
ž	ADDWFC	RES2, F	;	<u> </u>
(CLRF	WREG	;	
ž	ADDWFC	RES3, F	;	
;				
I	BTFSS	ARG2H, 7	;	ARG2H:ARG2L neg?
Ŧ	BRA	SIGN ARG1	;	no, check ARG1
1	MOVF	ARG1L, W	;	
-	SUBWF	RES2	;	
I	MOVF	ARG1H, W	;	
ŝ	SUBWFB	RES3		
;				
SIGN	ARG1			
I	- BTFSS	ARG1H, 7	;	ARG1H:ARG1L neq?
I	BRA	CONT CODE	;	no, done
I	MOVF	ARG2L, W	;	
-	SUBWF	RES2	;	
I	MOVF	ARG2H, W	;	
-	SUBWFB	RES3		
;		-		
CONT	_CODE			
-	:			

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1				
RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	—	RBIP				
bit 7											
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 7	bit 7 RBPU: PORTB Pull-up Enable bit 1 = All PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values										
bit 6	INTEDG0: Ex	ternal Interrupt	0 Edge Selec	t bit							
	1 = Interrupt 0 = Interrupt	on rising edge on falling edge	Ū								
bit 5	INTEDG1: Ex	ternal Interrupt	1 Edge Select	t bit							
	1 = Interrupt 0 = Interrupt	on rising edge on falling edge									
bit 4	INTEDG2: Ex	ternal Interrupt	2 Edge Select	t bit							
	1 = Interrupt 0 = Interrupt	on rising edge on falling edge									
bit 3	Unimplemen	ted: Read as '	י)								
bit 2	2 TMR0IP: TMR0 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority										
bit 1	Unimplemen	ted: Read as '	י)								
bit 0	RBIP: RB Po	rt Change Inter	rupt Priority bit								
	1 = High priority 0 = Low priority										

REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

Pin	Function	TRIS Setting	I/O	l/O Type	Description		
RD0/T0CKI/	RD0	0	0	DIG	LATD<0> data output.		
T5CKI		1	Ι	ST	PORTD<0> data input.		
	T0CKI ⁽¹⁾	1	Ι	ST	Timer0 alternate clock input.		
	T5CKI ⁽¹⁾	1	Ι	ST	Timer5 alternate clock input.		
RD1/SDO	RD1	0	0	DIG	LATD<1> data output.		
		1	I	ST	PORTD<1> data input.		
	SDO ⁽¹⁾	0	0	DIG	SPI data out; takes priority over port data.		
RD2/SDI/SDA	RD2	0	0	DIG	LATD<2> data output.		
		1	-	ST	PORTD<2> data input.		
	SDI ⁽¹⁾	1	-	ST	SPI data input (SSP module).		
	SDA ⁽¹⁾	0	0	DIG	I ² C [™] data output (SSP module); takes priority over port data.		
		1	-	I ² C	I ² C data input (SSP module).		
RD3/SCK/SCL	0	0	DIG	LATD<3> data output.			
		1	-	ST	PORTD<3> data input.		
	SCK ⁽¹⁾	0	0	DIG	SPI clock output (SSP module); takes priority over port data.		
		1	Ι	ST	SPI clock input (SSP module).		
	SCL ⁽¹⁾	0	0	DIG	I ² C clock output (SSP module); takes priority over port data.		
		1	Ι	I ² C	I ² C clock input (SSP module); input type depends on module setting.		
RD4/FLTA	RD4	0	0	DIG	LATD<4> data output.		
		1	I	ST	PORTD<4> data input.		
	FLTA(2)	1	Ι	ST	Fault Interrupt Input Pin A.		
RD5/PWM4	RD5	0	0	DIG	LATD<5> data output.		
		1	Ι	ST	PORTD<5> data input.		
	PWM4 ⁽³⁾	0	0	DIG	PWM Output 4; takes priority over port data.		
RD6/PWM6	RD6	0	0	DIG	LATD<6> data output.		
		1	-	ST	PORTD<6> data input.		
	PWM6	0	0	DIG	PWM Output 6; takes priority over port data.		
RD7/PWM7	RD7	0	0	DIG	LATD<7> data output.		
1		Ι	ST	PORTD<7> data input.			
	PWM7	0	0	DIG	PWM Output 7; takes priority over port data.		

TABLE 11-7: PORTD I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer;

x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin for SCK/SCL; RC7 is the alternate pin for SDO.

2: RC1 is the alternate pin for FLTA.

3: RB5 is the alternate pin for PWM4.

TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	57	
LATD	ATD LATD Data Output Register									
TRISD	PORTD Da	PORTD Data Direction Register								

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54	
IPR3	_	_	_	PTIP	IC3DRIP	IC2QEIP	IC1IP	TMR5IP	56	
PIE3	—	—	—	PTIE	IC3DRIE	IC2QEIE	IC1IE	TMR5IE	56	
PIR3	—	—	—	PTIF	IC3DRIF	IC2QEIF	IC1IF	TMR5IF	56	
TMR5H	Timer5 Register High Byte									
TMR5L	TImer5 Register Low Byte									
PR5H	Timer5 Period Register High Byte									
PR5L	Timer5 Period Register Low Byte									
T5CON	T5SEN	RESEN	T5MOD	T5PS1	T5PS0	T5SYNC	TMR5CS	TMR5ON	56	
CAP1CON	_	CAP1REN	_	_	CAP1M3	CAP1M2	CAP1M1	CAP1M0	59	
DFLTCON	—	FLT4EN	FLT3EN	FLT2EN	FLT1EN	FLTCK2	FLTCK1	FLTCK0	59	

TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER5

Legend: — = unimplemented. Shaded cells are not used by the Timer5 module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	57
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	57
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	57
TRISC	PORTC D	PORTC Data Direction Register						57	
TMR1L	Timer1 Register Low Byte						55		
TMR1H	Timer1 Register High Byte					55			
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	55
CCPR1L	Capture/C	ompare/PWI	M Register	1 Low Byte					56
CCPR1H	Capture/C	ompare/PWI	M Register	1 High Byte					56
CCP1CON	_	_	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	56
CCPR2L	Capture/C	ompare/PWI	M Register	2 Low Byte					56
CCPR2H	Capture/C	ompare/PWI	M Register 2	2 High Byte					56
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	56
PIR2	OSCFIF	_	_	EEIF	_	LVDIF	_	CCP2IF	57
PIE2	OSCFIE	_	_	EEIE	_	LVDIE	—	CCP2IE	57
IPR2	OSCFIP	—	_	EEIP	_	LVDIP	—	CCP2IP	57

TABLE 16-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture, Compare and Timer1.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following equation:

EQUATION 16-3:

Note:	If the PWM duty cycle value is longer than
	the PWM period, the CCP1 pin will not be
	cleared.

16.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP1 module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 16-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58

TABLE 16-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	57
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	57
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	57
TRISC	PORTC Da	PORTC Data Direction Register						57	
TMR2	Timer2 Reg	Timer2 Register					55		
PR2	Timer2 Per	iod Register							55
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	55
CCPR1L	Capture/Co	mpare/PWN	1 Register 1	Low Byte					56
CCPR1H	Capture/Co	mpare/PWN	1 Register 1	High Byte					56
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	56
CCPR2L	Capture/Compare/PWM Register 2 Low Byte					56			
CCPR2H	Capture/Co	mpare/PWN	1 Register 2	High Byte					56
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	56

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

17.4 IC and QEI Shared Interrupts

The IC and QEI submodules can each generate three distinct interrupt signals; however, they share the use of the same three interrupt flags in register, PIR3. The meaning of a particular interrupt flag at any given time depends on which module is active at the time the interrupt is set. The meaning of the flags in context are summarized in Table 17-7.

When the IC submodule is active, the three flags (IC1IF, IC2QEIF and IC3DRIF) function as interrupt-on-capture event flags for their respective input capture channels. The channel must be configured for one of the events that will generate an interrupt (see Section 17.1.7 "IC Interrupts" for more information).

When the QEI is enabled, the IC1IF interrupt flag indicates an interrupt caused by a velocity measurement event, usually an update of the VELR register. The IC2QEIF interrupt indicates that a position measurement event has occurred. IC3DRIF indicates that a direction change has been detected.

TABLE 17-7: MEANING OF IC AND QEI INTERRUPT FLAGS

Interrupt	Ν	Meaning				
Flag	IC Mode	QEI Mode				
IC1IF	IC1 Capture Event	Velocity Register Update				
IC2QEIF	IC2 Capture Event	Position Measurement Update				
IC3DRIF	IC3 Capture Event	Direction Change				

17.5 Operation in Sleep Mode

17.5.1 3x INPUT CAPTURE IN SLEEP MODE

Since the input capture can operate only when its time base is configured in a Synchronous mode, the input capture will not capture any events. This is because the device's internal clock has been stopped and any internal timers in Synchronous modes will not increment. The prescaler will continue to count the events (not synchronized).

When the specified capture event occurs, the CAPx interrupt will be set. The Capture Buffer register will be updated upon wake-up from sleep to the current TMR5 value. If the CAPx interrupt is enabled, the device will wake-up from Sleep. This effectively enables all input capture channels to be used as the external interrupts.

17.5.2 QEI IN SLEEP MODE

All QEI functions are halted in Sleep mode.

18.11.3 PWM OUTPUT PIN RESET STATES

The PWMPIN Configuration bit determines the PWM output pins to be PWM output pins or digital I/O pins, after the device comes out of Reset. If the PWMPIN Configuration bit is unprogrammed (default), the PWMEN<2:0> control bits will be cleared on a device Reset. Consequently, all PWM outputs will be tri-stated and controlled by the corresponding PORT and TRIS registers. If the PWMPIN Configuration bit is programmed low, the PWMEN<2:0> control bits will be set, as follows, on a device Reset:

- PWMEN<2:0> = 101 if device has 8 PWM pins (PIC18F4331/4431 devices)
- PWMEN<2:0> = 100 if device has 6 PWM pins (PIC18F2331/2431 devices)

All PWM pins will be enabled for PWM output and will have the output polarity defined by the HPOL and LPOL Configuration bits.

18.12 PWM Fault Inputs

There are two Fault inputs associated with the PWM module. The main purpose of the input Fault pins is to disable the PWM output signals and drive them into an inactive state. The action of the Fault inputs is performed directly in hardware so that when a Fault occurs, it can be managed quickly and the PWM outputs are put into an inactive state to save the power devices connected to the PWMs.

The PWM Fault inputs are FLTA and FLTB, which can come from I/O pins, the CPU or another module. The FLTA and FLTB pins are active-low inputs so it is easy to "OR" many sources to the same input. FLTB and its associated logic are not implemented on PIC18F2331/2431 devices.

The FLTCONFIG register (Register 18-8) defines the settings of FLTA and FLTB inputs.

Note:	The inactive state of the PWM pins are
	dependent on the HPOL and LPOL Con-
	figuration bit settings, which define the
	active and inactive state for PWM outputs.

18.12.1 FAULT PIN ENABLE BITS

By setting the bits, FLTAEN and FLTBEN in the FLTCONFIG register, the corresponding Fault inputs are enabled. If both bits are cleared, then the Fault inputs have no effect on the PWM module.

18.12.2 MFAULT INPUT MODES

The FLTAMOD and FLTBMOD bits in the FLTCONFIG register determine the modes of PWM I/O pins that are deactivated when they are overridden by Fault input.

The FLTAS and FLTBS bits in the FLTCONFIG register give the status of Fault A and Fault B inputs.

Each of the Fault inputs have two modes of operation:

• Inactive Mode (FLTxMOD = 0)

This is a Catastrophic Fault Management mode. When the Fault occurs in this mode, the PWM outputs are deactivated. The PWM pins will remain in Inactivate mode until the Fault is cleared (Fault input is driven high) and the corresponding Fault Status bit has been cleared in software. The PWM outputs are enabled immediately at the beginning of the following PWM period, after the Fault Status bit (FLTxS) is cleared.

• Cycle-by-Cycle Mode (FLTxMOD = 1)

When the Fault occurs in this mode, the PWM outputs are deactivated. The PWM outputs will remain in the defined Fault states (all PWM outputs inactive) for as long as the Fault pin is held low. After the Fault pin is driven high, the PWM outputs will return to normal operation at the beginning of the following PWM period and the FLTxS bit is automatically cleared.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BRFEN	FLTBS ⁽¹⁾	FLTBMOD ⁽¹⁾	FLTBEN ⁽¹⁾	FLTCON ⁽²⁾	FLTAS	FLTAMOD	FLTAEN
bit 7		1					bit 0
L							
Legend:							
R = Reada	able bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	BRFEN: Bre	akpoint Fault Ena	able bit				
	1 = Enable F	Fault condition or	a breakpoint	(i.e., only when	PWMPIN = 1)	
hit 6	ELTRS: Faul	t B Status hit(1)					
DILO	$1 = \overline{FITR}$ is	asserted.					
	if FLTBM	IOD = 0, cleared	by the user;				
	if FLTBN	IOD = 1, cleared	automatically	at beginning of	the new perio	d when FLTB is	deasserted
	0 = No Fault	t 	0				
bit 5	FLTBMOD:	Fault B Mode bit	ı) 				
	1 = Cycle-by	/-Cycle mode: Pil erted: El TBS is (ns are inactive	e for the remain	der of the curr	ent PWM period	d or until FLIB
	0 = Inactive	mode: Pins are	deactivated (c	atastrophic fail	ure) until FLTE	<u></u> is deasserted	and FLTBS is
	cleared	by the user only	·				
bit 4	FLTBEN: Fa	ult B Enable bit ⁽¹)				
	1 = Enable F	Fault B					
h it 0			L:+(2)				
DIT 3		TP or both door	DIL ^{-,}	Moutpute			
	0 = FLTA or	FLTB deactivates	s PWM<5:0>	ivi outputs			
bit 2	FLTAS: Faul	t A Status bit					
	$1 = \overline{FLTA}$ is a	asserted:					
	if FLTAN	10D = 0, cleared	by the user;				
	if FLIAN 0 = No Fault	IOD = 1, cleared	automatically	at beginning of	the new perio	d when FLIA is	deasserted
bit 1	FI TAMOD: F	Fault A Mode bit					
	1 = Cvcle-bv	/-Cvcle mode: Pir	ns are inactive	for the remaind	ler of the curre	nt PWM period o	or until FLTA is
	deasser	ted; FLTAS is cle	ared automati	cally		_	
	0 = Inactive	mode: Pins are	deactivated (o	catastrophic fail	ure) until FLTA	A is deasserted	and FLTAS is
hit 0		by the user only					
DILU	1 = Enable E						
	0 = Disable	Fault A					
Note 1.	Linimplementor		2431 devices	maintain these	hits clear		
2.	PWM<7.6> are	implemented on	v on PIC18F4	331/4431 devic	es On PIC18F	2331/2431 devi	ces setting or
£.	clearing FLTCC	DN has no effect.	,			200 112 101 4001	cco, cotting of

REGISTER 18-8: FLTCONFIG: FAULT CONFIGURATION REGISTER

20.2 EUSART Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator, that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit (BAUDCON<3>) selects 16-bit mode.

The SPBRGH:SPBRG register pair controls the period of a free-running timer. In Asynchronous mode, bits BRGH (TXSTA<2>) and BRG16 also control the baud rate. In Synchronous mode, bit BRGH is ignored. Table 20-1 shows the formula for computation of the baud rate for different EUSART modes, which only apply in Master mode (internally generated clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRGH:SPBRG registers can be calculated using the formulas in Table 20-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 20-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 20-2. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG, to reduce the baud rate error or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGH:SPBRG registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

20.2.1 POWER-MANAGED MODE OPERATION

The system clock is used to generate the desired baud rate. However, when a power-managed mode is entered, the clock source may be operating at a different frequency than in PRI_RUN mode. In Sleep mode, no clocks are present and in PRI_IDLE, the primary clock source continues to provide clocks to the Baud Rate Generator. However, in other powermanaged modes, the clock frequency will probably change. This may require the value in SPBRG to be adjusted.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit and make sure that the receive operation is Idle before changing the system clock.

20.2.2 SAMPLING

The data on the RC7/RX/DT/SDO pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

Configuration Bits				Baud Pate Formula		
SYNC	BRG16	BRGH	BRO/EUSART Mode	Bauu Kale Formula		
0	0	0	8-Bit/Asynchronous	Fosc/[64 (n + 1)]		
0	0	1	8-Bit/Asynchronous	$E_{0} = c (16 (n + 1))$		
0	1	0	16-Bit/Asynchronous	FOSC/[10 (11 + 1)]		
0	1	1	16-Bit/Asynchronous			
1	0	x	8-Bit/Synchronous	Fosc/[4 (n + 1)]		
1	1	x	16-Bit/Synchronous			

TABLE 20-1: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGH:SPBRG register pair

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GDSEL1	GDSEL0	GBSEL1	GBSEL0	GCSEL1	GCSEL0	GASEL1	GASEL0
bit 7			-			·	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7-6 GDSEL<1:0> : Group D Select bits S/H-2 positive input. 00 = AN3 $01 = AN7^{(1)}$ 1x = Reserved							
bit 5-4 GBSEL<1:0> : Group B Select bits S/H-2 positive input. 00 = AN1 01 = AN5 ⁽¹⁾ 1x = Reserved							
bit 3-2 GCSEL<1:0> : Group C Select bits S/H-1 positive input. 00 = AN2 01 = AN6 ⁽¹⁾ 1x = Reserved							
bit 1-0 GASEL<1:0>: Group A Select bits S/H-1 positive input. 00 = AN0 01 = AN4 10 = AN8 ⁽¹⁾ 11 = Reserved							

REGISTER 21-5: ADCHS: A/D CHANNEL SELECT REGISTER

Note 1: AN5 through AN8 are available only in PIC18F4331/4431 devices.

REGISTER 23-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	
—	—	—	—	BORV1	BORV0	BOREN ⁽¹⁾	PWRTEN ⁽¹⁾	
bit 7		•					bit 0	
Legend:								
R = Readable	bit	P = Programn	nable bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value whe	en device is un	programmed		U = Unchange	ed from program	nmed state		
bit 7-4	bit 7-4 Unimplemented: Read as '0'							
bit 3-2	BORV<1:0>:	Brown-out Res	et Voltage bits					
	11 = Reserve	d						
	10 = VBOR se	t to 2.7V						
	01 = VBOR se	t to 4.2V						
b :4								
DICI	BUREN: BIOV	Mi-out Reset E	hable bit					
	1 = Brown-out	t Reset is enab						
$\frac{1}{100} = \frac{1}{100} = \frac{1}$								
DILU	1 - DWDT is	wer-up timer c						
	$\perp = PWRT is 0$	enabled						
	0 1 101(1 10(

Note 1: Having BOREN = 1 does not automatically override the PWRTEN to '0', nor automatically enables the Power-up Timer.

REGISTER 23-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
_	_	_	_	CP3 ^(1,2)	CP2 ^(1,2)	CP1 ⁽²⁾	CP0 ⁽²⁾
bit 7							bit 0
Legend:							
R = Readable	bit	C = Clearable	bit	U = Unimplem	nented bit, read	as '0'	

-n = Value wh	en device is unprogrammed	U = Unchanged from programmed state
bit 7-4	Unimplemented: Read as '0'	
bit 3	CP3: Code Protection bit ^(1,2)	
	1 = Block 3 is not code-protected0 = Block 3 is code-protected	
bit 2	CP2: Code Protection bit ^(1,2)	
	1 = Block 2 is not code-protected0 = Block 2 is code-protected	
bit 1	CP1: Code Protection bit ⁽²⁾	
	1 = Block 1 is not code-protected0 = Block 1 is code-protected	
bit 0	CP0: Code Protection bit ⁽²⁾	
	1 = Block 0 is not code-protected0 = Block 0 is code-protected	

Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.

2: Refer to Figure 23-5 for block boundary addresses.

REGISTER 23-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD ⁽¹⁾	CPB ⁽¹⁾	—	—	—	_	_	_
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is u	nprogrammed	U = Unchanged from programmed state

bit 7	CPD: Data EEPROM Code Protection bit ⁽¹⁾				
	1 = Data EEPROM is not code-protected 0 = Data EEPROM is code-protected				
bit 6	CPB: Boot Block Code Protection bit ⁽¹⁾				
	1 = Boot Block is not code-protected 0 = Boot Block is code-protected				
bit 5-0	Unimplemented: Read as '0'				

Note 1: Refer to Figure 23-5 for block boundary addresses.

REGISTER 23-13: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2331/2431/4331/4431 DEVICES

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	rogrammed	U = Unchanged from programmed state

bit 7-5	DEV<2:0>: Device ID bits					
	These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the part number.					
	000 = PIC18F4331					
	001 = PIC18F4431					
	100 = PIC18F2331					
	101 = PIC18F2431					
bit 4-0	REV<4:0>: Revision ID bits					
	These bits are used to indicate the device revision.					

REGISTER 23-14: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2331/2431/4331/4431 DEVICES

R	R	R	R	R	R	R	R
DEV10 ⁽¹⁾	DEV9 ⁽¹⁾	DEV8 ⁽¹⁾	DEV7 ⁽¹⁾	DEV6 ⁽¹⁾	DEV5 ⁽¹⁾	DEV4 ⁽¹⁾	DEV3 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	programmed	U = Unchanged from programmed state

bit 7-0 **DEV<10:3>:** Device ID bits⁽¹⁾ These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number 0000 0101 = PIC18F2331/2431/4331/4431 devices

Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified by using the entire DEV<10:0> bit sequence.

27.1 Package Marking Information (Continued)

40-Lead PDIP

 \cap

44-Lead TQFP

Example

PIC18F4331-I/P (e3) 1010017 MICROCHIP

44-Lead QFN

Example

