
Microchip Technology - PIC18LF2331T-I/MM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 40MHz

Connectivity I²C, SPI, UART/USART

Peripherals Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT

Number of I/O 24

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 256 x 8

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 2V ~ 5.5V

Data Converters A/D 5x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-VQFN Exposed Pad

Supplier Device Package 28-QFN-S (6x6)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2331t-i-mm

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf2331t-i-mm-4412202
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18F2331/2431/4331/4431
Pin Diagrams (Continued)

44-Pin QFN(2)

10
11

2
3
4
5
6

1

18 19 20 21 2212 13 14 15

3
8

8
7

4
4

4
3

4
2

4
1

4
0

3
9

16 17
29
30
31
32
33

23
24
25
26
27
28

3
6

3
4

3
5

9

PIC18F4331
3

7

R
A

3/
A

N
3/

V
R

E
F
+

/C
A

P
2

/Q
E

A
R

A
2/

A
N

2/
V

R
E

F
-/

C
A

P
1

/I
N

D
X

R
A

1
/A

N
1

R
A

0
/A

N
0

M
C

LR
/V

P
P
/R

E
3

R
B

3/
P

W
M

3

R
B

7/
K

B
I3

/P
G

D
R

B
6/

K
B

I2
/P

G
C

R
B

5/
K

B
I1

/P
W

M
4/

P
G

M
(2

)
R

B
4

/K
B

I0
/P

W
M

5
N

C
R

C
6/

T
X

/C
K

/S
S

R
C

5/
IN

T
2

/S
C

K
(1

) /S
C

L(1
)

R
C

4/
IN

T
1

/S
D

I(1
) /S

D
A

(1
)

R
D

3/
S

C
K

/S
C

L
R

D
2/

S
D

I/
S

D
A

R
D

1/
S

D
O

R
D

0/
T

0C
K

I/
T

5
C

K
I

R
C

3/
T

0C
K

I(1
) /T

5C
K

I(1
) /I

N
T

0
R

C
2/

C
C

P
1

/F
LT

B
R

C
1/

T
1O

S
I/

C
C

P
2/

F
LT

A
R

C
0/

T
1O

S
O

/T
1C

K
I

OSC2/CLKO/RA6
OSC1/CLKI/RA7
VSS

AVDD

VDD

RE2/AN8
RE1/AN7
RE0/AN6
RA5/AN5/LVDIN
RA4/AN4/CAP3/QEB

RC7/RX/DT/SDO
RD4/FLTA(3)

RD5/PWM4(4)

RD6/PWM6
RD7/PWM7

VSS
VDD

AVDD

RB0/PWM0
RB1/PWM1
RB2/PWM2

PIC18F4431

AVSS

Note 1: RC3 is the alternate pin for T0CKI/T5CKI; RC4 is the alternate pin for SDI/SDA; RC5 is the alternate pin
for SCK/SCL.

2: For the QFN package, it is recommended that the bottom pad be connected to VSS.

3: RD4 is the alternate pin for FLTA.

4: RD5 is the alternate pin for PWM4.
 2010 Microchip Technology Inc. DS39616D-page 7

PIC18F2331/2431/4331/4431
3.0 OSCILLATOR
CONFIGURATIONS

3.1 Oscillator Types

The PIC18F2331/2431/4331/4431 devices can be
operated in 10 different oscillator modes. The user can
program the Configuration bits, FOSC<3:0>, in
Configuration Register 1H to select one of these
10 modes:

1. LP Low-Power Crystal

2. XT Crystal/Resonator

3. HS High-Speed Crystal/Resonator

4. HSPLL High-Speed Crystal/Resonator
with PLL Enabled

5. RC External Resistor/Capacitor with
FOSC/4 Output on RA6

6. RCIO External Resistor/Capacitor with
I/O on RA6

7. INTIO1 Internal Oscillator with FOSC/4
Output on RA6 and I/O on RA7

8. INTIO2 Internal Oscillator with I/O on RA6
and RA7

9. EC External Clock with FOSC/4 Output

10. ECIO External Clock with I/O on RA6

3.2 Crystal Oscillator/Ceramic
Resonators

In XT, LP, HS or HSPLL Oscillator modes, a crystal or
ceramic resonator is connected to the OSC1 and
OSC2 pins to establish oscillation. Figure 3-1 shows
the pin connections.

The oscillator design requires the use of a parallel
resonant crystal.

FIGURE 3-1: CRYSTAL/CERAMIC
RESONATOR OPERATION
(XT, LP, HS OR HSPLL
CONFIGURATION)

TABLE 3-1: CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Note: Use of a series resonant crystal may give
a frequency out of the crystal
manufacturers’ specifications.

Typical Capacitor Values Used:

Mode Freq OSC1 OSC2

XT 455 kHz
2.0 MHz
4.0 MHz

56 pF
47 pF
33 pF

56 pF
47 pF
33 pF

HS 8.0 MHz
16.0 MHz

27 pF
22 pF

27 pF
22 pF

Capacitor values are for design guidance only.

These capacitors were tested with the resonators
listed below for basic start-up and operation. These
values are not optimized.

Different capacitor values may be required to produce
acceptable oscillator operation. The user should test
the performance of the oscillator over the expected
VDD and temperature range for the application.

See the notes following Table 3-2 for additional
information.

Resonators Used:

455 kHz 4.0 MHz

2.0 MHz 8.0 MHz

16.0 MHz

Note 1: See Table 3-1 and Table 3-2 for initial values of
C1 and C2.

2: A series resistor (RS) may be required for AT
strip resonant crystals.

3: RF varies with the oscillator mode chosen.

C1(1)

C2(1)

XTAL

OSC2

OSC1

RF(3)

Sleep

To

Logic

PIC18FXXXX
RS(2)

Internal
 2010 Microchip Technology Inc. DS39616D-page 29

PIC18F2331/2431/4331/4431
3.6 Internal Oscillator Block

The PIC18F2331/2431/4331/4431 devices include an
internal oscillator block, which generates two different
clock signals; either can be used as the system’s clock
source. This can eliminate the need for external
oscillator circuits on the OSC1 and/or OSC2 pins.

The main output (INTOSC) is an 8 MHz clock source,
which can be used to directly drive the system clock. It
also drives a postscaler, which can provide a range of
clock frequencies from 125 kHz to 4 MHz. The
INTOSC output is enabled when a system clock
frequency from 125 kHz to 8 MHz is selected.

The other clock source is the internal RC oscillator
(INTRC), which provides a 31 kHz output. The INTRC
oscillator is enabled by selecting the internal oscillator
block as the system clock source, or when any of the
following are enabled:

• Power-up Timer

• Fail-Safe Clock Monitor

• Watchdog Timer

• Two-Speed Start-up

These features are discussed in greater detail in
Section 23.0 “Special Features of the CPU”.

The clock source frequency (INTOSC direct, INTRC
direct or INTOSC postscaler) is selected by configuring
the IRCF bits of the OSCCON register (Register 3-2).

3.6.1 INTIO MODES

Using the internal oscillator as the clock source can
eliminate the need for up to two external oscillator pins,
which can then be used for digital I/O. Two distinct
configurations are available:

• In INTIO1 mode, the OSC2 pin outputs FOSC/4,
while OSC1 functions as RA7 for digital input and
output.

• In INTIO2 mode, OSC1 functions as RA7 and
OSC2 functions as RA6, both for digital input and
output.

3.6.2 INTRC OUTPUT FREQUENCY

The internal oscillator block is calibrated at the factory
to produce an INTOSC output frequency of 8.0 MHz.
This changes the frequency of the INTRC source from
its nominal 31.25 kHz. Peripherals and features that
depend on the INTRC source will be affected by this
shift in frequency.

3.6.3 OSCTUNE REGISTER

The internal oscillator’s output has been calibrated at the
factory, but can be adjusted in the user’s application.
This is done by writing to the OSCTUNE register
(Register 3-1). Each increment may adjust the FRC
frequency by varying amounts and may not be mono-
tonic. The next closest frequency may be multiple steps
apart.

When the OSCTUNE register is modified, the INTOSC
and INTRC frequencies will begin shifting to the new
frequency. Code execution continues during this shift.
There is no indication that the shift has occurred. Oper-
ation of features that depend on the INTRC clock
source frequency, such as the WDT, Fail-Safe Clock
Monitor and peripherals, will also be affected by the
change in frequency.

3.6.4 INTOSC FREQUENCY DRIFT

The factory calibrates the internal oscillator block out-
put (INTOSC) for 8 MHz. This frequency, however, may
drift as the VDD or temperature changes, which can
affect the controller operation in a variety of ways.

The INTOSC frequency can be adjusted by modifying
the value in the OSCTUNE register. This has no effect
on the INTRC clock source frequency.

Tuning the INTOSC source requires knowing when to
make an adjustment, in which direction it should be
made, and in some cases, how large a change is
needed. Three compensation techniques are discussed
in Section 3.6.4.1 “Compensating with the
EUSART”, Section 3.6.4.2 “Compensating with the
Timers” and Section 3.6.4.3 “Compensating with the
CCP Module in Capture Mode”, but other techniques
may be used.
DS39616D-page 32  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431
5.0 RESET

The PIC18F2331/2431/4331/4431 devices differentiate
between various kinds of Reset:

a) Power-on Reset (POR)

b) MCLR Reset during normal operation

c) MCLR Reset during Sleep

d) Watchdog Timer (WDT) Reset (during
execution)

e) Programmable Brown-out Reset (BOR)

f) RESET Instruction

g) Stack Full Reset

h) Stack Underflow Reset

This section discusses Resets generated by MCLR,
POR and BOR, and the operation of the various start-
up timers. Stack Reset events are covered in
Section 6.1.2.4 “Stack Full/Underflow Resets”.
WDT Resets are covered in Section 23.2 “Watchdog
Timer (WDT)”.

A simplified block diagram of the On-Chip Reset Circuit
is shown in Figure 5-1.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

S

R Q

External Reset

MCLR

VDD

OSC1

WDT
Time-out

VDD Rise
Detect

OST/PWRT

INTRC

POR Pulse

OST

10-Bit Ripple Counter

PWRT

Chip_Reset

11-Bit Ripple Counter

Enable OST(1)

Enable PWRT

Note 1: See Table 5-1 for time-out situations.

Brown-out
Reset

BOREN

RESET
Instruction

Stack
Pointer

Stack Full/Underflow Reset

Sleep
()_IDLE

1024 Cycles

65.5 ms32 s

MCLRE
 2010 Microchip Technology Inc. DS39616D-page 47

PIC18F2331/2431/4331/4431
6.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack (TOS) is readable and writable,
the ability to push values onto the stack and pull values
off the stack without disturbing normal program execu-
tion is a desirable option. To push the current PC value
onto the stack, a PUSH instruction can be executed.
This will increment the Stack Pointer and load the
current PC value onto the stack. TOSU, TOSH and
TOSL can then be modified to place data or a return
address on the stack.

The PUSH instruction places the current PC value onto
the stack. This increments the Stack Pointer and loads
the current PC value onto the stack. The POP instruc-
tion discards the current TOS by decrementing the
Stack Pointer. The previous value pushed onto the
stack then becomes the TOS value.

6.1.2.4 Stack Full/Underflow Resets

These Resets are enabled by programming the
STVREN bit in Configuration Register 4L. When the
STVREN bit is cleared, a full or underflow condition will
set the appropriate STKFUL or STKUNF bit, but not
cause a device Reset. When the STVREN bit is set, a
full or underflow condition will set the appropriate
STKFUL or STKUNF bit and then cause a device
Reset. The STKFUL or STKUNF bits are cleared by the
user software or a Power-on Reset.

6.1.3 FAST REGISTER STACK

A Fast Register Stack is provided for the STATUS,
WREG and BSR registers, to provide a “fast return”
option for interrupts. The stack for each register is only
one level deep and is neither readable nor writable. It is
loaded with the current value of the corresponding
register when the processor vectors for an interrupt. All
interrupt sources will push values into the stack
registers.

The values in the registers are then loaded back into
their associated registers if the RETFIE, FAST instruc-
tion is used to return from the interrupt. If both low and
high-priority interrupts are enabled, the stack registers
cannot be used reliably to return from low-priority inter-
rupts. If a high-priority interrupt occurs while servicing a
low-priority interrupt, the stack register values stored by
the low-priority interrupt will be overwritten. In these
cases, users must save the key registers in software
during a low-priority interrupt.

If interrupt priority is not used, all interrupts may use the
Fast Register Stack for returns from interrupt. If no
interrupts are used, the Fast Register Stack can be
used to restore the STATUS, WREG and BSR registers
at the end of a subroutine call. To use the Fast Register
Stack for a subroutine call, a CALL label, FAST
instruction must be executed to save the STATUS,
WREG and BSR registers to the Fast Register Stack. A
RETURN, FAST instruction is then executed to restore
these registers from the Fast Register Stack.

Example 6-1 shows a source code example that uses
the Fast Register Stack during a subroutine call and
return.

EXAMPLE 6-1: FAST REGISTER STACK
CODE EXAMPLE

6.1.4 LOOK-UP TABLES IN PROGRAM
MEMORY

There may be programming situations that require the
creation of data structures, or look-up tables, in
program memory. For PIC18 devices, look-up tables
can be implemented two ways:

• Computed GOTO

• Table Reads

6.1.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset
to the program counter. An example is shown in
Example 6-2.

A look-up table can be formed with an ADDWF PCL
instruction and a group of RETLW nn instructions. The
W register is loaded with an offset into the table before
executing a call to that table. The first instruction of the
called routine is the ADDWF PCL instruction. The next
instruction executed will be one of the RETLW nn
instructions that returns the value “nn” to the calling
function.

The offset value (in WREG) specifies the number of
bytes that the program counter should advance and
should be multiples of 2 (LSb = 0).

In this method, only one data byte can be stored in
each instruction location and room on the return
address stack is required.

EXAMPLE 6-2: COMPUTED GOTO USING
AN OFFSET VALUE

CALL SUB1, FAST ;STATUS, WREG, BSR
;SAVED IN FAST REGISTER
;STACK




SUB1

RETURN FAST ;RESTORE VALUES SAVED

;IN FAST REGISTER STACK

MOVFW OFFSET
CALL TABLE

ORG 0xnn00
TABLE ADDWF PCL

RETLW 0xnn
RETLW 0xnn
RETLW 0xnn

.

.

.

DS39616D-page 64  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431
8.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and
erasable during normal operation over the entire VDD

range.

A read from program memory is executed on one byte
at a time. A write to program memory is executed on
blocks of 8 bytes at a time. Program memory is erased
in blocks of 64 bytes at a time. A bulk erase operation
may not be issued from user code.

While writing or erasing program memory, instruction
fetches cease until the operation is complete. The
program memory cannot be accessed during the write
or erase, therefore, code cannot execute. An internal
programming timer terminates program memory writes
and erases.

A value written to program memory does not need to be
a valid instruction. Executing a program memory
location that forms an invalid instruction results in a
NOP.

8.1 Table Reads and Table Writes

In order to read and write program memory, there are
two operations that allow the processor to move bytes
between the program memory space and the data
RAM:

• Table Read (TBLRD)

• Table Write (TBLWT)

The program memory space is 16 bits wide, while the
data RAM space is 8 bits wide. Table reads and table
writes move data between these two memory spaces
through an 8-bit register (TABLAT).

Table read operations retrieve data from program
memory and place it into TABLAT in the data RAM
space. Figure 8-1 shows the operation of a table read
with program memory and data RAM.

Table write operations store data from TABLAT in the
data memory space into holding registers in program
memory. The procedure to write the contents of the
holding registers into program memory is detailed in
Section 8.5 “Writing to Flash Program Memory”.
Figure 8-2 shows the operation of a table write with
program memory and data RAM.

Table operations work with byte entities. A table block
containing data, rather than program instructions, is not
required to be word-aligned. Therefore, a table block can
start and end at any byte address. If a table write is being
used to write executable code into program memory,
program instructions will need to be word-aligned,
(TBLPTRL<0> = 0).

FIGURE 8-1: TABLE READ OPERATION

Table Pointer(1)

Table Latch (8-bit)

Program Memory

TBLPTRH TBLPTRL

TABLAT

TBLPTRU

Instruction: TBLRD*

Note 1: The Table Pointer points to a byte in program memory.

Program Memory
(TBLPTR)
 2010 Microchip Technology Inc. DS39616D-page 85

PIC18F2331/2431/4331/4431
8.5.1 FLASH PROGRAM MEMORY WRITE
SEQUENCE

The sequence of events for programming an internal
program memory location should be:

1. Read 64 bytes into RAM.

2. Update data values in RAM as necessary.

3. Load Table Pointer with address being erased.

4. Do the row erase procedure (see Section 8.4.1
“Flash Program Memory Erase Sequence”).

5. Load Table Pointer with the address of the first
byte being written.

6. Write the first 8 bytes into the holding registers
with auto-increment.

7. Set the EECON1 register for the write operation
by doing the following:

• Set the EEPGD bit to point to program
memory

• Clear the CFGS bit to access program
memory

• Set the WREN bit to enable byte writes

8. Disable interrupts.

9. Write 55h to EECON2.

10. Write 0AAh to EECON2.

11. Set the WR bit. This will begin the write cycle.

12. The CPU will stall for the duration of the write
(about 2 ms using internal timer).

13. Execute a NOP.

14. Re-enable interrupts.

15. Repeat Steps 6-14 seven times to write
64 bytes.

16. Verify the memory (table read).

This procedure will require about 18 ms to update one
row of 64 bytes of memory. An example of the required
code is given in Example 8-3.
DS39616D-page 92  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431
REGISTER 10-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — PTIE IC3DRIE IC2QEIE IC1IE TMR5IE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 Unimplemented: Read as ‘0’

bit 4 PTIE: PWM Time Base Interrupt Enable bit

1 = PTIF enabled
0 = PTIF disabled

bit 3 IC3DRIE: IC3 Interrupt Enable/Direction Change Interrupt Enable bit

IC3 Enabled (CAP3CON<3:0>):
1 = IC3 interrupt enabled
0 = IC3 interrupt disabled

QEI Enabled (QEIM<2:0>):
1 = Change of direction interrupt enabled
0 = Change of direction interrupt disabled

bit 2 IC2QEIE: IC2 Interrupt Flag/QEI Interrupt Flag Enable bit

IC2 Enabled (CAP2CON<3:0>):
1 = IC2 interrupt enabled)
0 = IC2 interrupt disabled

QEI Enabled (QEIM<2:0>):
1 = QEI interrupt enabled
0 = QEI interrupt disabled

bit 1 IC1IE: IC1 Interrupt Enable bit

1 = IC1 interrupt enabled
0 = IC1 interrupt disabled

bit 0 TMR5IE: Timer5 Interrupt Enable bit

1 = Timer5 interrupt enabled
0 = Timer5 interrupt disabled
 2010 Microchip Technology Inc. DS39616D-page 107

PIC18F2331/2431/4331/4431
14.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt.
The Timer2 output signal (TMR2 to PR2 match) pro-
vides the input for the 4-bit output counter/postscaler.
This counter generates the TMR2 match interrupt flag
which is latched in TMR2IF (PIR1<1>).

The interrupt is enabled by setting the TMR2 Match
Interrupt Enable bit, TMR2IE (PIE1<1>). A range of
16 postscale options (from 1:1 through 1:16 inclusive)
can be selected with the postscaler control bits,
T2OUTPS<3:0> (T2CON<6:3>).

14.3 Output of TMR2

The unscaled output of TMR2 is available primarily to
the CCP modules, where it is used as a time base for
operations in PWM mode. Timer2 can be optionally
used as the shift clock source for the SSP module
operating in SPI mode.

For additional information, see Section 19.0
“Synchronous Serial Port (SSP) Module”.

FIGURE 14-1: TIMER2 BLOCK DIAGRAM

TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset Values

on Page:

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 54

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 57

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 57

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 57

TMR2 Timer2 Register 55

T2CON — TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 55

PR2 Timer2 Period Register 55

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.

Comparator

TMR2 Output

TMR2

Postscaler

Prescaler
PR2

2

FOSC/4

1:1 to 1:16

1:1, 1:4, 1:16

4
T2OUTPS<3:0>

T2CKPS<1:0>

Set TMR2IF

Internal Data Bus
8

Reset
TMR2/PR2

88

(to PWM or SSP)

Match
 2010 Microchip Technology Inc. DS39616D-page 137

PIC18F2331/2431/4331/4431
16.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the
16-bit value of the TMR1 register when an event
occurs on pin RC2/CCP1. An event is defined as
one of the following:

• every falling edge

• every rising edge

• every 4th rising edge

• every 16th rising edge

The event is selected by control bits, CCP1M<3:0>
(CCP1CON<3:0>). When a capture is made, the
interrupt request flag bit, CCP1IF (PIR1<2>), is set; it
must be cleared in software. If another capture occurs
before the value in register CCPR1 is read, the old
captured value is overwritten by the new captured value.

16.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be
configured as an input by setting the TRISC<2> bit.

16.3.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchro-
nized Counter mode to be used with the capture
feature. In Asynchronous Counter mode, the capture
operation may not work.

16.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture
interrupt may be generated. The user should keep bit,
CCP1IE (PIE1<2>), clear to avoid false interrupts and
should clear the flag bit, CCP1IF, following any such
change in operating mode.

16.3.4 CCP PRESCALER

There are four prescaler settings specified by bits
CCP1M<3:0>. Whenever the CCP module is turned off,
or the CCP module is not in Capture mode, the
prescaler counter is cleared. This means that any
Reset will clear the prescaler counter.

Switching from one capture prescaler to another may
generate an interrupt. Also, the prescaler counter will
not be cleared, therefore, the first capture may be from
a non-zero prescaler. Example 16-1 shows the recom-
mended method for switching between capture
prescalers. This example also clears the prescaler
counter and will not generate the “false” interrupt.

EXAMPLE 16-1: CHANGING BETWEEN
CAPTURE PRESCALERS

FIGURE 16-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

Note: If the RC2/CCP1 pin is configured as an
output, a write to the port can cause a
capture condition.

CLRF CCP1CON ; Turn CCP module off
MOVLW NEW_CAPT_PS ; Load WREG with the

; new prescaler mode
; value and CCP ON

MOVWF CCP1CON ; Load CCP1CON with
; this value

CCPR1H CCPR1L

TMR1H TMR1L

Set CCP1IF Flag bit

Qs
CCP1CON<3:0>

CCP1 Pin

Prescaler
 1, 4, 16

and
Edge Detect

TMR1
Enable

CCPR2H CCPR2L

TMR1H TMR1L

Set CCP2IF Flag bit

Qs
CCP2CON<3:0>

CCP2 Pin

Prescaler
 1, 4, 16

TMR1
Enable

and
Edge Detect
DS39616D-page 146  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431
When in Counter mode, the counter must be
configured as the synchronous counter only
(T5SYNC = 0). When configured in Asynchronous
mode, the IC module will not work properly.

17.1.1 EDGE CAPTURE MODE

In this mode, the value of the time base is captured
either on every rising edge, every falling edge, every
4th rising edge, or every 16th rising edge. The edge
present on the input capture pin (CAP1, CAP2 or
CAP3) is sampled by the synchronizing latch. The
signal is used to load the Input Capture Buffer (ICxBUF
register) on the following Q1 clock (see Figure 17-4).
Consequently, Timer5 is either reset to ‘0’ (Q1
immediately following the capture event) or left free
running, depending on the setting of the Capture Reset
Enable bit, CAPxREN, in the CAPxCON register.

FIGURE 17-4: EDGE CAPTURE MODE TIMING

Note 1: Input capture prescalers are reset
(cleared) when the input capture module
is disabled (CAPxM = 0000).

2: When the Input Capture mode is
changed, without first disabling the
module and entering the new Input Cap-
ture mode, a false interrupt (or Special
Event Trigger on IC1) may be generated.
The user should either: (1) disable the
input capture before entering another
mode, or (2) disable IC interrupts to avoid
false interrupts during IC mode changes.

3: During IC mode changes, the prescaler
count will not be cleared, therefore, the
first capture in the new IC mode may be
from the non-zero prescaler.

Note: On the first capture edge following the
setting of the Input Capture mode (i.e.,
MOVWF CAP1CON), Timer5 contents are
always captured into the corresponding
Input Capture Buffer (i.e., CAPxBUF).
Timer5 can optionally be reset; however,
this is dependent on the setting of the
Capture Reset Enable bit, CAPxREN (see
Figure 17-4).

CAP1 Pin(2)

0000 0002 0000 0001 0002TMR5(1)

CAP1BUF(3) 0002

001400130012 0015

ABCD

0001

0003

TMR5 Reset(4)

MOVWF CAP1CON BCF CAP1CON, CAP1REN

Note 5

0016

Instruction

Note 1: TMR5 is a synchronous time base input to the input capture; prescaler = 1:1. It increments on the Q1 rising edge.

2: IC1 is configured in Edge Capture mode (CAP1M<3:0> = 0010) with the time base reset upon edge capture
(CAP1REN = 1) and no noise filter.

3: TMR5 value is latched by CAP1BUF on TCY. In the event that a write to TMR5 coincides with an input capture event,
the write will always take precedence. All Input Capture Buffers, CAP1BUF, CAP2BUF and CAP3BUF, are updated
with the incremented value of the time base on the next TCY clock edge when the capture event takes place (see
Note 4 when Reset occurs).

4: TMR5 Reset is normally an asynchronous Reset signal to TMR5. When used with the input capture, it is active
immediately after the time base value is captured.

5: TMR5 Reset pulse is disabled by clearing the CAP1REN bit (e.g., BCF CAP1CON, CAP1REN).

OSC

Execution

Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4Q1Q2 Q3 Q4 Q1 Q2Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4
DS39616D-page 156  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431
18.4.4 INTERRUPTS IN DOUBLE UPDATE
MODE

This mode is available in Continuous Up/Down Count
mode. In the Double Update mode (PTMOD<1:0> = 11),
an interrupt event is generated each time the PTMR
register is equal to zero and each time the PTMR
matches with PTPER register. Figure 18-8 shows the
interrupts in Continuous Up/Down Count mode with
double updates.

The Double Update mode provides two additional
functions to the user in Center-Aligned mode.

1. The control loop bandwidth is doubled because
the PWM duty cycles can be updated twice per
period.

2. Asymmetrical center-aligned PWM waveforms
can be generated, which are useful for
minimizing output waveform distortion in certain
motor control applications.

FIGURE 18-8: PWM TIME BASE INTERRUPT, CONTINUOUS UP/DOWN COUNT MODE WITH
DOUBLE UPDATES

Note: Do not change the PTMOD bits while
PTEN is active; it will yield unexpected
results. To change the PWM Timer mode
of operation, first clear the PTEN bit, load
the PTMOD bits with the required data
and then set PTEN.

Q2Q1 Q3 Q4Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4

1 1

OSC1

PTMR 3FDh 3FEh 3FFh 3FEh 3FDh

1

Case 1: PTMR Counting Upwards

Q2Q1 Q3 Q4Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4 Q2Q1 Q3 Q4

1 1

OSC1

PTMR 002h 001h 000h 001h 002h

1

Case 2: PTMR Counting Downwards

2

Note 1: Interrupt flag bit, PTIF, is sampled here (every Q1).

2: PWM Time Base Period register, PTPER, is loaded with the value, 3FFh, for this example.

1

1

PTIF bit

PTMR_INT_REQ

PTIF bit

PTMR_INT_REQ

A: PRESCALER = 1:1

PTDIR bit

PTDIR bit
DS39616D-page 184  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431
TABLE 20-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reset Values

on Page:

INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 54

PIR1 — ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF 57

PIE1 — ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE 57

IPR1 — ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP 57

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 56

TXREG EUSART Transmit Register 56

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 56

BAUDCON — RCIDL — SCKP BRG16 — WUE ABDEN 56

SPBRGH EUSART Baud Rate Generator Register High Byte 56

SPBRG EUSART Baud Rate Generator Register Low Byte 56

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for asynchronous transmission.
DS39616D-page 228  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431
20.3.5 BREAK CHARACTER SEQUENCE

The Enhanced USART module has the capability of
sending the special Break character sequences that
are required by the LIN/J2602 bus standard. The Break
character transmit consists of a Start bit, followed by
twelve ‘0’ bits and a Stop bit. The Frame Break charac-
ter is sent whenever the SENDB and TXEN bits
(TXSTA<3> and TXSTA<5>) are set while the Transmit
Shift register is loaded with data. Note that the value of
data written to TXREG will be ignored and all ‘0’s will
be transmitted.

The SENDB bit is automatically reset by hardware after
the corresponding Stop bit is sent. This allows the user
to preload the transmit FIFO with the next transmit byte
following the Break character (typically, the Sync
character in the LIN/J2602 specification).

Note that the data value written to the TXREG for the
Break character is ignored. The write simply serves the
purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is
active or Idle, just as it does during normal transmis-
sion. See Figure 20-9 for the timing of the Break
character sequence.

20.3.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame
header made up of a Break, followed by an Auto-Baud
Sync byte. This sequence is typical of a LIN/J2602 bus
master.

1. Configure the EUSART for the desired mode.

2. Set the TXEN and SENDB bits to setup the
Break character.

3. Load the TXREG with a dummy character to
initiate transmission (the value is ignored).

4. Write ‘55h’ to TXREG to load the Sync character
into the transmit FIFO buffer.

5. After the Break has been sent, the SENDB bit is
reset by hardware. The Sync character now
transmits in the preconfigured mode.

When the TXREG becomes empty, as indicated by the
TXIF, the next data byte can be written to TXREG.

20.3.6 RECEIVING A BREAK CHARACTER

The Enhanced USART module can receive a Break
character in two ways.

The first method forces configuration of the baud rate
at a frequency of 9/13 of the typical speed. This allows
for the Stop bit transition to be at the correct sampling
location (13 bits for Break versus Start bit and 8 data
bits for typical data).

The second method uses the auto-wake-up feature
described in Section 20.3.4 “Auto-Wake-up on Sync
Break Character”. By enabling this feature, the
EUSART will sample the next two transitions on RX/DT,
cause an RCIF interrupt and receive the next data byte
followed by another interrupt.

Note that following a Break character, the user will
typically want to enable the Auto-Baud Rate Detect
feature. For both methods, the user can set the ABD bit
before placing the EUSART in its Sleep mode.

FIGURE 20-9: SEND BREAK CHARACTER SEQUENCE

Write to TXREG

BRG Output
(Shift Clock)

Start Bit Bit 0 Bit 1 Bit 11 Stop Bit

Break

TXIF bit
(Interrupt Reg. Flag)

TX (Pin)

TRMT bit
(Transmit Shift

Reg. Empty Flag)

SENDB
(Transmit Shift

Reg. Empty Flag)

SENDB sampled here Auto-Cleared

Dummy Write
DS39616D-page 232  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431
REGISTER 23-6: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1 U-0 U-0 U-0 U-0 R/P-1 U-0 R/P-1

DEBUG — — — — LVP — STVREN

bit 7 bit 0

Legend:

R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘0’

-n = Value when device is unprogrammed U = Unchanged from programmed state

bit 7 DEBUG: Background Debugger Enable bit

1 = Background debugger is disabled; RB6 and RB7 are configured as general purpose I/O pins
0 = Background debugger is enabled; RB6 and RB7 are dedicated to In-Circuit Debug

bit 6-3 Unimplemented: Read as ‘0’

bit 2 LVP: Single-Supply ICSP™ Enable bit

1 = Single-Supply ICSP is enabled
0 = Single-Supply ICSP is disabled

bit 1 Unimplemented: Read as ‘0’

bit 0 STVREN: Stack Full/Underflow Reset Enable bit

1 = Stack full/underflow will cause Reset
0 = Stack full/underflow will not cause Reset
 2010 Microchip Technology Inc. DS39616D-page 269

PIC18F2331/2431/4331/4431
23.2 Watchdog Timer (WDT)

For PIC18F2331/2431/4331/4431 devices, the WDT is
driven by the INTRC source. When the WDT is
enabled, the clock source is also enabled. The nominal
WDT period is 4 ms and has the same stability as the
INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit
postscaler. Any output of the WDT postscaler is
selected by a multiplexer, controlled by bits in
Configuration Register 2H (see Register 23-3).
Available periods range from 4 ms to 131.072 seconds
(2.18 minutes). The WDT and postscaler are cleared
when any of the following events occur: execute a
SLEEP or CLRWDT instruction, the IRCF bits
(OSCCON<6:4>) are changed or a clock failure has
occurred (see Section 23.4.1 “FSCM and the
Watchdog Timer”).

Adjustments to the internal oscillator clock period using
the OSCTUNE register also affect the period of the
WDT by the same factor. For example, if the INTRC
period is increased by 3%, then the WDT period is
increased by 3%.

23.2.1 CONTROL REGISTER

Register 23-15 shows the WDTCON register. This is a
readable and writable register. The SWDTEN bit allows
software to enable or disable the WDT, but only if the
Configuration bit has disabled the WDT. The WDTW bit
is a read-only bit that indicates when the WDT count is
in the fourth quadrant (i.e., when the 8-bit WDT value is
b’11000000’ or greater).

FIGURE 23-1: WDT BLOCK DIAGRAM

Note 1: The CLRWDT and SLEEP instructions
clear the WDT and postscaler counts
when executed.

2: Changing the setting of the IRCF bits
(OSCCON<6:4>) clears the WDT and
postscaler counts.

3: When a CLRWDT instruction is executed,
the postscaler count will be cleared.

4: If WINEN = 0, then CLRWDT must be exe-
cuted only when WDTW = 1; otherwise, a
device Reset will result.

INTRC Source

WDT

Wake-up

Reset

WDT

 WDT Counter

Programmable Postscaler
1:1 to 1:32,768

Enable WDT

WDTPS<3:0>

SWDTEN
WDTEN

CLRWDT

4

from Sleep

Reset

All Device Resets

Sleep

INTRC Control

125

Change on IRCF bits
DS39616D-page 274  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431

COMF Complement f

Syntax: [label] COMF f [,d [,a]]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f)  dest

Status Affected: N, Z

Encoding: 0001 11da ffff ffff

Description: The contents of register, ‘f’, are comple-
mented. If ‘d’ is ‘0’, the result is stored in
W. If ‘d’ is ‘1’, the result is stored back in
register, ‘f’. If ‘a’ is 0, the Access Bank
will be selected, overriding the BSR
value. If ‘a’ = 1, then the bank will be
selected as per the BSR value.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: COMF REG, W

Before Instruction
REG = 0x13

After Instruction
REG = 0x13
W = 0xEC

CPFSEQ Compare f with W, Skip if f = W

Syntax: [label] CPFSEQ f [,a]

Operands: 0  f  255
a  [0,1]

Operation: (f) – (W),
skip if (f) = (W)
(unsigned comparison)

Status Affected: None

Encoding: 0110 001a ffff ffff

Description: Compares the contents of data memory
location, ‘f’, to the contents of W by
performing an unsigned subtraction.
If ‘f’ = W, then the fetched instruction is
discarded and a NOP is executed
instead, making this a two-cycle
instruction. If ‘a’ is ‘0’, the Access Bank
will be selected, overriding the BSR
value. If ‘a’ = 1, then the bank will be
selected as per the BSR value.

Words: 1

Cycles: 1(2)
Note: 3 cycles if skip and followed

by a 2-word instruction.

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

No
operation

If skip:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

If skip and followed by 2-word instruction:

Q1 Q2 Q3 Q4

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

No
operation

Example: HERE CPFSEQ REG
NEQUAL :
EQUAL :

Before Instruction
PC Address = HERE
W = ?
REG = ?

After Instruction
If REG = W;

PC = Address (EQUAL)
If REG  W;

PC = Address (NEQUAL)
DS39616D-page 300  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431

DAW Decimal Adjust W Register

Syntax: [label] DAW

Operands: None

Operation: If [W<3:0> > 9] or [DC = 1] then,
(W<3:0>) + 6  W<3:0>;
else,
(W<3:0>)  W<3:0>;

If [W<7:4> 9] or [C = 1] then,
(W<7:4>) + 6  W<7:4>;
else,
(W<7:4>)  W<7:4>

Status Affected: C, DC

Encoding: 0000 0000 0000 0111

Description: DAW adjusts the 8-bit value in W,
resulting from the earlier addition of two
variables (each in packed BCD format)
and produces a correct packed BCD
result. The Carry bit may be set by DAW
regardless of its setting prior to the DAW
instruction.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register W

Process
Data

Write
W

Example 1: DAW

Before Instruction
W = 0xA5
C = 0
DC = 0

After Instruction
W = 0x05
C = 1
DC = 0

Example 2:

Before Instruction
W = 0xCE
C = 0
DC = 0

After Instruction
W = 0x34
C = 1
DC = 0

DECF Decrement f

Syntax: [label] DECF f [,d [,a]]

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – 1  dest

Status Affected: C, DC, N, OV, Z

Encoding: 0000 01da ffff ffff

Description: Decrement register, ‘f’,. If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register, ‘f’. If ‘a’
is ‘0’, the Access Bank will be selected,
overriding the BSR value. If ‘a’ = 1, then
the bank will be selected as per the
BSR value.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example: DECF CNT,

Before Instruction
CNT = 0x01
Z = 0

After Instruction
CNT = 0x00
Z = 1
DS39616D-page 302  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431

MOVFF Move f to f

Syntax: [label] MOVFF fs,fd

Operands: 0  fs  4095
0  fd  4095

Operation: (fs)  fd

Status Affected: None

Encoding:
1st word (source)
2nd word (destin.)

1100
1111

ffff
ffff

ffff
ffff

ffffs
ffffd

Description: The contents of source register, ‘fs’, are
moved to destination register, ‘fd’.
Location of source, ‘fs’, can be any-
where in the 4096-byte data space
(000h to FFFh) and location of destina-
tion, ‘fd’, can also be anywhere from
000h to FFFh.
Either source or destination can be W
(a useful special situation).
MOVFF is particularly useful for
transferring a data memory location to a
peripheral register (such as the transmit
buffer or an I/O port).
The MOVFF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.
The MOVFF instruction should not be
used to modify interrupt settings while
any interrupt is enabled (see the note
on page 97).

Words: 2

Cycles: 2 (3)

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

(src)

Process
Data

No
operation

Decode No
operation

No dummy
read

No
operation

Write
register ‘f’

(dest)

Example: MOVFF REG1, REG2

Before Instruction
REG1 = 0x33
REG2 = 0x11

After Instruction
REG1 = 0x33
REG2 = 0x33

MOVLB Move Literal to Low Nibble in BSR

Syntax: [label] MOVLB k

Operands: 0  k  255

Operation: k  BSR

Status Affected: None

Encoding: 0000 0001 0000 kkkk

Description: The 8-bit literal, ‘k’, is loaded into the
Bank Select Register (BSR).

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal
‘k’

Process
Data

Write
literal ‘k’ to

BSR

Example: MOVLB 5

Before Instruction
BSR register = 0x02

After Instruction
BSR register = 0x05
DS39616D-page 308  2010 Microchip Technology Inc.

PIC18F2331/2431/4331/4431
26.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 26-5: EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)

TABLE 26-4: EXTERNAL CLOCK TIMING REQUIREMENTS
Param.

No.
Symbol Characteristic Min Max Units Conditions

1A FOSC External CLKI Frequency(1) DC 40 MHz EC, ECIO

Oscillator Frequency(1) DC 4 MHz RC osc

0.1 4 MHz XT osc

4 25 MHz HS osc

4 10 MHz HS + PLL osc

5 200 kHz LP Osc mode

1 TOSC External CLKI Period(1) 25 — ns EC, ECIO

Oscillator Period(1) 250 — ns RC osc

250 10,000 ns XT osc

25
100

250
250

ns
ns

HS osc
HS + PLL osc

25 — s LP osc

2 TCY Instruction Cycle Time(1) 100 — ns TCY = 4/FOSC

3 TosL,
TosH

External Clock in (OSC1)
High or Low Time

30 — ns XT osc

2.5 — s LP osc

10 — ns HS osc

4 TosR,
TosF

External Clock in (OSC1)
Rise or Fall Time

— 20 ns XT osc

— 50 ns LP osc

— 7.5 ns HS osc

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations
except PLL. All specified values are based on characterization data for that particular oscillator type under
standard operating conditions with the device executing code. Exceeding these specified limits may result
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.

OSC1

CLKO

Q4 Q1 Q2 Q3 Q4 Q1

1

2

3 3 4 4
DS39616D-page 346  2010 Microchip Technology Inc.

