

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2431t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.4 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). Figure 6-5 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0'.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction 2 in Figure 6-5 shows how the instruction, 'GOTO 00006h', is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. **Section 24.0 "Instruction Set Summary"** provides further details of the instruction set.

6.4.1 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the four MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence, immediately after the first word, the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 shows how this works.

Note: For information on two-word instructions in the extended instruction set, see Section 24.2 "Instruction Set".

			LSB = 1	LSB = 0	Word Address \downarrow
	Program N	1emory			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	000006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

FIGURE 6-5: INSTRUCTIONS IN PROGRAM MEMORY

EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

CASE 1:						
Object Code	Source Code					
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?				
1100 0001 0010 0011	MOVFF REG1, REG2	; No, skip this word				
1111 0100 0101 0110		; Execute this word as a NOP				
0010 0100 0000 0000	ADDWF REG3	; continue code				
CASE 2:						
Object Code	Source Code					
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?				
1100 0001 0010 0011	MOVFF REG1, REG2	; Yes, execute this word				
1111 0100 0101 0110		; 2nd word of instruction				
0010 0100 0000 0000	ADDWF REG3	; continue code				

6.6 STATUS Register

The STATUS register, shown in Register 6-2, contains the arithmetic status of the ALU. The STATUS register can be the operand for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register. For other instructions not affecting any Status bits, see Table 24-2.

Note: The C and DC bits operate as a Borrow and Digit Borrow bit respectively, in subtraction.

REGISTER 6-2: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—	—	—	Ν	OV	Z	DC ⁽¹⁾	C ⁽²⁾		
bit 7							bit 0		
r									
Legend:									
R = Reada	ible bit	W = Writable I	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 7-5	Unimplemen	ted: Read as 'o)'						
Dit 4	This bit is use (ALU MSB = 1	ed for signed ari	ithmetic (2's co	omplement). It i	ndicates wheth	ner the result wa	as negative		
	1 = Result wa 0 = Result wa	is negative is positive							
bit 3	OV: Overflow	bit							
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude which causes the sign bit (bit 7) to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation)								
bit 2	Z : Zero bit								
	1 = The result 0 = The result	t of an arithmet t of an arithmet	ic or logic ope ic or logic ope	ration is zero ration is not zer	0				
bit 1	DC: Digit Car	ry/Borrow bit ⁽¹⁾							
	For ADDWF ,	ADDLW, SUBL	w and SUBWF i	instructions:					
	1 = A carry-out	ut from the 4th I	low-order bit o	f the result occu	urred				
hit 0	0 = NO carry/Borry	$\frac{1}{2}$ bit(2)		of the result					
DILU	For ADDWF ,	ADDLW, SUBL	w and SUBWF i	nstructions:					
	1 = A carry-ou	ut from the Mos	t Significant b	it of the result o	ccurred				
	0 = No carry-0	out from the Mo	ost Significant	bit of the result	occurred				
Note 1:	For Borrow, the po operand. For rotat	blarity is reverse te (RRF , RLF)	ed. A subtractions, th	on is executed b is bit is loaded v	by adding the 2 with either bit 4	's complement of or bit 3 of the s	of the second ource register.		
2:	For Borrow, the person second operand. of the source regi	olarity is revers For rotate (RRF ster.	ed. A subtract , RLF) instru	ion is executed ctions, this bit is	by adding the loaded with e	2's complemer ither the high o	nt of the r low-order bit		

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0		
EEPG	D CFGS	_	FREE	WRERR ⁽¹⁾	WREN	WR	RD		
bit 7			I				bit 0		
Legend:		S = Settable b	oit (cannot be o	cleared in softwa	are)				
R = Read	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 7 EEPGD: Flash Program or Data EEPROM Memory Select bit 1 = Access Flash program memory 0 = Access data EEPROM memory									
bit 6	CFGS: Flash	Program/Data	EEPROM or C	Configuration Se	elect bit				
	 1 = Access Configuration registers 0 = Access Flash program or data EEPROM memory 								
bit 5	Unimplemen	Unimplemented: Read as '0'							
bit 4	FREE: Flash	Row Erase Ena	able bit						
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write only 								
bit 3	WRERR: Flas	sh Program/Da	ta EEPROM E	rror Flag bit ⁽¹⁾					
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation, or an improper write attempt) 0 = The write operation completed 								
bit 2	WREN: Flash	Program/Data	EEPROM Wr	ite Enable bit					
	1 = Allows w 0 = Inhibits w	rite cycles to Fl vrite cycles to F	ash program/c lash program/c	lata EEPROM data EEPROM					
bit 1	WR: Write Co	ontrol bit							
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete 								
bit 0	RD: Read Co	ntrol bit							
	1 = Initiates a be set (no 0 = Does not	 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.) 0 = Does not initiate an EEPROM read 							
Noto 1		accura the EE		S hits are not a	loored This a	lowe tracing of	the error		

REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
EEADR	EEPROM Address Register								
EEDATA	EEPROM Data Register								
EECON2	EEPROM Control Register 2 (not a physical register)								
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	56
IPR2	OSCFIP	—	—	EEIP	—	LVDIP	—	CCP2IP	57
PIR2	OSCFIF	_	—	EEIF	—	LVDIF	—	CCP2IF	57
PIE2	OSCFIE	_	_	EEIE		LVDIE	_	CCP2IE	57

TABLE 7-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	PTIF	IC3DRIF	IC2QEIF	IC1IF	TMR5IF
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unk	nown
DIT 7-5	Unimpleme	nted: Read as	0				
bit 4	PIIF: PWM	Time Base Inte	rrupt bit				
	1 = PWM ti	me base match	ed the value in	the PIPER re	egisters. Interri	upt is issued a	ccording to the
	0 = PWM ti	me base has no	it matched the	value in the PTI	PFR registers		
bit 3	IC3DRIF: IC	3 Interrupt Flag	Direction Cha	nge Interrupt Fla	ag bit		
Sit C	IC3 Enabled	I (CAP3CON<3)	:()>):	igo intorrapt i k			
	1 = TMR5	alue was captu	red by the activ	/e edge on CAF	93 input (must	be cleared in s	oftware)
	0 = TMR5 c	apture has not	occurred				
	QEI Enabled	<u>d (QEIM<2:0>):</u>					
	1 = Directio	n of rotation has	s changed (mu	st be cleared in	software)		
hit O				Elea bit			
DIL Z				Flag bit			
	1 = TMR5	/alue was captu	<u>.02).</u> red by the activ	ve edae on CAF	2 input (must	be cleared in s	oftware)
	0 = TMR5 c	capture has not	occurred	e euge en er a	pat (aet		0.1110.0)
	QEI Enabled	d (QEIM<2:0>):					
	1 = The QE	I position count	ter has reache	d the MAXCNT	value, or the	index pulse, IN	NDX, has been
		d. Depends on I	the QEI operation	ing mode enable	ed. Must be cl	eared in softwa	re.
	detecte	d	lei nas not rea				e nas not been
bit 1	IC1 Enabled	- L(CAP1CON<3)	·0>).				
	1 = TMR5 v	alue was captu	red by the activ	/e edge on CAF	1 input (must	be cleared in s	oftware)
	0 = TMR5 c	apture has not	occurred	-			-
	QEI Enabled	<u>I (QEIM<2:0>), \</u>	/elocity Measur	ement Mode En	abled (VELM =	= 0 in QEICON	<u>register):</u>
	1 = Timer5	value was capti	ured by the act	ive velocity edg	e (based on P	HA or PHB inp	out). CAP1REN
	0 = Timer5	value was not c	aptured by the	active velocity	edae	ware.	
bit 0		ner5 Interrunt F	lan hit	active velocity			
	1 = Timer5	time base mate	hed the PR5 v	alue (must be cl	eared in softw	are)	
	0 = Timer5	time base did n	ot match the Pl	R5 value			

REGISTER 10-6: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3

11.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 11-5). The pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

Note:	On	а	Power-on	Reset,	these	pins	are		
	configured as digital inputs.								

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

External interrupts, IN0, INT1 and INT2, are placed on RC3, RC4 and RC5 pins, respectively.

SSP alternate interface pins, SDI/SDA, SCK/SCL and SDO are placed on RC4, RC5 and RC7 pins, respectively.

These pins are multiplexed on PORTC and PORTD by using the SSPMX bit in the CONFIG3L register.

EUSART pins RX/DT and TX/CK are placed on RC7 and RC6 pins, respectively.

The alternate Timer5 external clock input, T5CKI, and the alternate TMR0 external clock input, T0CKI, are placed on RC3 and are multiplexed with the PORTD (RD0) pin using the EXCLKMX Configuration bit in <u>CONFIG3H. Fault</u> inputs to the 14-bit PWM module, FLTA and FLTB, are located on RC1 and RC2. FLTA input on RC1 is multiplexed with RD4 using the FLTAMX bit.

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPL	E 11-3:	INITIALIZING PORTC
CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

NOTES:

17.1 Input Capture

The Input Capture (IC) submodule implements the following features:

- Three channels of independent input capture (16-bits/channel) on the CAP1, CAP2 and CAP3 pins
- Edge-Trigger, Period or Pulse-Width Measurement Operating modes for each channel
- Programmable prescaler on every input capture channel
- Special Event Trigger output (IC1 only)
- · Selectable noise filters on each capture input

Input Channel 1 (IC1) includes a Special Event Trigger that can be configured for use in Velocity Measurement mode. Its block diagram is shown in Figure 17-2. IC2 and IC3 are similar, but lack the Special Event Trigger features or additional velocity measurement logic. A representative block diagram is shown in Figure 17-3. Please note that the time base is Timer5.

FIGURE 17-2: INPUT CAPTURE BLOCK DIAGRAM FOR IC1

17.2 Quadrature Encoder Interface

The Quadrature Encoder Interface (QEI) decodes speed and motion sensor information. It can be used in any application that uses a quadrature encoder for feedback. The interface implements these features:

- Three QEI inputs: two phase signals (QEA and QEB) and one index signal (INDX)
- Direction of movement detection with a direction change interrupt (IC3DRIF)
- 16-bit up/down position counter
- Standard and High-Precision Position Tracking modes
- Two Position Update modes (x2 and x4)
- Velocity measurement with a programmable postscaler for high-speed velocity measurement
- Position counter interrupt (IC2QEIF in the PIR3 register)
- Velocity control interrupt (IC1IF in the PIR3 register)

The QEI submodule has three main components: the QEI control logic block, the position counter and velocity postscaler.

The QEI control logic detects the leading edge on the QEA or QEB phase input pins and generates the count pulse, which is sent to the position counter logic. It also samples the index input signal (INDX) and generates the direction of the rotation signal (up/down) and the velocity event signals.

The position counter acts as an integrator for tracking distance traveled. The QEA and QEB input edges serve as the stimulus to create the input clock which advances the Position Counter register (POSCNT). The register is incremented on either the QEA input edge, or the QEA and QEB input edges, depending on the operating mode. It is reset either by a rollover on match to the Period register, MAXCNT, or on the external index pulse input signal (INDX). An interrupt is generated on a Reset of POSCNT if the position counter interrupt is enabled.

The velocity postscaler down samples the velocity pulses used to increment the velocity counter by a specified ratio. It essentially divides down the number of velocity pulses to one output per so many inputs, preserving the pulse width in the process.

A simplified block-diagram of the QEI module is shown in Figure 17-8.

FIGURE 17-8: QEI BLOCK DIAGRAM

NOTES:

REGISTER 10-3. FWWCONU. FWWCONTROL REGISTER U	REGISTER 18-3:	PWMCON0: PWM CONTROL REGISTER 0
---	----------------	--

U-0	R/W-1 ⁽¹⁾	R/W-1 ⁽¹⁾	R/W-1 ⁽¹⁾	R/W-0	R/W-0	R/W-0	R/W-0
	PWMEN2	PWMEN1	PWMEN0	PMOD3 ⁽³⁾	PMOD2	PMOD1	PMOD0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'							
bit 6-4	PWMEN<2:0>: PWM Module Enable bits ⁽¹⁾							
	111 = All odd PWM I/O pins are enabled for PWM output ⁽²⁾							
	110 = PWM1, PWM3 pins are enabled for PWM output							
	101 = All PWM I/O pins are enabled for PWM output ⁽²⁾							
	100 = PWM0, PWM1, PWM2, PWM3, PWM4 and PWM5 pins are enabled for PWM output							
	011 = PWM0, PWM1, PWM2 and PWM3 I/O pins are enabled for PWM output							
	010 = PWMU and PWM1 pins are enabled for PWM output							
	0.01 = PWM module is disabled; all PWM UQ nins are general purpose UQ							
h it 0 0	DNOD 200 - DWW Output Deir Made bite							
DII 3-0	PMOD<3:0>: PWM Output Pair Mode bits							
	For PMODU: 1 = DN(M I/C) min pair (DN(MC) DN(M1) is in the Independent mode							
	I = PWWI I/O pin pair (PWW0, PWW1) is in the Independent mode							
	6 - FWWW/O pin pail (FWWWO, FWWWT) is in the Complementary mode							
	<u>FULEWIDDT.</u> 1 - DW/M I/O nin nair (DW/M2, DW/M3) is in the Independent mode							
	$\alpha = PWM I/O pin pair (PWM2, PWM3) is in the Complementary mode$							
	For PMOD2							
	1 = PWM I/O pin pair (PWM4_PWM5) is in the Independent mode							
	0 = PWM I/O pin pair (PWM4, PWM5) is in the Complementary mode							
	For PMOD3 ⁽³⁾							
	1 = PWM I/O pin pair (PWM6, PWM7) is in the Independent mode							
	0 = PWM I/O pin pair (PWM6, PWM7) is in the Complementary mode							
Note 1:	Reset condition of the PWMEN bits depends on the PWMPIN Configuration bit.							
2:	When PWMEN<2:0> = 101, PWM<5:0> outputs are enabled for PIC18F2331/2431 devices; PWM<7:0>							

outputs are enabled for PIC18F4331/4431 devices. When PWMEN<2:0> = 111, PWM Outputs 1, 3 and 5 are enabled in PIC18F2331/2431 devices; PWM Outputs 1, 3, 5 and 7 are enabled in PIC18F4331/4431 devices.

3: Unimplemented in PIC18F2331/2431 devices; maintain these bits clear.

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit. rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	nown		
bit 7	SMP: Sample	e bit					
	1 = Input data	<u>iode:</u> a sampled at er	nd of data outp	ut time			
	0 = Input data	a sampled at m	iddle of data o	utput time			
	SPI Slave mo	<u>ode:</u>					
hit 6		e cleared when	SPI IS USED IN t bit (Eiguro 10	Slave mode.	and Eiguro 10	1 1)	
DILO	SPI mode. Cl	KP = 0:	t bit (Figure 18	-2, Figure 19-0	and Figure 19	-4)	
	1 = Data tran	smitted on risin	g edge of SCk	<			
	0 = Data tran	smitted on fallir	ng edge of SCI	K			
	1 = Data tran	<u>KP = 1:</u> smitted on fallir	ng edge of SCI	K			
	0 = Data tran	smitted on risin	g edge of SCk	K			
	<u>I²C™ mode:</u>	he maintained	alaar				
hit 5	D/A Data/Ad	$\frac{1}{1}$	ode only)				
bit 5	1 = Indicates	that the last by	te received or	transmitted wa	is data		
	0 = Indicates	that the last by	te received or	transmitted wa	is address		
bit 4	P: Stop bit (I ²	C mode only)					
	I his bit is cle cleared.	ared when the	SSP module is	s disabled or wi	hen the Start bi	t is detected las	st; SSPEN is
	1 = Indicates 0 = Stop bit w	that a Stop bit l	has been dete d last	cted last (this b	oit is '0' on Res	et)	
bit 3	S: Start bit (I ²	C mode only)					
	This bit is cle	ared when the	SSP module is	disabled or wl	hen the Stop bi	t is detected las	st; SSPEN is
	cleared.	that a Start hit	has haan data	cted last (this h	nit is '0' on Res	et)	
	0 = Start bit v	vas not detected	d last				
bit 2	R/W : Read/W	/rite Informatior	n bit (I ² C mode	e only)			
	This bit holds	the R/W bit inf	ormation follow	ving the last ad	ldress match. T	his bit is only v	alid from the
	1 = Read		ian bit, Stop bi				
	0 = Write						
bit 1	UA: Update A	Address bit (10-	Bit I ² C mode of	only)			
	1 = Indicates 0 = Address	that the user no does not need t	eeds to update	e the address in	n the SSPADD	register	
bit 0	BF: Buffer Fu	Ill Status bit					
	Receive (SPI	and I ² C modes	<u>8):</u> BLIF is full				
	1 = Receive	not complete, SSPE	SPBUF is emp	oty			
	<u>Transmit (I²C</u>	mode only):					
	1 = Iransmit 0 = Transmit	in progress, SS complete, SSP	BUF is full				

20.3.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 20-5. The data is received on the RC7/RX/DT/SDO pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an Asynchronous Reception:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- 6. Flag bit, RCIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCIE, was set.
- Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

20.3.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- 8. Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

ASYNCHRONOUS RECEPTION

To set up an Asynchronous Transmission:

- Initialize the SPBRG register for the appropriate 1. baud rate. If a high-speed baud rate is desired, set bit, BRGH (see Section 20.2 "EUSART Baud Rate Generator (BRG)").
- Enable the asynchronous serial port by clearing 2. bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, TXIE.
- If 9-bit transmission is desired, set transmit bit, 4 TX9. Can be used as address/data bit.

- Enable the transmission by setting bit, TXEN, 5. which will also set bit, TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Load data to the TXREG register (starts transmission).

If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Start bit Start Start RX (Pin) ′bit 0 🛛 (bit 7/8/ ' Stop Stop Stop bit bit bit 1 bit bit 0 bit 7/8 bit 7/8/ bit Rcv Shift Reg → Rcv Buffer Reg Word 2 RCREG Word 1 RCREG Read Rcv Buffer Reg RCREG RCIF (Interrupt Flag) OERR bit CREN Note: This timing diagram shows three words appearing on the RX input. The RCREG (Receive Buffer) is read after the third word, causing the OERR (Overrun) bit to be set.

TABLE 20-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	57
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	57
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	57
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	56
RCREG	EUSART Re	ceive Register	ſ						56
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	56
BAUDCON	—	RCIDL	_	SCKP	BRG16		WUE	ABDEN	56
SPBRGH	BRGH EUSART Baud Rate Generator Register High Byte								56
SPBRG	EUSART Ba	ud Rate Gene	rator Regis	ster Low B	yte				56

Legend: — = unimplemented, read as '0'. Shaded cells are not used for asynchronous reception.

FIGURE 20-6:

FIGURE 20-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 20-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	57
PIE1		ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	57
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	57
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	56
TXREG	EUSART T	ransmit Regis	ster						56
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	56
BAUDCON	—	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	56
SPBRGH	BRGH EUSART Baud Rate Generator Register High Byte							56	
SPBRG EUSART Baud Rate Generator Register Low Byte								56	

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

21.1 Configuring the A/D Converter

The A/D Converter has two types of conversions, two modes of operation and eight different Sequencing modes. These features are controlled by the ACONV bit (ADCON0<5>), ACSCH bit (ADCON0<4>) and ACMOD<1:0> bits (ADCON0<3:2>). In addition, the A/D channels are divided into four groups as defined in the ADCHS register. Table 21-1 shows the sequence configurations as controlled by the ACSCH and ACMOD<1:0> bits.

21.1.1 CONVERSION TYPE

Two types of conversions exist in the high-speed 10-bit A/D Converter module that are selected using the ACONV bit. Single-Shot mode allows a single conversion or sequence to be enabled when ACONV = 0. At the end of the sequence, the GO/\overline{DONE} bit will be automatically cleared and the interrupt flag, ADIF, will be set. When using Single-Shot mode and configured for Simultaneous mode, STNM2, acquisition time must be used to ensure proper conversion of the analog input signals.

Continuous Loop mode allows the defined sequence to be executed in a continuous loop when ACONV = 1. In this mode, either the user <u>can</u> trigger the start of conversion by setting the GO/DONE bit, or one of the A/D triggers can start the conversion. The interrupt flag, ADIF, is set based on the configuration of the bits, ADRS<1:0> (ADCON3<7:6>). In Simultaneous modes, STNM1 and STNM2 acquisition time must be configured to ensure proper conversion of the analog input signals.

21.1.2 CONVERSION MODE

The ACSCH bit (ADCON0<4>) controls how many channels are used in the configured sequence. When clear, the A/D is configured for single channel conversion and will convert the group selected by the ACMOD<1:0> bits and the channel selected by the GxSEL<1:0> bits (ADCHS register). When ACSCH = 1, the A/D is configured for multiple channel conversion and the sequence is defined by ACMOD<1:0>.

TABLE 21-1: AUTO-CONVERSION SEQUENCE (CONFIGURATIONS
--	----------------

Mode	ACSCH	ACMOD<1:0>	Description
Multi-Channel Sequential Mode 1 (SEQM1)	1	00	Groups A and B are sampled and converted sequentially.
Multi-Channel Sequential Mode 2 (SEQM2)	1	01	Groups A, B, C and D are sampled and converted sequentially.
Multi-Channel Simultaneous Mode 1 (STNM1)	1	10	Groups A and B are sampled simultaneously and converted sequentially.
Multi-Channel Simultaneous Mode 2 (STNM2)	1	11	Groups A and B are sampled simultaneously, then converted sequentially. Then, Group C and D are sampled simultaneously, then converted sequentially.
Single Channel Mode 1 (SCM1)	0	00	Group A is sampled and converted.
Single Channel Mode 2 (SCM2)	0	01	Group B is sampled and converted.
Single Channel Mode 3 (SCM3)	0	10	Group C is sampled and converted.
Single Channel Mode 4 (SCM4)	0	11	Group D is sampled and converted.

TABLE 24-2: PIC18FXXXX INSTRUCTION SET

Mnemonic,		Description	Quality	16-Bit Instruction Word				Status	Neter
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED F	ILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
		Borrow							
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	1, 2
		Borrow							
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS		•					
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү		ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A			Single byte	40	_	ns	(Note 1)
72	TscL	SCK Input Low Time Continuous		1.25 Tcy + 30	_	ns	
72A		Single byt		40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SCK Ec	20	—	ns		
73A	Тв2в	Last Clock Edge of Byte 1 to the First Cloc	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edg	40	—	ns		
75	TdoR	SDO Data Output Rise Time	PIC18FXX31	—	25	ns	
			PIC18LFXX31	—	45	ns	
76	TdoF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance	10	50	ns		
80	TscH2doV,	SDO Data Output Valid after SCK Edge	PIC18FXX31	—	50	ns	
	TscL2doV		PIC18LFXX31	—	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 Tcy + 40	—	ns	

TABLE 26-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE, CKE = 0)

Note 1: Requires the use of Parameter 73A.

2: Only if Parameter 71A and 72A are used.

MOVLW)9
MOVWF)9
MULLW	10
MULWF31	10
NEGF	11
NOP	11
POP	12
PUSH	12
RCALL	13
Read-Modify-Write Operations	33
RESET	13
RETFIE	14
RETLW	14
RETURN	15
RLCF	15
RLNCF 31	16
RRCE 31	16
RRNCE 31	17
SETE 31	17
SI FED 31	18
SUBEWB 31	18
SUDI WD	10
SUDW	10
	19
SUBWFB	20
Summary	55
Summary Table	36
SWAPF	20
TBLRD	21
TBLWT	22
TSTFSZ	23
XORLW	23
XORWF	24
INTCON Register	
RBIF Bit11	16
RBIF Bit	16 99
RBIF Bit	16 99
RBIF Bit	16 99 32
RBIF Bit	16 99 32 32
RBIF Bit	16 99 32 32 32
RBIF Bit	16 99 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32 32 74
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 37 4 37 53 46 16
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 346 12 12 31
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 32 32 32 32
RBIF Bit	16 99 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 346 16 12 12 12 12 149 9
RBIF Bit	16 99 32 33 46 16 12 12 13 149 97 12
RBIF Bit	16 99 32 33 40 32 33 41 42 43 43 43 44 43 44 43 44 43 44 44 45 46 47 47 48 49 412 412
RBIF Bit	16 99 32 33 40 32 32 33 43 43 43 43 43 44 43 44 44 45 46 4
RBIF Bit	16 39 32 33 34 35 36 16 12 31 32 33 34 35 36 37 36 37 38 39 31 32 32 33 34 35 36
RBIF Bit	16 39 32
RBIF Bit	16 99 32 41 42 42 43 44 45 46 47 48 49 40 41 42 43 44 45 46
RBIF Bit. 11 INTCON Registers 9 Inter-Integrated Circuit (I ² C). See I ² C Mode. 3 Internal Oscillator Block 3 Adjustment 3 INTIO Modes 3 INTRC Output Frequency 3 OSCTUNE Register 3 Internal RC Oscillator 3 Use with WDT 27 Internet Address 36 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt-on-Change (RB7:RB4) 11 INTX Pin 11 PORTB, Interrupt-on-Change 11 TMR0 11 TMR1 Overflow 13 TMR2 to PR2 Match (PWM) 136, 14 Interrupts 9 Context Saving, During 11 Interrupts, Enable Bits 14 CCP1 Enable (CCP1IE Bit) 14 Interrupts, Flag Bits 14 CCP1IF Flag (CCP1IF Bit) 14 CCP1IF Flag (CCP1IF Bit) 14 CCP1IF Flag (CCP1IF Bit) 14	16 99 32 332 32 32 32 332 74 73 36 16 12 12 12 12 14 97 12 46 46 7 7 14 14
RBIF Bit. 11 INTCON Registers 9 Inter-Integrated Circuit (I ² C). See I ² C Mode. 1 Internal Oscillator Block 3 Adjustment 3 INTIO Modes 3 INTRC Output Frequency 3 OSCTUNE Register 3 Internal RC Oscillator 27 Use with WDT 27 Internet Address 36 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt-on-Change (RB7:RB4) 11 INTX Pin 11 PORTB, Interrupt-on-Change 11 TMR0 11 TMR1 Overflow 13 TMR2 to PR2 Match (PWM) 136, 14 Interrupts, Enable Bits 26 COP1 Enable (CCP1IE Bit) 14 Interrupts, Flag Bits 14 CCP1 Flag (CCP1IF Bit) 14 CCP2IF Flag (CCP2IF Bit) 14 Interrupts Observed (CCP2IF D22) 14	16 99 32
RBIF Bit. 11 INTCON Registers 2 Inter-Integrated Circuit (I ² C). See I ² C Mode. 3 Internal Oscillator Block 3 Adjustment 3 INTIO Modes 3 INTRC Output Frequency 3 OSCTUNE Register 3 Internal RC Oscillator 27 Use with WDT 27 Internet Address 38 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt-on-Change (RB7:RB4) 11 INTX Pin 11 PORTB, Interrupt-on-Change 11 TMR0 11 TMR1 Overflow 13 TMR2 to PR2 Match (PWM) 136, 14 Interrupts, Enable Bits 26 Context Saving, During 11 Interrupts, Flag Bits 14 CCP1 Flag (CCP1IF Bit) 14 CCP2IF Flag (CCP1IF Bit) 14 CCP2IF Flag (CCP2IF Bit) 14 Interrupt-on-Change (RB7:RB4) Flag 14	16 9 32 33 33 33 33 33 34 36
RBIF Bit. 11 INTCON Registers 2 Inter-Integrated Circuit (I ² C). See I ² C Mode. 3 Internal Oscillator Block 3 Adjustment 3 INTIO Modes 3 INTRC Output Frequency 3 OSCTUNE Register 3 Internal RC Oscillator 27 Use with WDT 27 Internet Address 36 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt-on-Change (RB7:RB4) 11 INTX Pin 11 PORTB, Interrupt-on-Change 11 TMR0 11 TMR1 Overflow 13 TMR2 to PR2 Match (PWM) 136, 14 Interrupts, Enable Bits 26 Context Saving, During 11 Interrupts, Enable Bits 14 CCP1 Enable (CCP1IE Bit) 14 Interrupts, Flag Bits 14 CCP1IF Flag (CCP1IF Bit) 14 CCP2IF Flag (CCP1IF Bit) 14 Interrupt-on-Change (RB7:RB4) Flag 14 Interrupt-On-Change (RB7:RB4) Flag	16 9 32 32 32 74 33 23 74 36 16 12 12 12 14 46 46 47 16 47 16
RBIF Bit. 11 INTCON Registers 2 Inter-Integrated Circuit (I ² C). See I ² C Mode. 3 Internal Oscillator Block 3 Adjustment 3 INTIO Modes 3 INTRC Output Frequency 3 OSCTUNE Register 3 Internal RC Oscillator 27 Use with WDT 27 Internet Address 36 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt-on-Change (RB7:RB4) 11 INTX Pin 11 PORTB, Interrupt-on-Change 11 TMR0 11 TMR1 Overflow 13 TMR2 to PR2 Match (PWM) 136, 14 Interrupts, Enable Bits 20 COntext Saving, During 11 Interrupts, Flag Bits 14 CCP1 Flag (CCP1IF Bit) 14 CCP2IF Flag (CCP1IF Bit) 14 Interrupt-on-Change (RB7:RB4) Flag 14 Interrupt-on-Change (RB7:RB4) Flag 14 Interrupts, Enable Bits 14 CCP1 Flag (CCP1IF Bit)	16 99 32 332 332 346 162 121 131 140 141 141 142 143 144 145 146 147 140 141 142 143 144 145 146 147 148 149 149 141 142 143 144 145 146 147 148 149 141 142 143 144 145 146 147 148 149 141 141 141 142 143 144 144<
RBIF Bit. 11 INTCON Registers 2 Inter-Integrated Circuit (I ² C). See I ² C Mode. 3 Internal Oscillator Block 3 Adjustment 3 INTIO Modes 3 INTRC Output Frequency 3 OSCTUNE Register 3 Internal RC Oscillator 27 Use with WDT 27 Internet Address 36 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt-on-Change (RB7:RB4) 11 INTX Pin 11 PORTB, Interrupt-on-Change 11 TMR0 11 TMR1 Overflow 13 TMR2 to PR2 Match (PWM) 136, 14 Interrupts, Enable Bits CCP1 Enable (CCP1IE Bit) CCP1 Enable (CCP1IF Bit) 14 CCP11F Flag (CCP1IF Bit) 14 CCP2IF Flag (CCP1IF Bit) 14 Interrupt-on-Change (RB7:RB4) Flag 11 Interrupts, Flag Bits 14 CCP1IF Flag (CCP1IF Bit)<	16 9 32 32 332 437 332 747 364 16 12 12 12 12 149 14 16 147 16 16 16 17 16 16 16 10 16
RBIF Bit. 11 INTCON Registers 2 Inter-Integrated Circuit (I ² C). See I ² C Mode. 3 Internal Oscillator Block 3 Adjustment 3 INTIO Modes 3 INTRC Output Frequency 3 OSCTUNE Register 3 Internal RC Oscillator 27 Use with WDT 27 Internet Address 36 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt Sources 26 Capture Complete (CCP) 14 Interrupt-on-Change (RB7:RB4) 11 INTX Pin 11 PORTB, Interrupt-on-Change 11 TMR0 11 TMR1 Overflow 13 TMR1 Overflow 13 TMR2 to PR2 Match (PWM) 136, 14 Interrupts, Enable Bits 20 COntext Saving, During 11 Interrupts, Flag Bits 14 CCP1 Flag (CCP1IF Bit) 14 CCP2IF Flag (CCP2IF Bit) 14 Interrupt-on-Change (RB7:RB4) Flag 11	16 9 32 32 33 33 33 34 6 12 12 13 19 74 76 6 6 147 16 06

I ² C Mode	
Operation	212
I ² C Mode (SSP)	
Addressing	213
Associated Registers	216
Master Mode	
Mode Selection	
Multi-Master Mode	216
Operation	212
Reception	
Slave Mode	212
SCL and SDA Pins	212
Transmission	215
L	
LFSR	307
Low-Voltage Detect	257
Applications	261
Associated Registers	
Characteristics	342
Current Consumption	259
Effects of a Reset	261
Operation	259
Operation During Sleep	261
Setup	259
Start-up Time	

	Cool our Valtage De	toot
LVD.	See Low-vollage De	leci.

Μ

Master Clear (MCLR)	49
Memory Organization	61
Data Memory	67
Program Memory	61
Memory Programming Requirements	341
MFM	
Input Capture	
Edge Capture Mode	156
Entering and Timing	159
IC Interrupts	159
Pulse-Width Measurement Mode	157
Special Event Trigger (CAP1 Only)	160
State Change	158
Time Base Reset Summary	160
Timer5 Reset	159
Input Capture (IC) Submode	153
Input Capture Mode	
Period Measurement Mode	157
Noise Filters	169
Microchip Internet Web Site	387
Migration From Baseline to Enhanced Devices	376
Migration From High-End to Enhanced Devices	377
Migration From Mid-Range to Enhanced Devices	377
Motion Feedback Module (MFM)	151
Associated Registers	171
Summary of Features	151
MOVF	307
MOVFF	308
MOVLB	308
MOVLW	309
MOVWF	309
MPLAB ASM30 Assembler, Linker, Librarian	326
MPLAB Integrated Development	
Environment Software	325
MPLAB PM3 Device Programmer	328
MPLAB REAL ICE In-Circuit Emulator System	327