

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

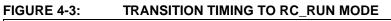
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

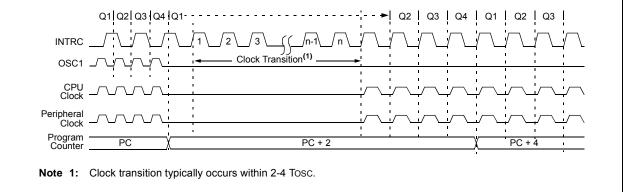
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

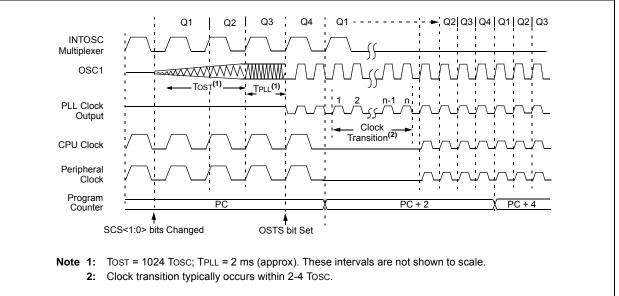
E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2431t-i-so


Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

If the IRCF bits and the INTSRC bit are all clear, the INTOSC output is not enabled and the IOFS bit will remain clear; there will be no indication of the current clock source. The INTRC source is providing the device clocks.


If the IRCF bits are changed from all clear (thus, enabling the INTOSC output), or if INTSRC is set, the IOFS bit becomes set after the INTOSC output becomes stable. Clocks to the device continue while the INTOSC source stabilizes, after an interval of TIOBST.

If the IRCF bits were previously at a non-zero value, or if INTSRC was set before setting SCS1 and the INTOSC source was already stable, the IOFS bit will remain set. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC multiplexer while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the IOFS bit is cleared, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

NOTES:

7.7 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if either of these mechanisms are enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to Section 23.0 "Special Features of the CPU" for additional information.

7.8 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM memory are blocked during the Power-up Timer period (TPWRT, Parameter 33).

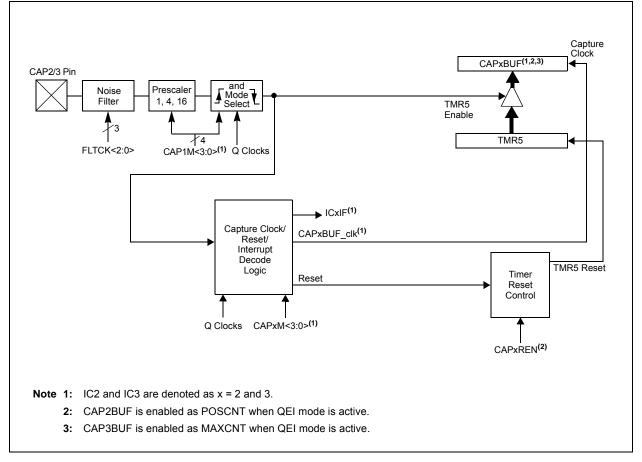
The write/initiate sequence, and the WREN bit together, help prevent an accidental write during Brown-out Reset, power glitch or software malfunction.

7.9 Using the Data EEPROM

The data EEPROM is a high-endurance, byteaddressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). Frequently changing values will typically be updated more often than Specification D124. If this is not the case, an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 7-3.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See Specification D124.


	CLRF			Start at address 0
	BCF			Set for memory
	BCF	EECON1, EEPGD	;	Set for Data EEPROM
	BCF	INTCON, GIE	;	Disable interrupts
	BSF	EECON1, WREN	;	Enable writes
LOOP			;	Loop to refresh array
	BSF	EECON1, RD	;	Read current address
	MOVLW	55h	;	
	MOVWF	EECON2	;	Write 55h
Required	MOVLW	0AAh	;	
Sequence	MOVWF	EECON2	;	Write OAAh
	BSF	EECON1, WR	;	Set WR bit to begin write
	BTFSC	EECON1, WR	;	Wait for write to complete
	BRA	\$-2		
	INCFSZ	EEADR, F	;	Increment address
	BRA	LOOP	;	Not zero, do it again
	BCF	EECON1, WREN	;	Disable writes
	BSF	INTCON, GIE	;	Enable interrupts

EXAMPLE 7-3: DATA EEPROM REFRESH ROUTINE

REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0
OSCFIF	_		EEIF	_	LVDIF		CCP2IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	known
bit 7		scillator Fail Inter	1 0				<i></i>
		oscillator failed, o clock operating	clock input has	s changed to IN	HOSC (must	be cleared in so	oftware)
bit 6-5		ented: Read as '0	,				
bit 4	•	ROM or Flash Wr		nterrupt Flag b	it		
		ite operation is co	•				
	0 = The wr	ite operation is no	ot complete or	has not been s	tarted		
bit 3	Unimpleme	ented: Read as '0	,				
bit 2		/-Voltage Detect I					
		pply voltage has f			• •	st be cleared in	software)
		pply voltage is gro		specified LVD	voltage		
bit 1	•	ented: Read as '0					
bit 0		CP2 Interrupt Flag	g bit				
	Capture mo	<u>lae:</u> 1 register capture	occurred (mi	ist be cleared ii	n software)		
		R1 register captul			i continarc)		
	Compare m	iode:					
		1 register compar R1 register comp			leared in soft	ware)	
	PWM mode						
	Not used in	this mode.					

17.1.5 ENTERING INPUT CAPTURE MODE AND CAPTURE TIMING

The following is a summary of functional operation upon entering any of the Input Capture modes:

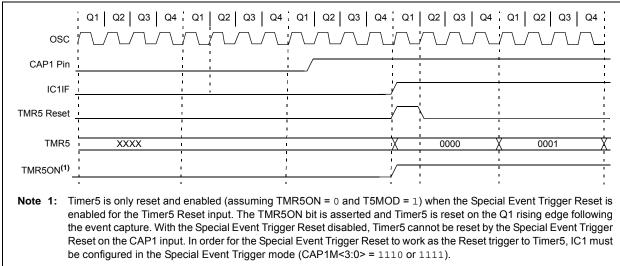
- After the module is configured for one of the Capture modes by setting the Capture Mode Select bits (CAPxM<3:0>), the first detected edge captures the Timer5 value and stores it in the CAPxBUF register. The timer is then reset (depending on the setting of CAPxREN bit) and starts to increment according to its settings (see Figure 17-4, Figure 17-5 and Figure 17-6).
- 2. On all edges, the capture logic performs the following:
 - a) Input Capture mode is decoded and the active edge is identified.
 - b) The CAPxREN bit is checked to determine whether Timer5 is reset or not.
 - c) On every active edge, the Timer5 value is recorded in the Input Capture Buffer (CAPxBUF).
 - Reset Timer5 after capturing the value of the timer when the CAPxREN bit is enabled. Timer5 is reset on every active capture edge in this case.
 - e) On all continuing capture edge events, repeat steps (a) through (d) until the operational mode is terminated, either by user firmware, POR or BOR.
 - f) The timer value is not affected when switching into and out of various Input Capture modes.

17.1.6 TIMER5 RESET

Every input capture trigger can optionally reset (TMR5). The Capture Reset Enable bit, CAPxREN, gates the automatic Reset of the time base of the capture event with this enable Reset signal. All capture events reset the selected timer when CAPxREN is set. Resets are disabled when CAPxREN is cleared (see Figure 17-4, Figure 17-5 and Figure 17-6).

Note:	The	CAPxREN	bit	has	no	effect	in
	Pulse	e-Width Mea	sure	ment	mod	le.	

17.1.7 IC INTERRUPTS


There are four operating modes for which the IC module can generate an interrupt and set one of the Interrupt Capture Flag bits (IC1IF, IC2QEIF or IC3DRIF). The interrupt flag that is set depends on the channel in which the event occurs. The modes are:

- Edge Capture (CAPxM<3:0> = 0001, 0010, 0011 or 0100)
- Period Measurement Event (CAPxM<3:0> = 0101)
- Pulse-Width Measurement Event (CAPxM<3:0> = 0110 or 0111)
- State Change Event (CAPxM<3:0> = 1000)

Note: The Special Event Trigger is generated only in the Special Event Trigger mode on the CAP1 input (CAP1M<3:0> = 1110 and 1111). IC1IF interrupt is not set in this mode.

The timing of interrupt and Special Event Trigger events is shown in Figure 17-7. Any active edge is detected on the rising edge of Q2 and propagated on the rising edge of Q4 rising edge. If an active edge happens to occur any later than this (on the falling edge of Q2, for example), then it will be recognized on the next Q2 rising edge.

FIGURE 17-7: CAPx INTERRUPTS AND IC1 SPECIAL EVENT TRIGGER

18.4.4 INTERRUPTS IN DOUBLE UPDATE MODE

This mode is available in Continuous Up/Down Count mode. In the Double Update mode (PTMOD<1:0> = 11), an interrupt event is generated each time the PTMR register is equal to zero and each time the PTMR matches with PTPER register. Figure 18-8 shows the interrupts in Continuous Up/Down Count mode with double updates.

The Double Update mode provides two additional functions to the user in Center-Aligned mode.

- The control loop bandwidth is doubled because the PWM duty cycles can be updated twice per period.
- Asymmetrical center-aligned PWM waveforms can be generated, which are useful for minimizing output waveform distortion in certain motor control applications.

Note: Do not change the PTMOD bits while PTEN is active; it will yield unexpected results. To change the PWM Timer mode of operation, first clear the PTEN bit, load the PTMOD bits with the required data and then set PTEN.

FIGURE 18-8: PWM TIME BASE INTERRUPT, CONTINUOUS UP/DOWN COUNT MODE WITH DOUBLE UPDATES

FIGURE	18-21		PWM (EXAM			ERRID	Е				
	1	2	3	4	5	6					
PWM5			<u> </u>				 				
PWM4							ļ				
PWM3							ļ				
PWM2						ļ	ļ				
PWM1						i 	ļ				
1 1110					1		<u> </u>				
PWM3											

TABLE 18-4:	PWM OUTPUT OVERRIDE
	EXAMPLE #1

State	OVDCOND (POVD)	OVDCONS (POUT)
1	d0000000b	00100100b
2	0000000b	00100001b
3	0000000b	00001001b
4	0000000b	00011000b
5	0000000b	00010010b
6	d0000000b	00000110b

TABLE 18-5:PWM OUTPUT OVERRIDEEXAMPLE #2

State	OVDCOND (POVD)	OVDCONS (POUT)
1	11000011b	d0000000b
2	11110000b	d0000000b
3	00111100b	d0000000b
4	00001111b	0000000b

FIGURE 18-22: PWM OUTPUT OVERRIDE EXAMPLE #2 2 3 4 1 haanhaaa PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 ΠΠ PWM1 PWM0

18.13 PWM Update Lockout

For a complex PWM application, the user may need to write up to four Duty Cycle registers and the PWM Time Base Period register, PTPER, at a given time. In some applications, it is important that all buffer registers be written before the new duty cycle and period values are loaded for use by the module.

A PWM update lockout feature may optionally be enabled so the user may specify when new duty cycle buffer values are valid. The PWM update lockout feature is enabled by setting the control bit, UDIS, in the PWMCON1 register. This bit affects all Duty Cycle Buffer registers and the PWM Time Base Period register, PTPER.

To perform a PWM update lockout:

- 1. Set the UDIS bit.
- 2. Write all Duty Cycle registers and PTPER, if applicable.
- 3. Clear the UDIS bit to re-enable updates.
- 4. With this, when UDIS bit is cleared, the buffer values will be loaded to the actual registers. This makes a synchronous loading of the registers.

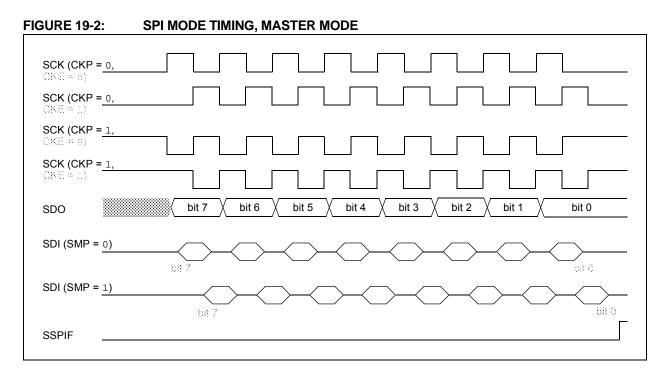
18.14 PWM Special Event Trigger

The PWM module has a Special Event Trigger capability that allows A/D conversions to be synchronized to the PWM time base. The A/D sampling and conversion time may be programmed to occur at any point within the PWM period. The Special Event Trigger allows the user to minimize the delay between the time when A/D conversion results are acquired and the time when the duty cycle value is updated.

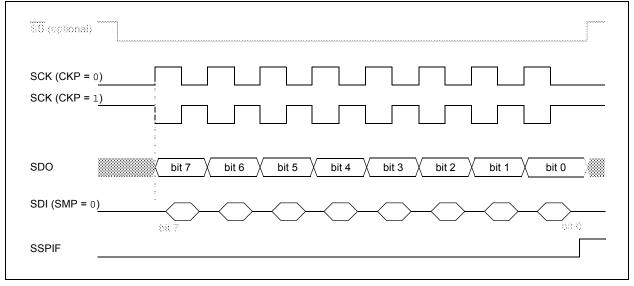
The PWM 16-bit Special Event Trigger register, SEVTCMP (high and low), and five control bits in the PWMCON1 register are used to control its operation.

The PTMR value for which a Special Event Trigger should occur is loaded into the SEVTCMP register pair. The SEVTDIR bit in the PWMCON1 register specifies the counting phase when the PWM time base is in a Continuous Up/Down Count mode.

If the SEVTDIR bit is cleared, the Special Event Trigger will occur on the upward counting cycle of the PWM time base. If SEVTDIR is set, the Special Event Trigger will occur on the downward count cycle of the PWM time base. The SEVTDIR bit has effect only when the PWM timer is in the Continuous Up/Down Count mode.


18.14.1 SPECIAL EVENT TRIGGER ENABLE

The PWM module will always produce Special Event Trigger pulses. This signal may optionally be used by the A/D module. Refer to **Section 21.0 "10-Bit High-Speed Analog-to-Digital Converter (A/D) Module"** for details.


18.14.2 SPECIAL EVENT TRIGGER POSTSCALER

The PWM Special Event Trigger has a postscaler that allows a 1:1 to 1:16 postscale ratio. The postscaler is configured by writing the SEVOPS<3:0> control bits in the PWMCON1 register.

The Special Event Trigger output postscaler is cleared on any write to the SEVTCMP register pair, or on any device Reset.

FIGURE 19-3: SPI MODE TIMING (SLAVE MODE WITH CKE = 0)

20.5.2 EUSART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep, or any Idle mode and bit SREN, which is a "don't care" in Slave mode.

If receive is enabled by setting the CREN bit prior to entering Sleep or any Idle mode, then a word may be received while in this Low-Power mode. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the chip from Low-Power mode. If the global interrupt is enabled, the program will branch to the interrupt vector. To set up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. If interrupts are desired, set enable bit, RCIE.
- 3. If 9-bit reception is desired, set bit, RX9.
- 4. To enable reception, set enable bit, CREN.
- 5. Flag bit, RCIF, will be set when reception is complete. An interrupt will be generated if enable bit, RCIE, was set.
- 6. Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit, CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54	
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	57	
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	57	
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	57	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	56	
RCREG	EUSART Re	ceive Registe	er						56	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	56	
BAUDCON	—	RCIDL	—	SCKP	BRG16		WUE	ABDEN	56	
SPBRGH	EUSART Baud Rate Generator Register High Byte									
SPBRG	EUSART Ba	ud Rate Gene	erator Regi	ster Low	Byte				56	

TABLE 20-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

REGISTER 21-4: ADCON3: A/D CONTROL REGISTER 3

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRS1	ADRS0	—	SSRC4 ⁽¹⁾	SSRC3 ⁽¹⁾	SSRC2 ⁽¹⁾	SSRC1 ⁽¹⁾	SSRC0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 **ADRS<1:0>**: A/D Result Buffer Depth Interrupt Select Control for Continuous Loop Mode bits The ADRS bits are ignored in Single-Shot mode. 00 = Interrupt is generated when each word is written to the buffer 01 = Interrupt is generated when the 2nd and 4th words are written to the buffer

10 = Interrupt is generated when the 4th word is written to the buffer

11 = Unimplemented

bit 5 Unimplemented: Read as '0'

bit 4-0 SSRC<4:0>: A/D Trigger Source Select bits⁽¹⁾

00000 = All triggers disabled

xxxx1 = External interrupt RC3/INT0 starts A/D sequence

<code>xxx1x</code> = Timer5 starts A/D sequence

xx1xx = Input Capture 1 (IC1) starts A/D sequence

 ${\tt xlxxx}$ = CCP2 compare match starts A/D sequence

 $1 \times \times \times \times =$ Power Control PWM module rising edge starts A/D sequence

Note 1: The SSRC<4:0> bits can be set such that any of the triggers will start a conversion (e.g., SSRC<4:0> = 00101 will trigger the A/D conversion sequence when RC3/INT0 or Input Capture 1 event occurs).

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h	CONFIG1L	_	_	_	_	_	_	_	_	
300001h	CONFIG1H	IESO	FCMEN		_	FOSC3	FOSC2	FOSC1	FOSC0	11 1111
300002h	CONFIG2L	_	_		-	BORV1	BORV0	BOREN	PWRTEN	1111
300003h	CONFIG2H	_	_	WINEN	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	11 1111
300004h	CONFIG3L	_	_	T10SCMX	HPOL	LPOL	PWMPIN	_	_	11 11
300005h	CONFIG3H	MCLRE ⁽¹⁾	_	_	EXCLKMX ⁽¹⁾	PWM4MX ⁽¹⁾	SSPMX ⁽¹⁾	_	FLTAMX ⁽¹⁾	11 11-1
300006h	CONFIG4L	DEBUG	_	-	_	_	LVP	_	STVREN	11-1
300007h	CONFIG4H	_	_	_	_	_	_	_	_	
300008h	CONFIG5L				_	CP3 ⁽¹⁾	CP2 ⁽¹⁾	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB		_		_			11
30000Ah	CONFIG6L				_	WRT3 ⁽¹⁾	WRT2 ⁽¹⁾	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC		_	_	_	—	111
30000Ch	CONFIG7L	_	_	_	_	EBTR3 ⁽¹⁾	EBTR2 ⁽¹⁾	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	_	_		_	_	_	-1
3FFFFEh	DEVID1 ⁽²⁾	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx ⁽²⁾
3FFFFFh	DEVID2 ⁽²⁾	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 0101

TABLE 23-1: CONFIGURATION BITS AND DEVICE IDs

 $\label{eq:Legend: Legend: Le$

Note 1: Unimplemented in PIC18F2331/4331 devices; maintain this bit set.

2: See Register 23-13 for DEVID1 values. DEVID registers are read-only and cannot be programmed by the user.

REGISTER 23-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	
IESO	FCMEN	—	—	FOSC3	FOSC2	FOSC1	FOSC0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	P = Programn	nable bit	U = Unimplem	ented bit, read	as '0'		
-n = Value wh	nen device is un	programmed		U = Unchange	ed from prograr	nmed state		
bit 7	1 = Internal E	l External Swite xternal Switcho	over mode ena					
		xternal Switcho						
bit 6	FCMEN: Fail-Safe Clock Monitor Enable bit							
		Clock Monitor Clock Monitor						
bit 5-4	Unimplement	ted: Read as ')'					
bit 3-0	FOSC<3:0>: Oscillator Selection bits							
	1001 = Intern 1000 = Intern 0111 = Extern 0110 = HS os 0101 = EC os	al oscillator blo nal RC oscillato cillator, PLL er scillator, port fu scillator, CLKO scillator	ck, CLKO function ock, port function or, port function nabled (clock function on RA6	ction on RA6 an on on RA6 and j on RA6 requency = 4 x l (ECIO)	port function or	•	,	

COMF Complement f							
Syntax:	[<i>label</i>] C	OMF f	[,d [,a]]				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]					
Operation:	$(\overline{f}) \rightarrow dest$						
Status Affected:	N, Z						
Encoding:	0001	11da	ffff	ffff			
Description:	mented. If ' W. If 'd' is ' register, 'f'. will be sele value. If 'a'	The contents of register, 'f', are comple- mented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register, 'f'. If 'a' is 0, the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read register 'f'	Proce Data		Write to destination			
Example:	COMF	REG,	W				
Before Instruc REG	= 0x13						
After Instructio REG W	n = 0x13 = 0xEC						

CPF	SEQ	Compare	Compare f with W, Skip if f = W					
Syntax:		[label] CF	[label] CPFSEQ f [,a]					
Operands:		0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:								
Statu	s Affected:	None	None					
Enco	dina:	0110	001a fff	f ffff				
Encoding: Description:		location, 'f', performing If 'f' = W, th discarded a instead, ma instruction. will be select value. If 'a'	Compares the contents of data memory location, 'f', to the contents of W by performing an unsigned subtraction. If 'f' = W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value.					
Word	ls:	1						
Cycle	es:		ycles if skip ar a 2-word instru					
QC	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Process Data	No operation				
lf sk	ip:							
	Q1	Q2	Q3	Q4				
	No	No	No	No				
lfsk	operation	operation	operation	operation				
11 510	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
Example:		HERE NEQUAL EQUAL	CPFSEQ REG : :					
Before Instruction PC Address = HERE W = ? REG = ?								
	After Instructio							
	If REG PC	= W; = Ad	dress (EQUAI	.)				
	If REG	– Au ≠ W;						
	PC	= Ad	dress (NEQUA	AL)				

RLNCF	Rotate L	eft f (No	Carry)	
Syntax:	[label]	RLNCF	f [,d [,a]]	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	;		
Operation:	$(f < n >) \rightarrow c$ $(f < 7 >) \rightarrow c$		>,	
Status Affected:	N, Z			
Encoding:	0100	01da	ffff	ffff
Description: The contents of register, 'f', are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register, 'f'. If 'a' is '0', the Access Bank will be selected, overrid- ing the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value. register f				
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proces Data		rite to tination
Example:	RLNCF	REG		
Before Instruc REG	tion = 1010 1	.011		
After Instruction REG = 0101 0111				

RRCF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRCF f[,d[,a]]
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]
Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$
Status Affected:	C, N, Z
Encoding:	0011 00da ffff fff:
	Flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed bac in register, 'f'. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank v be selected as per the BSR value.
	C register f
Words:	
	1
Words: Cycles:	
	1
Cycles: Q Cycle Activity:	1 1
Cycles: Q Cycle Activity: Q1	1 1 2 Q2 Q3 Q4 Read Process Write to
Cycles: Q Cycle Activity: Q1 Decode	1 1 1 Q2 Q3 Q4 Read Process Write to register 'f' Data destinatio RRCF REG, W

25.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE).

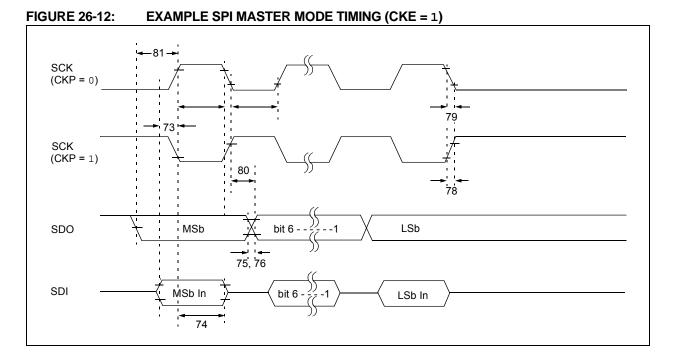
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Internal Program Memory Programming Specifications ⁽¹⁾						
D110	Vpp	Voltage on MCLR/VPP pin	9.00	—	13.25	V	(Note 3)	
D112	IPP	Current into MCLR/VPP pin	_	—	300	μA		
D113	IDDP	Supply Current during Programming	—	—	1	mA		
		Data EEPROM Memory						
D120	ED	Byte Endurance	100K	1M	—	E/W	-40°C to +85°C	
D121	Vdrw	VDD for Read/Write	VMIN	—	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage	
D122	TDEW	Erase/Write Cycle Time	—	4	—	ms		
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated	
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C	
		Program Flash Memory						
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40°C to +85°C	
D131	Vpr	VDD for Read	VMIN	_	5.5	V	Vмın = Minimum operating voltage	
D132	VIE	VDD for Block Erase	4.5	—	5.5	V	Using ICSP™ port	
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	—	5.5	V	Using ICSP port	
D132B	Vpew	VDD for Self-Timed Write	VMIN	—	5.5	V	VMIN = Minimum operating voltage	
D133	TIE	ICSP™ Block Erase Cycle Time	—	4	—	ms	VDD > 4.5V	
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	—	_	ms	VDD > 4.5V	
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms		
D134	TRETD	Characteristic Retention	40	100	—	Year	Provided no other specifications are violated	


TABLE 26-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

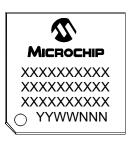
2: Refer to Section 7.9 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if Single-Supply Programming is disabled.

TABLE 26-12:	EXAMPLE SPI MODE REQUIREMENTS	(MASTER MODE, CKE = 1)
		(

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SCK Edge		20	—	ns	
73A	Tb2b	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2		1.5 Tcy + 40	_	ns	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		40	_	ns	
75	TdoR	SDO Data Output Rise Time	PIC18FXX31	—	25	ns	
			PIC18LFXX31	—	45	ns	
76	TdoF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	SCK Output Rise Time PIC18FXX31 PIC18LFXX31		25	ns	
					45	ns	
79	TscF	SCK Output Fall Time		—	25	ns	
80	TscH2doV, SDO Data Output Valid after TscL2doV SCK Edge		PIC18FXX31	—	50	ns	
			PIC18LFXX31	—	100	ns	
81	TdoV2scH, TdoV2scL	SDO Data Output Setup to SCK Edge		Тсү	_	ns	

27.1 Package Marking Information (Continued)


40-Lead PDIP

 \bigcirc

44-Lead TQFP

Example

PIC18F4331-I/P (e3) 1010017 MICROCHIP

44-Lead QFN

Example

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to an enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available