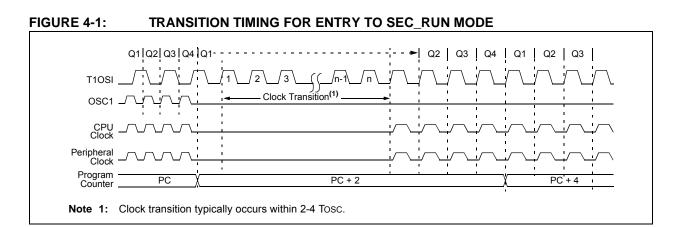


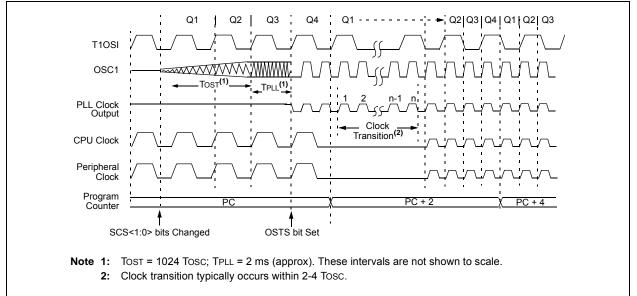
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4431-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer. In this mode, the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing-sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
EEADR	ADR EEPROM Address Register								56
EEDATA	EEPROM Data Register								56
EECON2	EEPROM C	ontrol Registe	er 2 (not a p	physical reg	gister)				56
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	56
IPR2	OSCFIP	—	—	EEIP	—	LVDIP	_	CCP2IP	57
PIR2	OSCFIF	_		EEIF		LVDIF		CCP2IF	57
PIE2	OSCFIE	_		EEIE		LVDIE		CCP2IE	57

TABLE 7-1: REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

EXAMPLE 8-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED)

PROGRAM_MEMORY		
BCF	INTCON, GIE	; disable interrupts
MOVLW	55h	; required sequence
MOVWF	EECON2	; write 55h
MOVLW	0AAh	
MOVWF	EECON2	; write OAAh
BSF	EECON1, WR	; start program (CPU stall)
NOP		
BSF	INTCON, GIE	; re-enable interrupts
DECFSZ	COUNTER_HI	; loop until done
GOTO	PROGRAM_LOOP	
BCF	EECON1, WREN	; disable write to memory

8.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

8.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. The WRE<u>RR bit</u> is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, users can check the WRERR bit and rewrite the location.

8.6 Flash Program Operation During Code Protection

See Section 23.5 "Program Verification and Code Protection" for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TBLPTRU		_	bit 21 ⁽¹⁾ Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)						54
TBPLTRH	Program N	lemory Table	e Pointer I	High Byte (TBLPTR<15	:8>)			54
TBLPTRL	Program N	lemory Table	e Pointer I	_ow Byte (TBLPTR<7:0	>)			54
TABLAT	Program N	lemory Table	e Latch						54
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
EECON2	EEPROM	Control Reg	ister 2 (no	t a physica	l register)				56
EECON1	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD	56
IPR2	OSCFIP	_		EEIP	_	LVDIP		CCP2IP	57
PIR2	OSCFIF	—		EEIF	_	LVDIF	_	CCP2IF	57
PIE2	OSCFIE	_	_	EEIE	_	LVDIE	_	CCP2IE	57

TABLE 8-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

R/W-1	R/W-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
INT2IF	P INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	
bit 7							bit 0	
Lonondi								
Legend:			- :4			(O)		
R = Read		W = Writable	DIL	•	nented bit, rea			
-n = Value	alPOR	'1' = Bit is set		'0' = Bit is cle	areo	x = Bit is unkr	lown	
bit 7	INT2IP: INT2	External Interre	upt Priority bit					
	1 = High prio 0 = Low prior	•						
bit 6	INT1IP: INT1	External Interre	upt Priority bit					
	1 = High prio 0 = Low prior							
bit 5	Unimplemen	ted: Read as 'd)'					
bit 4	INT2IE: INT2	External Interre	upt Enable bit					
		the INT2 extern the INT2 extern						
bit 3	INT1IE: INT1	External Interre	upt Enable bit					
		the INT1 extern the INT1 extern						
bit 2	Unimplemen	ted: Read as 'o)'					
bit 1	INT2IF: INT2	External Interru	upt Flag bit					
				must be cleare	d in software)			
		0 = The INT2 external interrupt did not occur						
bit 0	INT1IF: INT1 External Interrupt Flag bit 1 = The INT1 external interrupt occurred (must be cleared in software)							
		external interr			d in software)			
			apt dia not 00	oui				
Note:	Interrupt flag bits							
	enable bit or the g					ate interrupt flag	y bits are clear	

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	57
LATB	LATB LATB Data Output Register								57
TRISB	PORTB Dat	a Direction Re	egister						57
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	54
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP		RBIP	54
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	54

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTB.

11.4 PORTD, TRISD and LATD Registers

Note:	PORTD is only available on PIC18F4331/
	4431 devices.

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins are
	configured as digital inputs.

PORTD includes PWM<7:6> complementary fourth channel PWM outputs. PWM4 is the complementary output of PWM5 (the third channel), which is multiplexed with the RB5 pin. This output can be used as the alternate output using the PWM4MX Configuration bit in CONFIG3H when the Single-Supply Programming pin (PGM) is used on RB5.

RD1, RD2 and RD3 can be used as the alternate output for SDO, SDI/SDA and SCK/SCL using the SSPMX Configuration bit in CONFIG3H.

RD4 an be used as the alternate output for FLTA using the FLTAMX Configuration bit in CONFIG3H.

EXAMPLE 11-4: INIT	FIALIZING PORTD
--------------------	------------------------

CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

The three input capture channels are controlled through the Input Capture Control registers, CAP1CON, CAP2CON and CAP3CON. Each channel is configured independently with its dedicated register. The implementation of the registers is identical except for the Special Event Trigger (see Section 17.1.8 "Special Event Trigger (CAP1 Only)"). The typical Capture Control register is shown in Register 17-1.

Note: Throughout this section, references to registers and bit names that may be associated with a specific capture channel will be referred to generically by the use of the term 'x' in place of the channel number. For example, 'CAPxREN' may refer to the Capture Reset Enable bit in CAP1CON, CAP2CON or CAP3CON.

REGISTER 17-1: CAPxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	CAPxREN	—	—	CAPxM3	CAPxM2	CAPxM1	CAPxM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

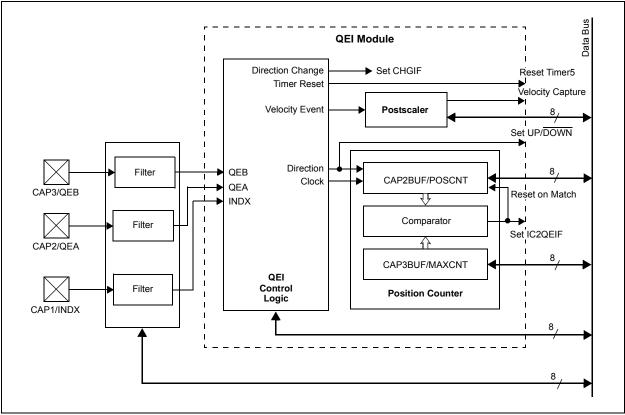
bit 7	Unimplemented: Read as '0'								
bit 6	CAPxREN: Time Base Reset Enable bit								
5.00	1 = Enabled								
	0 = Disable selected time base Reset on capture								
bit 5-4	Unimplemented: Read as '0'								
bit 3-0	CAPxM<3:0>: Input Capture x (ICx) Mode Select bits								
	1111 = Special Event Trigger mode; the trigger occurs on every rising edge on CAP1 input ⁽¹⁾								
	1110 = Special Event Trigger mode; the trigger occurs on every falling edge on CAP1 input ⁽¹⁾								
	1101 = Unused								
	1100 = Unused								
	1011 = Unused								
	1010 = Unused								
	1001 = Unused								
	1000 = Capture on every CAPx input state change								
	0111 = Pulse-Width Measurement mode, every rising to falling edge								
	0110 = Pulse-Width Measurement mode, every falling to rising edge								
	0101 = Frequency Measurement mode, every rising edge								
	0100 = Capture mode, every 16th rising edge								
	0011 = Capture mode, every 4th rising edge								
	0010 = Capture mode, every rising edge								
	0001 = Capture mode, every falling edge								
	0000 = Input Capture x (ICx) off								

Note 1: Special Event Trigger is only available on CAP1. For CAP2 and CAP3, this configuration is unused.

17.2 Quadrature Encoder Interface

The Quadrature Encoder Interface (QEI) decodes speed and motion sensor information. It can be used in any application that uses a quadrature encoder for feedback. The interface implements these features:

- Three QEI inputs: two phase signals (QEA and QEB) and one index signal (INDX)
- Direction of movement detection with a direction change interrupt (IC3DRIF)
- 16-bit up/down position counter
- Standard and High-Precision Position Tracking modes
- Two Position Update modes (x2 and x4)
- Velocity measurement with a programmable postscaler for high-speed velocity measurement
- Position counter interrupt (IC2QEIF in the PIR3 register)
- Velocity control interrupt (IC1IF in the PIR3 register)


The QEI submodule has three main components: the QEI control logic block, the position counter and velocity postscaler.

The QEI control logic detects the leading edge on the QEA or QEB phase input pins and generates the count pulse, which is sent to the position counter logic. It also samples the index input signal (INDX) and generates the direction of the rotation signal (up/down) and the velocity event signals.

The position counter acts as an integrator for tracking distance traveled. The QEA and QEB input edges serve as the stimulus to create the input clock which advances the Position Counter register (POSCNT). The register is incremented on either the QEA input edge, or the QEA and QEB input edges, depending on the operating mode. It is reset either by a rollover on match to the Period register, MAXCNT, or on the external index pulse input signal (INDX). An interrupt is generated on a Reset of POSCNT if the position counter interrupt is enabled.

The velocity postscaler down samples the velocity pulses used to increment the velocity counter by a specified ratio. It essentially divides down the number of velocity pulses to one output per so many inputs, preserving the pulse width in the process.

A simplified block-diagram of the QEI module is shown in Figure 17-8.

FIGURE 17-8: QEI BLOCK DIAGRAM

17.2.2 QEI MODES

Position measurement resolution depends on how often the Position Counter register, POSCNT, is incremented. There are two QEI Update modes to measure the rotor's position: QEI x2 and QEI x4.

QEIM<2:0>	Mode/ Reset	Description
000		QEI disabled. ⁽¹⁾
001	x2 update/ index pulse	Two clocks per QEA pulse. INDX resets POSCNT.
010	x2 update/ period match	Two clocks per QEA pulse. POSCNT is reset by the period match (MAXCNT).
011	_	Unused.
100	_	Unused.
101	x4 update/ index pulse	Four clocks per QEA and QEB pulse pair. INDX resets POSCNT.
110	x4 update/ period match	Four clocks per QEA and QEB pulse pair. POSCNT is reset by the period match (MAXCNT).
111	_	Unused.

Note 1: QEI module is disabled. The position counter and the velocity measurement functions are fully disabled in this mode.

17.2.2.1 QEI x2 Update Mode

QEI x2 Update mode is selected by setting the QEI Mode Select bits (QEIM<2:0>) to '001' or '010'. In this mode, the QEI logic detects every edge on the QEA input only. Every rising and falling edge on the QEA signal clocks the position counter.

The position counter can be reset by either an input on the INDX pin (QEIM<2:0> = 001), or by a period match, even when the POSCNT register pair equals MAXCNT (QEIM<2:0> = 010).

17.2.2.2 QEI x4 Update Mode

QEI x4 Update mode provides for a finer resolution of the rotor position, since the counter increments or decrements more frequently for each QEA/QEB input pulse pair than in QEI x2 mode. This mode is selected by setting the QEI mode select bits to '101' or '110'. In QEI x4, the phase measurement is made on the rising and the falling edges of both QEA and QEB inputs. The position counter is clocked on every QEA and QEB edge.

Like QEI x2 mode, the position counter can be reset by an input on the pin (QEIM<2:0> = 101), or by the period match event (QEIM<2:0> = 010).

17.2.3 QEI OPERATION

The Position Counter register pair (POSCNTH: POSCNTL) acts as an integrator, whose value is proportional to the position of the sensor rotor that corresponds to the number of active edges detected. POSCNT can either increment or decrement, depending on a number of selectable factors which are decoded by the QEI logic block. These include the Count mode selected, the phase relationship of QEA to QEB ("lead/lag"), the direction of rotation and if a Reset event occurs. The logic is detailed in the sections that follow.

17.2.3.1 Edge and Phase Detect

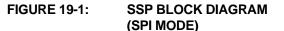
In the first step, the active edges of QEA and QEB are detected, and the phase relationship between them is determined. The position counter is changed based on the selected QEI mode.

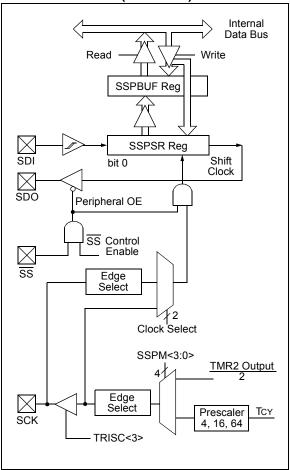
In QEI x2 Update mode, the position counter increments or decrements on every QEA edge based on the phase relationship of the QEA and QEB signals.

In QEI x4 Update mode, the position counter increments or decrements on every QEA and QEB edge based on the phase relationship of the QEA and QEB signals. For example, if QEA leads QEB, the position counter is incremented by '1'. If QEB lags QEA, the position counter is decremented by '1'.

17.2.3.2 Direction of Count

The QEI control logic generates a signal that sets the UP/DOWN bit (QEICON<5>); this, in turn, determines the direction of the count. When QEA leads QEB, UP/DOWN is set (= 1) and the position counter increments on every active edge. When QEA lags QEB, UP/DOWN is cleared and the position counter decrements on every active edge.


TABLE 17-5: DIRECTION OF ROTATION

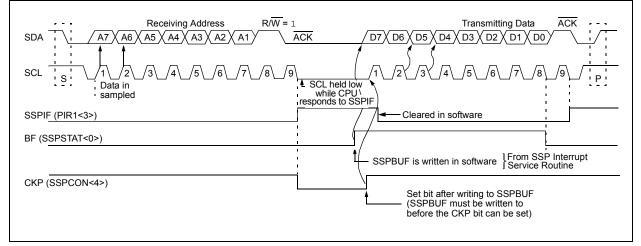

Current	P	Previous Signal Detected						
Signal Detected	Ris	Rising		ling	Pos. Cntrl. ⁽¹⁾			
	QEA	QEB	QEA	QEB				
QEA Rising				х	INC			
		х			DEC			
QEA Falling				х	DEC			
		х			INC			
QEB Rising	х				INC			
			х		DEC			
QEB Falling			х		INC			
	х				DEC			

Note 1: When UP/DOWN = 1, the position counter is incremented. When UP/DOWN = 0, the position counter is decremented.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BRFEN	FLTBS ⁽¹⁾	FLTBMOD ⁽¹⁾	FLTBEN ⁽¹⁾	FLTCON ⁽²⁾	FLTAS	FLTAMOD	FLTAEN
bit 7							bit C
Legend:							
R = Read		W = Writable bi	t	-	nented bit, rea		
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 7	BRFEN: Brea	akpoint Fault Ena	ble bit				
		Fault condition on	a breakpoint	(i.e., only wher	ו PWMPIN = 1	.)	
bit 6	FLTBS: Faul	t B Status bit ⁽¹⁾					
	$1 = \overline{FLTB}$ is a						
		10D = 0, cleared			6 4km		
	0 = No Fault	IOD = 1, cleared	automatically	at beginning o	r the new perio	a when FLIB is	deasserted
bit 5	FLTBMOD: F	- Fault B Mode bit ⁽¹)				
	1 = Cycle-by	-Cycle mode: Pir	ns are inactiv	e for the remair	nder of the cur	rent PWM period	d or until FLTB
		erted; FLTBS is c					
		mode: Pins are only the user only	deactivated (catastrophic fai	lure) until FLI	B is deasserted	and FLIBS is
bit 4		ult B Enable bit ⁽¹⁾					
	1 = Enable F						
	0 = Disable I						
bit 3		ult Configuration					
		<u>TB</u> or both deact		M outputs			
bit 2	FLTAS: Fault		F VVIVI~5.0~				
	$1 = \overline{FLTA}$ is a						
	if FLTAM	IOD = 0, cleared					
		IOD = 1, cleared	automatically	at beginning o	f the new peric	od when FLTA is	deasserted
bit 1	0 = No Fault	ault A Mode bit					
	-	-Cycle mode: Pin	is are inactive	for the remain	der of the curre	ent PWM period	or until <u>FI TA</u> is
		ed; FLTAS is clea					
		mode: Pins are only the user only	deactivated (catastrophic fai	lure) until FLT	A is deasserted	and FLTAS is
bit 0	FLTAEN: Fau	ult A Enable bit					
	1 = Enable F 0 = Disable I						
Note 1:	Unimplemented	1 in PIC18F2331/2	2431 devices	; maintain these	e bits clear.		
2:	PWM<7:6> are	implemented only N has no effect.				F2331/2431 devi	ces, setting or

REGISTER 18-8: FLTCONFIG: FAULT CONFIGURATION REGISTER

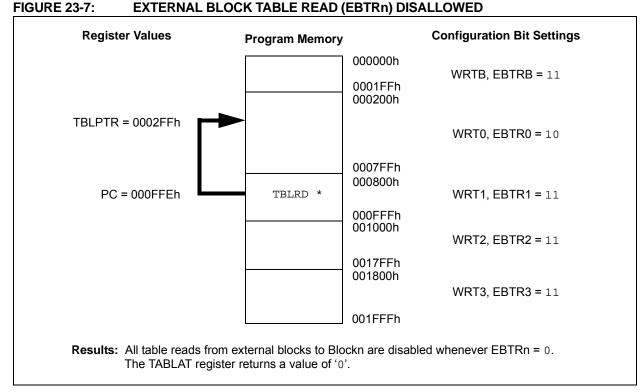
To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>), must be set. To reset or reconfigure SPI mode, clear bit SSPEN, reinitialize the SSPCON register and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

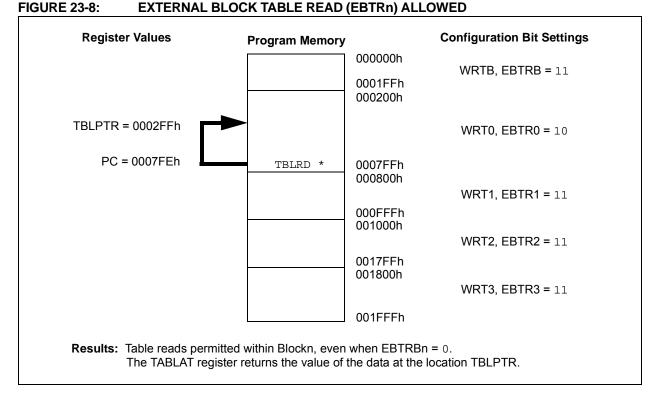

- Serial Data Out (SDO) RC7/RX/DT/SDO or RD1/SDO
- SDI must have TRISC<4> or TRISD<2> set
- SDO must have TRISC<7> or TRISD<1> cleared
- SCK (Master mode) must have TRISC<5> or TRISD<3> cleared
- SCK (Slave mode) must have TRISC<5> or TRISD<3> set
- SS must have TRISA<6> set
 - Note 1: When the SPI is in Slave mode, with the SS pin control enabled, (SSPCON<3:0> = 0100), the SPI module will reset if the SS pin is set to VDD.
 - **2:** If the SPI is used in Slave mode with CKE = 1, then the \overline{SS} pin control must be enabled.
 - 3: When the SPI is in Slave mode with SS pin control enabled (SSPCON<3:0> = 0100), the state of the SS pin can affect the state read back from the TRISC<6> bit. The peripheral OE signal from the SSP module into PORTC controls the state that is read back from the TRISC<6> bit (see Section 11.3 "PORTC, TRISC and LATC Registers" for information on PORTC). If Read-Modify-Write instructions, such as BSF, are performed on the TRISC register while the SS pin is high, this will cause the TRISC<6> bit to be set, thus disabling the SDO output.

19.3.1.3 Transmission

When the $R\overline{W}$ bit of the incoming address byte is set and an address match occurs, the $R\overline{W}$ bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin, SCK/SCL, is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin, SCK/SCL, should be enabled by setting bit, CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 19-7). An SSP interrupt is generated for each data transfer byte. Flag bit, SSPIF, must be cleared in software and the SSPSTAT register is used to determine the status of the byte. Flag bit, SSPIF, is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the ACK pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the ACK is latched by the slave, the slave logic is reset and the slave then monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin, SCK/SCL, should be enabled by setting bit CKP.


U-0	R-1	U-0	R/W-1	R/W-0	U-0	R/W-0	R/W-0				
—	RCIDL		SCKP	BRG16	—	WUE	ABDEN				
bit 7							bit				
Legend:											
R = Read	able bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'					
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unki	nown				
bit 7	Unimplemen	ted: Read as	0'								
bit 6	RCIDL: Rece	ive Operation	Idle Status bit								
	1 = Receiver 0 = Receive i										
bit 5		ited: Read as '	0'								
bit 4	-	nronous Clock		t bit							
	<u>Asynchronou</u> Unused in thi		·								
		for clock (CK)									
L:1 0		for clock (CK)		- 1-14							
bit 3	1 = 16-bit Ba		ator – SPBRG	e bit H and SPBRG only (Compatible	mode) SPBI	RGH value iono	ored				
bit 2		ted: Read as					, ou				
bit 1	WUE: Wake-										
	hardware 0 = RX pin n <u>Synchronous</u>	will continue on following r ot monitored o <u>mode:</u>	ising edge	RX pin – interru etected	pt generated	on falling edge	; bit cleared i				
	Unused in thi										
bit 0		o-Baud Detect	Enable bit								
	1 = Enable b cleared in	 <u>Asynchronous mode:</u> 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h) cleared in hardware upon completion. 0 = Baud rate measurement disabled or completed 									
	<u>Synchronous</u> Unused in thi	mode:		-							


REGISTER 23-4: CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)

U-0	U	R/P-1	R/P-1	R/P-1	R/P-1	U	U
_	—	T1OSCMX	HPOL ⁽¹⁾	LPOL ⁽¹⁾	PWMPIN ⁽³⁾	_	—
bit 7							bit 0

Legend:								
R = Reada	ble bit P = Programmable b	ut U = Unimplemented bit, read as '0'						
-n = Value when device is unprogrammed U = Unchanged from programmed state								
bit 7-6	it 7-6 Unimplemented: Read as '0'							
bit 5	T1OSCMX: Timer1 Oscillator Mode							
	1 = Low-power Timer1 operation w	hen microcontroller is in Sleep mode						
	0 = Standard (legacy) Timer1 oscil	lator operation						
bit 4	HPOL: High Side Transistors Polar	ity bit (i.e., Odd PWM Output Polarity Control bit) ⁽¹⁾						
	1 = PWM1, 3, 5 and 7 are active-h	iqh (default) ⁽²⁾						
	0 = PWM1, 3, 5 and 7 are active-lo	_W (2)						
bit 3	LPOL: Low Side Transistors Polari	ty bit (i.e., Even PWM Output Polarity Control bit) ⁽¹⁾						
	1 = PWM0, 2, 4 and 6 are active-h							
	0 = PWM0, 2, 4 and 6 are active-lo	_W (2)						
bit 2	PWMPIN: PWM Output Pins Reset	State Control bit ⁽³⁾						
	1 = PWM outputs are disabled upo	n Reset (default)						
	0 = PWM outputs drive active state							
bit 1-0	Unimplemented: Read as '0'							
	-	define PWM signal output active and inactive states; PWM states						

- ote 1: Polarity control bits, HPOL and LPOL, define PWM signal output active and inactive states; PV generated by the Fault inputs or PWM manual override.
 - 2: PWM6 and PWM7 output channels are only available on PIC18F4331/4431 devices.
 - **3:** When PWMPIN = 0, PWMEN<2:0> = 101 if the device has eight PWM output pins (40 and 44-pin devices) and PWMEN<2:0> = 100 if the device has six PWM output pins (28-pin devices). PWM output polarity is defined by HPOL and LPOL.

TABLE 24-2: PIC18FXXXX INSTRUCTION SET

Mnemonic,		Description	Cycles	16-Bit Instruction Word			Status	Netza	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORI	ENTED F	ILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	υu	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	<i>`</i>
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	,
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
	., u, u	Borrow	•	0101	0100			0, 20, 2, 0, 1, 1	., _
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	1, 2
CODIN D	i, u, u	Borrow		0101	rouu			0, 00, 2, 00, 1	1, 2
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	1, 2
		E REGISTER OPERATIONS	1	0001	IUUA	LLLL	LTTT	Ζ, Ν	
BCF	f, b, a	Bit Clear f	1	1001	bbbc	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1001	bbba bbba	ffff	ffff	None	1, 2
BTFSC		Bit Test f, Skip if Clear	1 (2 or 3)						1, 2 3, 4
BTFSC	f, b, a f, b, a		`` '	1011	bbba bbba	ffff	ffff ffff	None None	3, 4 3, 4
	, ,	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff			
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

SLE	EP	Enter Sleep Mode		SUE	BFWB	Subtract	f from W w	ith Borrow	
Synta	ax:	[label] SLEEP		Synta	ax:	[label]	SUBFWB f	[,d [,a]]	
Oper	ands:	None			Oper	Operands: 0 s		5	
Oper	ation:	$00h \rightarrow WE$	DT,				d ∈ [0,1]		
			postscaler,				a ∈ [0,1]	.	
		$1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD}$			•	ation:		$(\overline{C}) \rightarrow \text{dest}$	
Statu	s Affected:	TO, PD				is Affected:	N, OV, C,		
			0000 000	0 0011	Enco	oding:	0101		ff ffff
Enco	U U	0000			Desc	ription:		egister, 'f', and	
Desc	ription:		r-Down status he Time-out sta					om W (2's con f 'd' is '0', the r	
		is set. Wat	tchdog Timer a				in W. If 'd'	is '1', the resu	t is stored in
		scaler are		Sloop modo					Access Bank
			ssor is put into scillator stoppe					ected, overridir ' is '1', then the	
Word	s:	1						s per the BSR	
Cycle		1			Word	ls:	1		
-	ycle Activity:	·			Cycle	es:	1		
Q U	Q1	Q2	Q3	Q4	QC	ycle Activity:			
	Decode	No	Process	Go to		Q1	Q2	Q3	Q4
		operation	Data	Sleep		Decode	Read register 'f'	Process Data	Write to destination
Exam	<u>nple:</u>	SLEEP			Exan	nple 1:	SUBFWB 1		4000
	Before Instruc	ction				Before Instru	ction		
	<u>TO</u> =	?				REG	= 0x03		
	PD =	?				W C	= 0x02 = 0x01		
	After Instructio TO =	on 1†				After Instructi			
	$\frac{10}{PD} =$	0				REG	= 0xFF		
						W C	= 0x02 = 0x00		
† It	WD1 causes	wake-up, this t	oit is cleared.			Z	= 0000		
						Ν	= 0x01	; result is neg	ative
					Exan	nple 2:	SUBFWB	REG, 0, 0)
						Before Instru	ction		
						REG	= 2		
						W C	= 5 = 1		
						After Instructi			
						REG	= 2		
						W C	= 3 = 1		
						Z	= 0		
						Ν	= 0	; result is pos	itive
					<u>Exan</u>	<u>nple 3:</u>	SUBFWB	REG, 1, ()
						Before Instru			
						REG W	= 1 = 2		
						C	= 0		
						After Instructi			
						REG W	= 0 = 2		
						C	= 2 = 1		
						Z	= 1	; result is zer	0
						N	= 0	,	

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>× /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC18LF4431-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern #301.
Device	PIC18F2331/2431/4331/4431 ⁽¹⁾ , PIC18F2331/2431/4331/4431T ^(1,2) ; VDD range 4.2V to 5.5V PIC18LF2331/2431/4331/4431 ⁽¹⁾ , PIC18LF2331/2431/4331/44310T ^(1,2) ; VDD range 2.0V to 5.5V	 b) PIC18LF2331-I/SO = Industrial temp., SOIC package, Extended VDD limits. c) PIC18F4331-I/P = Industrial temp., PDIP package, normal VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	Note 1: F = Standard Voltage Range LF = Wide Voltage Range
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP P = PDIP ML = QFN	2: T = in Tape and Reel – SOIC and TQFP Packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	