

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, Power Control PWM, QEI, POR, PWM, WDT
Number of I/O	36
Program Memory Size	16KB (8K × 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4431t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer. In this mode, the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing-sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/Fosc specifications are violated.

6.4 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). Figure 6-5 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0'.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction 2 in Figure 6-5 shows how the instruction, 'GOTO 00006h', is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. **Section 24.0 "Instruction Set Summary"** provides further details of the instruction set.

6.4.1 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the four MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence, immediately after the first word, the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 shows how this works.

Note: For information on two-word instructions in the extended instruction set, see Section 24.2 "Instruction Set".

			LSB = 1	LSB = 0	Word Address \downarrow
	Program N	1emory			000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	000006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

FIGURE 6-5: INSTRUCTIONS IN PROGRAM MEMORY

EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

CASE 1:				
Object Code Source Code				
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?		
1100 0001 0010 0011	MOVFF REG1, REG2	; No, skip this word		
1111 0100 0101 0110		; Execute this word as a NOP		
0010 0100 0000 0000	ADDWF REG3	; continue code		
CASE 2:	_			
Object Code	Source Code			
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?		
1100 0001 0010 0011	MOVFF REG1, REG2	; Yes, execute this word		
1111 0100 0101 0110		; 2nd word of instruction		
0010 0100 0000 0000	ADDWF REG3	; continue code		

FIGURE 8-2: TABLE WRITE OPERATION

8.2 Control Registers

Several control registers are used in conjunction with the ${\tt TBLRD}$ and ${\tt TBLWT}$ instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

8.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit, EEPGD, determines if the access will be to program or data EEPROM memory. When clear, operations will access the data EEPROM memory. When set, program memory is accessed.

Control bit, CFGS, determines if the access will be to the Configuration registers or to program memory/data EEPROM memory. When set, subsequent operations access Configuration registers, regardless of EEPGD. (See **Section 23.0 "Special Features of the CPU"**.) When CFGS is clear, the EEPGD bit selects either program Flash or data EEPROM memory. The FREE bit controls program memory erase operations. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

A write operation is allowed when the WREN bit (EECON1<2>) is set. On power-up, the WREN bit is clear. The WRERR bit (EECON1<3>) is set in hardware when the WR bit (EECON1<1>) is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR
	may read as '1'. This can indicate that a
	write operation was prematurely termi-
	nated by a Reset or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software. The bit is cleared in hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit (PIR2<4>) is set when the write is complete. It must be cleared in software.

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in four registers, RES<3:0>.

EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES<3:0>	=	ARG1H:ARG1L • ARG2H:ARG2L
	=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
		$(ARG1H \bullet ARG2L \bullet 2^8) +$
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		(ARG1L • ARG2L)

EXAMPLE 9-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L ->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	;
	MOVFF	PRODL, RESO	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H ->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	i
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	i
	ADDWFC	RES3, F	;

Example 9-4 shows the sequence to do a 16 x 16 signed multiply. Equation 9-2 shows the algorithm used. The 32-bit result is stored in four registers, RES<3:0>. To account for the sign bits of the arguments, each argument pair's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 9-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES<3:	0>

=	ARG1H:ARG1L • ARG2H:ARG2L
=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H ^2 2^8) +$
	$(ARG1L \bullet ARG2L)+$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H < 7 > \bullet ARG2H: ARG2L \bullet 2^{16})$

EXAMPLE 9-4: 16 x 16 SIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH:PRODL
	MOVFF	PRODH, RES1	;	
	MOVFF	PRODL, RESO	;	
;				
	MOVF	ARG1H, W		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH:PRODL
	MOVFF	PRODH, RES3	;	
	MOVFF	PRODL, RES2	;	
;				
	MOVF	ARG1L,W		
	MULWF	ARG2H	;	ARG1L * ARG2H ->
			;	PRODH:PRODL
	MOVF	PRODL, W	;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, W	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	MOVF	ARG1H, W	;	
	MULWF	ARG2L	;	ARG1H * ARG2L ->
			;	PRODH:PRODL
	MOVF	PRODL, W	;	
	ADDWF	RES1, F	;	Add cross
	MOVF	PRODH, W	;	products
	ADDWFC	RES2, F	;	
	CLRF	WREG	;	
	ADDWFC	RES3, F	;	
;				
	BTFSS	ARG2H, 7	;	ARG2H:ARG2L neg?
	BRA	SIGN_ARG1	;	no, check ARG1
	MOVF	ARG1L, W	;	
	SUBWF	RES2	;	
	MOVF	ARG1H, W	;	
	SUBWFB	RES3		
;				
SIG	N_ARG1			
	BTFSS	ARG1H, 7	;	ARG1H:ARG1L neg?
	BRA	CONT_CODE	;	no, done
	MOVF	ARG2L, W	;	
	SUBWF	RES2	;	
	MOVF	ARG2H, W	;	
	SUBWFB	RES3		
;				
CON	T_CODE			
	:			

REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

R/W-1	U-0	U-0	R/W-1	U-0	R/W-1	U-0	R/W-1
OSCFIP	—	—	EEIP	—	LVDIP	—	CCP2IP
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	OSCFIP: Osc	illator Fail Inter	rupt Priority bit	:			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 6-5	Unimplemen	ted: Read as '0	,				
bit 4	EEIP: Interrup	ot Priority bit					
	1 = High prio	rity					
	0 = Low prior	ity					
bit 3	Unimplemen	ted: Read as '0	,				
bit 2	LVDIP: Low-V	/oltage Detect I	nterrupt Priorit	y bit			
	1 = High prio	rity					
	0 = Low prior	ity					
bit 1	Unimplemen	ted: Read as '0	,				
bit 0	CCP2IP: CCF	P2 Interrupt Pric	ority bit				
	1 = High prio	rity					
	• • • • • • • • • • • • • • • •						

0 = Low priority

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_	_	PTIP	IC3DRIP	IC2QEIP	IC1IP	TMR5IP	
bit 7							bit 0	
Legend:								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'								
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unk	nown	
bit 7-5	Unimplemen	ted: Read as '	0'					
bit 4	PTIP: PWM T	ime Base Inte	rrupt Priority bi	t				
	1 = High prio	rity						
	0 = Low prior	rity						
bit 3	IC3DRIP: IC3	Interrupt Prior	rity/Direction C	hange Interrupt	Priority bit			
	IC3 Enabled (<u>(CAP3CON<3:</u>	<u>0>):</u>					
	1 = 1C3 interi	rupt high priorit	(y					
	OFI Enabled	(OFIM < 2.0 >)	,					
	1 = Change of the second sec	of direction inte	errupt high prio	rity				
	0 = Change	of direction inte	errupt low prior	ity				
bit 2	IC2QEIP: IC2	Interrupt Prior	rity/QEI Interru	pt Priority bit				
	IC2 Enabled (CAP2CON<3:0>):							
	1 = IC2 interr	rupt high prioril	ty					
	0 = IC2 interr	rupt low priority	/					
	QEI Enabled	<u>(QEIM<2:0>):</u>						
	1 = Hign prio	rity						
bit 1		ity	hit					
	1 = High prior	rity	DIL					
	0 = Low prior	ritv						
bit 0	TMR5IP: Tim	er5 Interrupt P	rioritv bit					
	1 = High prio	rity						
	0 = Low prior	rity						

11.0 I/O PORTS

Depending on the device selected and features enabled, there are up to five ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (Data Latch)

The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port without the interfaces to other peripherals is shown in Figure 11-1.

FIGURE 11-1: GENERIC I/O PORT OPERATION

11.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA<4:2> pins are multiplexed with three input capture pins and Quadrature Encoder Interface pins. Pins, RA6 and RA7, are multiplexed with the main oscillator pins. They are enabled as oscillator or I/O pins by the selection of the main oscillator in Configuration Register 1H (see Section 23.1 "Configuration Bits" for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins RA<3:0> and RA5 as A/D Converter inputs is selected by clearing/setting the control bits in the ANSEL0 and ANSEL1 registers.

Note 1:	On	а	Powe	er-on	Rese	et, RA	٩<5:()>	are
	conf	gu	red as	analo	og inp	uts and	d rea	d as	; '0'.
2:	RA5	I/	/F is	avai	lable	only	on	40-	-pin
	devices (PIC18F4331/4431).								

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE	E 11-1:	INITIALIZING PORTA
CLRF I	PORTA ;	Initialize PORTA by
	;	clearing output
	;	data latches
CLRF I	LATA ;	Alternate method
	;	to clear output
	;	data latches
MOVLW ()x3F ;	Configure A/D
MOVWF A	ANSELO ;	for digital inputs
MOVLW ()xCF ;	Value used to
	;	initialize data
	;	direction
MOVWF 1	TRISA ;	Set RA<3:0> as inputs
	;	RA<5:4> as outputs

17.2.3.3 Reset and Update Events

The position counter will continue to increment or decrement until one of the following events takes place. The type of event and the direction of rotation when it happens determines if a register Reset or update occurs.

 An index pulse is detected on the INDX input (QEIM<2:0> = 001).

If the encoder is traveling in the **forward** direction, POSCNT is reset (00h) on the next clock edge after the index marker, INDX, has been detected. The position counter resets on the QEA or QEB edge once the INDX rising edge has been detected.

If the encoder is traveling in the **reverse** direction, the value in the MAXCNT register is loaded into POSCNT on the next quadrature pulse edge (QEA or QEB) after the falling edge on INDX has been detected.

 A POSTCNT/MAXCNT period match occurs (QEIM<2:0> = 010).

If the encoder is traveling in the **forward** direction, POSCNT is reset (00h) on the next clock edge when POSCNT = MAXCNT. An interrupt event is triggered on the next TCY after the Reset (see Figure 17-10)

If the encoder is traveling in the **reverse** direction and the value of POSCNT reaches 00h, POSCNT is loaded with the contents of the MAXCNT register on the next clock edge. An interrupt event is triggered on the next TcY after the load operation (see Figure 17-10).

The value of the position counter is not affected during QEI mode changes, nor when the QEI is disabled altogether.

17.2.4 QEI INTERRUPTS

The position counter interrupt occurs and the interrupt flag (IC2QEIF) is set, based on the following events:

- A POSCNT/MAXCNT period match event (QEIM<2:0> = 010 or 110)
- A POSCNT rollover (FFFFh to 0000h) in Period mode only (QEIM<2:0> = 010 or 110)
- An index pulse detected on INDX

The interrupt timing diagrams for IC2QEIF are shown in Figure 17-10 and Figure 17-11.

When the direction has changed, the direction change interrupt flag (IC3DRIF) is set on the following TcY clock (see Figure 17-10).

If the position counter rolls over in Index mode, the QERR bit will be set.

17.2.5 QEI SAMPLE TIMING

The quadrature input signals, QEA and QEB, may vary in quadrature frequency. The minimum quadrature input period, TQEI, is 16 TCY.

The position count rate, FPOS, is directly proportional to the rotor's RPM, line count D and QEI Update mode (x2 versus x4); that is,

EQUATION 17-1:

 $FPOS = \frac{4D \bullet RPM}{60}$

Note: The number of incremental lines in the position encoder is typically set at D = 1024 and the QEI Update mode = x4.

The maximum position count rate (i.e., x4 QEI Update mode, D = 1024) with F_{CY} = 10 MIPS is equal to 2.5 MHz, which corresponds to FQEI of 625 kHz.

Figure 17-9 shows QEA and QEB quadrature input timing when sampled by the noise filter.

18.4.4 INTERRUPTS IN DOUBLE UPDATE MODE

This mode is available in Continuous Up/Down Count mode. In the Double Update mode (PTMOD<1:0> = 11), an interrupt event is generated each time the PTMR register is equal to zero and each time the PTMR matches with PTPER register. Figure 18-8 shows the interrupts in Continuous Up/Down Count mode with double updates.

The Double Update mode provides two additional functions to the user in Center-Aligned mode.

- The control loop bandwidth is doubled because the PWM duty cycles can be updated twice per period.
- 2. Asymmetrical center-aligned PWM waveforms can be generated, which are useful for minimizing output waveform distortion in certain motor control applications.

Note: Do not change the PTMOD bits while PTEN is active; it will yield unexpected results. To change the PWM Timer mode of operation, first clear the PTEN bit, load the PTMOD bits with the required data and then set PTEN.

FIGURE 18-8: PWM TIME BASE INTERRUPT, CONTINUOUS UP/DOWN COUNT MODE WITH DOUBLE UPDATES

18.6.4 CENTER-ALIGNED PWM

Center-aligned PWM signals are produced by the module when the PWM time base is configured in a Continuous Up/Down Count mode (see Figure 18-15). The PWM compare output is driven to the active state when the value of the Duty Cycle register matches the value of PTMR and the PWM time base is counting downwards (PTDIR = 1). The PWM compare output will be driven to the inactive state when the PWM time base is counting upwards (PTDIR = 0) and the value in the PTMR register matches the duty cycle value. If the value in a particular Duty Cycle register is zero, then the output on the corresponding PWM pin will be

inactive for the entire PWM period. In addition, the output on the PWM pin will be active for the entire PWM period if the value in the Duty Cycle register is equal to or greater than the value in the PTPER register.

NOTES:

21.0 10-BIT HIGH-SPEED ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The high-speed Analog-to-Digital (A/D) Converter module allows conversion of an analog signal to a corresponding 10-bit digital number.

The A/D module supports up to 5 input channels on PIC18F2331/2431 devices, and up to 9 channels on the PIC18F4331/4431 devices.

This high-speed 10-bit A/D module offers the following features:

- Up to 200K samples per second
- Two sample and hold inputs for dual-channel simultaneous sampling
- Selectable Simultaneous or Sequential Sampling modes
- 4-word data buffer for A/D results
- Selectable data acquisition timing
- Selectable A/D event trigger
- Operation in Sleep using internal oscillator

These features lend themselves to many applications including motor control, sensor interfacing, data acquisition and process control. In many cases, these features will reduce the software overhead associated with standard A/D modules.

The module has 9 registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)
- A/D Control Register 3 (ADCON3)
- A/D Channel Select Register (ADCHS)
- Analog I/O Select Register 0 (ANSEL0)
- Analog I/O Select Register 1 (ANSEL1)

22.4 LVD Start-up Time

The internal reference voltage of the LVD module, specified in electrical specification Parameter D420, may be used by other internal circuitry, such as the Programmable Brown-out Reset. If the LVD, or other circuits using the voltage reference, are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification Parameter 36.

The LVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (refer to Figure 22-2).

REGISTER 23-5: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

R/P-1	U	U	R/P-1	R/P-1	R/P-1	U	R/P-1		
MCLRE ⁽¹⁾	—	_	EXCLKMX ⁽¹⁾	PWM4MX ⁽¹⁾	SSPMX ⁽¹⁾	—	FLTAMX ⁽¹⁾		
bit 7							bit 0		
Legend:	Legend:								
R = Readable	bit	P = Programn	nable bit	U = Unimplem	ented bit, read	l as '0'			
-n = Value wh	en device is un	programmed		U = Unchange	ed from program	mmed state			
h:+ 7		D Die Enchle I	L::(1)						
DIL 7		R PIN Enable I							
	1 = MCLR pir 0 = RE3 input	1 IS ENADIEO; R t nin is enabled	t MCLR is disa	bled					
bit 6-5		ted: Read as '	n'	bica					
bit 4			, tornal Clock M	UV hit(1)					
DIL 4	1 = TMP0/T5	CKL external d	lock input is mu	UN DIL ^C	003				
	0 = TMR0/T5	CKI external c	lock input is mu	Itiplexed with F	RD0				
bit 3	PWM4MX: PV	VM4 MUX bit ⁽¹)	· · · · ·					
	1 = PWM4 ou	utput is multiple	exed with RB5						
	0 = PWM4 ou	utput is multiple	exed with RD5						
bit 2	SSPMX: SSP	I/O MUX bit ⁽¹⁾							
	1 = SCK/SCL	. clocks and SI	DA/SDI data are	e multiplexed w	ith RC5 and R	C4, respectivel	y. SDO output		
	is multiple	exed with RC7.							
	is multiple	exed with RD1.	JA/SDI data are	e multiplexed w	ith RD3 and R	D2, respectivel	y. SDO output		
bit 1	Unimplemented: Read as '0'								
bit 0	FLTAMX: FLT	A MUX bit ⁽¹⁾							
	$1 = \overline{FLTA}$ input	ut is multiplexe	d with RC1						
	0 = FLTA inpu	ut is multiplexe	d with RD4						

Note 1: Unimplemented in PIC18F2331/2431 devices; maintain this bit set.

REGISTER 23-15: WDTCON: WATCHDOG TIMER CONTROL REGISTER

R-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
WDTW	—	—	—	—	—	—	SWDTEN ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	WDTW: Watchdog Timer Window bit 1 = WDT count is in fourth quadrant 0 = WDT count is not in fourth quadrant
bit 6-1	Unimplemented: Read as '0'
bit 0	<pre>SWDTEN: Software Enable/Disable for Watchdog Timer bit⁽¹⁾ 1 = WDT is turned on 0 = WDT is turned off</pre>

Note 1: If the WDTEN Configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTEN Configuration bit = 0, then it is possible to turn WDT on/off with this control bit.

TABLE 23-2: SUMMARY OF WATCHDOG TIMER REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2H	—	—	WINEN	WDTPS3	WDTPS2	WDTPS2	WDTPS0	WDTEN
RCON	IPEN	_	_	RI	TO	PD	POR	BOR
WDTCON	WDTW	_	_	—	—	—	_	SWDTEN

Legend: Shaded cells are not used by the Watchdog Timer.

TBLRD Table Read							
Synta	ax:	[label]	TBLRD (*; *+; *-;	+*)		
Oper	ands:	None					
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT, TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR, (Prog Mem (TBLPTR)) \rightarrow TABLAT					
Statu	s Affected:	None					
Enco	oding:	0000	0000	000	0	10nn nn = 0 * =1 *+ =2 *- =3 +*	
Description:		This instruct of Program m Pointer (TE The TBLPT each byte it has a 2-Mt TBLPTR[TBLPTR[TBLPTR[TBLPTR[• no chan • post-incr • pre-incr	ction is us Memory emory, a BLPTR) is FR (a 21-t n the prog pyte addre 0] = 0: Le Pro 0] = 1: Mo Pro 0] = 1: Mo Pro 0 instruction as follow ge rement crement ement	ed to rea (P.M.). ⁻ pointer o used. bit pointe ram me ess rang ast Sign ogram M ost Signi ogram M on can m s:	ad th To a calle mor e. ifica ficar ficar nodif	ne contents ddress the ed Table woints to y. TBLPTR nt Byte of ory Word nt Byte of ory Word fy the value	
Word	ls:	1					
Cycle	es:	2					
QC	ycle Activity	:					
	Q1	Q2		Q3	1	Q4	
	Decode	No operatio	n ope	No ration	c	No operation	

TBLRD Table Read (cont'd)

TBLRD	*+	;	
n			
		=	0x55
		=	0x00A356
0x00A356	5)	=	0x34
		=	0x34
		=	0x00A357
TBLRD	+*	;	
n			
		=	0xAA
		=	0x01A357
0x01A357	7)	=	0x12
0x01A358	3)	=	0x34
		=	0x34
		=	0x01A358
	TBLRD n 0x00A356 TBLRD on 0x01A357 0x01A358	TBLRD *+ n 0x00A356) TBLRD +* n 0x01A357) 0x01A358)	TBLRD *+ ; n = 0x00A356) = = TBLRD +* ; n = 0x01A357) = 0x01A358) = = =

No operation (Read Program Memory)

No

operation

No

operation

No operation (Write TABLAT) NOTES:

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to an enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

Run Modes	40
PRI_RUN	40
RC_RUN	41
SEC_RUN	40
Selecting	39
Sleep Mode	43
Summary (table)	
Power-on Reset (POR)	49, 263
Power-up Delays	
Power-up Timer (PWRT)	37, 263
Prescaler, Timer0	129
Assignment (PSA Bit)	129
Rate Select (10PS2:10PS0 Bits)	129
Prescaler, Timer2	150
PRI_IDLE Mode	
PRI_RUN Mode	40
Program Counter (PC)	62
Program Memory	
Instructions	
I wo-Word	
Interrupt Vector	61
Map and Stack	
PIC18F2331/4331	61
PIC18F2431/4431	61
Reset Vector	
Program Verification	279
Pulse-Width Modulation. See PWM (CCP Module).	240
PUSH	312
PUSH and POP Instructions	
PWM Accessisted Desisters	202
Associated Registers	203
Complementary Operation	190
	176
Dead-Time Generators	191
Duty Cycle	187
Center-Aligned	189
Companson	187
Eage-Alignea	188
Register Buffers	188
Registers	10/
Fault Inputs	199
Functionality	176
Continuous Un/Down Count	100
Ereo Bunning	100
Single Shot	190
Output and Polarity Control	100
	104
Single-Pulse Operation	10/
Special Event Trigger	202
Time Base	176
Interrunte	181
Continuous Un/Down	101
Count Mode	182
Double Undate Mode	184
Free-Running Mode	181
Single-Shot Mode	182
Postscaler	181
Prescaler	180
Undate Lockout	202
Space 2000000	202

PWM (CCP Module)	
Associated Registers	. 150
CCPR1H:CCPR1L Registers	. 149
Duty Cycle	. 149
Example Frequencies/Resolutions	. 150
Period	. 149
PR2 Register, Writing	. 149
Setup for PWM Operation	. 150
TMR2 to PR2 Match 136	, 149
PWM Period	. 185
Q	
	150
QEI	. 150
and IC Shared Interrupts	. 170
Configuration	. 162
Direction of Rotation	. 163
Interrupts	. 164
Operation	. 163
Operation in Sleep Mode	. 170
3x Input Capture	. 170
Sampling Modes	. 163
Velocity Measurement	. 167
Quadrature Encoder Interface (QEI)	161

R

R/W Bit	206, 213, 214, 215
RAM. See Data Memory.	
RC Oscillator	
RCIO Oscillator Mode	
RC_IDLE Mode	
RC_RUN Mode	
RCALL	313
RCSTA Register	
SPEN Bit	
Reader Response	388
Registers	
ADCHS (A/D Channel Select)	
ADCON0 (A/D Control 0)	
ADCON1 (A/D Control 1)	
ADCON2 (A/D Control 2)	242
ADCON3 (A/D Control 3)	243
ANSEL0 (Analog Select 0)	
ANSEL1 (Analog Select 1)	
BAUDCON (Baud Rate Control)	220
CAPxCON (Input Capture x Control)	155
CCPxCON (CCPx Control)	145
CONFIG1H (Configuration 1 High)	
CONFIG2H (Configuration 2 High)	
CONFIG2L (Configuration 2 Low)	
CONFIG3H (Configuration 3 High)	
CONFIG3L (Configuration 3 Low)	
CONFIG4L (Configuration 4 Low)	
CONFIG5H (Configuration 5 High)	
CONFIG5L (Configuration 5 Low)	270
CONFIG6H (Configuration 6 High)	
CONFIG6L (Configuration 6 Low)	
CONFIG7H (Configuration 7 High)	
CONFIG7L (Configuration 7 Low)	
DEVID1 (Device ID 1)	273