

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	12MHz
Connectivity	I ² C, SPI
Peripherals	LVD, POR, WDT
Number of I/O	13
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20234-12sxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Additional System Resources

System Resources provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. Brief statements describing the merits of each system resource follow:

- The I²C slave or SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires run at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- Low voltage detection (LVD) interrupts signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.8 V reference provides an absolute reference for capacitive sensing.
- The 5 V maximum input, 3 V fixed output, low dropout regulator (LDO) provides regulation for I/Os. A register controlled bypass mode enables the user to disable the LDO.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4 analog blocks. Table 1 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[1]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[1]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[1]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[1]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[1]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[1,2]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[1,2]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

Notes

1. Limited analog functionality

2. Two analog blocks and one $CapSense^{\ensuremath{\mathfrak{R}}\xspace}$.

Getting Started

For in-depth information, along with detailed programming details, see the *PSoC[®] Technical Reference Manual*.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com,

covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

16-Pin SOIC Pinout

Figure 4. CY8C20234-12SXI 16-Pin SOIC Pinout

Table 3. Pin Definitions – CY8C20234 16-Pin (SOIC)

Pin No.	Digital	Analog	Name	Description
1	I/O	1	P0[7]	Analog column mux input
2	I/O	I	P0[3]	Analog column mux input and column input, integrating input
3	I/O	I	P0[1]	Analog column mux input, integrating input
4	I/O	I	P2[5]	Analog column mux input
5	I/O	I	P2[1]	Analog column mux input
6	I/O	I	P1[7]	I2C serial clock (SCL), SPI SS
7	I/O	I	P1[5]	I2C serial data (SDA),SPI MISO
8	I/O	I	P1[3]	Analog column mux input, SPI CLK
9	I/O	I	P1[1]	I2C serial clock (SCL), ISSP-SCLK,SPI MOSI
10	Power	•	V _{SS}	Ground connection
11	I/O	I	P1[0]	I2C serial data (SDA), ISSP-SDATA
12	I/O	I	P1[2]	Analog column mux input
13	I/O	I	P1[4]	Analog column mux input, optional external clock input (EXTCLK)
14	I/O	I	XRES	XRES
15	I/O	I	P0[4]	Analog column mux input
16	Power	•	V _{DD}	Supply voltage

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive.

48-Pin OCD Part Pinout

The 48-Pin QFN part table and pin diagram is for the CY8C20000 On-Chip Debug (OCD) PSoC device. This part is only used for in-circuit debugging. It is NOT available for production.

Figure 5. CY8C20000 48-Pin OCD PSoC Device

Table 4. Pin Definitions – CY8C20000 48-Pin OCD (QFN) ^[3]

Pin No.	Digital	Analog	Name	Description
1			NC	No connection
2	I/O	I	P0[1]	
3	I/O	I	P2[7]	
4	I/O	I	P2[5]	
5	I/O	I	P2[3]	
6	I/O	I	P2[1]	
7	I/O	I	P3[3]	
8	I/O	I	P3[1]	
9	I _{OH}	I	P1[7]	I ² C SCL, SPI SS
10	I _{OH}	I	P1[5]	I ² C SDA, SPI MISO
11	I/O	I	P0[1]	
12			NC	No connection
13			NC	No Connection
14			NC	No Connection
15			NC	SPI CLK
16	I _{OH}	I	P1[3]	CLK ^[4] , I ² C SCL, SPI MOSI
17	I _{OH}	I	P1[1]	Ground connection

Notes

3. The center pad on the QFN package is connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically

floated and not connected to any other signal.
4. These are the ISSP pins, that are not High Z at POR (Power-on-Reset). See the *PSoC Technical Reference Manual* for details.

24-Pin Part Pinout

Figure 7. CY8C20334 24-Pin PSoC Device

Table 6. Pin Definitions – CY8C20334 24-Pin (QFN) [7]

Pin No	Pin No Type		Name	Description
1 11 10.	Digital	Analog	Name	Description
1	I/O	1	P2[5]	
2	I/O	1	P2[3]	
3	I/O	1	P2[1]	
4	I _{OH}	I	P1[7]	I ² C SCL, SPI SS
5	I _{ОН}	1	P1[5]	I ² C SDA, SPI MISO
6	I _{ОН}	1	P1[3]	SPI CLK
7	I _{OH}	I	P1[1]	CLK ^[8] , I ² C SCL, SPI MOSI
8			NC	No Connection
9	Power		V _{SS}	Ground Connection
10	I _{OH}	I	P1[0]	DATA ^[8] , I ² C SDA
11	I _{ОН}	I	P1[2]	
12	I _{OH}	I	P1[4]	Optional external clock input (EXTCLK)
13	I _{ОН}	1	P1[6]	
14	Input	•	XRES	Active high external reset with internal pull-down
15	I/O	I	P2[0]	
16	I/O	1	P0[0]	
17	I/O	1	P0[2]	
18	I/O	I	P0[4]	
19	I/O	1	P0[6]	Analog bypass
20	Power		V _{DD}	Supply voltage
21	I/O	I	P0[7]	
22	I/O	1	P0[5]	
23	I/O	1	P0[3]	Integrating input
24	I/O	I	P0[1]	
CP	Power		V _{SS}	Center pad is connected to ground

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive

Notes

The center pad on the QFN package is connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.
 These are the ISSP pins, that are not High Z at POR (Power-on-Reset). See the *PSoC Technical Reference Manual* for details.

32-Pin Part Pinout

Figure 8. CY8C20434 32-Pin PSoC Device

Table 7. Pin Definitions – CY8C20434 32-Pin (QFN)^[9]

Din No	Туре		Namo	Description
FIII NO.	Digital	Analog	Name	Description
1	I/O	-	P0[1]	
2	I/O	Ι	P2[7]	
3	I/O		P2[5]	
4	I/O	Ι	P2[3]	
5	I/O		P2[1]	
6	I/O	1	P3[3]	
7	I/O		P3[1]	
8	I _{OH}	1	P1[7]	I ² C SCL, SPI SS
9	I _{OH}	1	P1[5]	I ² C SDA, SPI MISO
10	I _{OH}		P1[3]	SPI CLK
11	I _{OH}		P1[1]	CLK ^[10] , I ² C SCL, SPI MOSI
12	Power		V _{SS}	Ground Connection ^[11]
13	I _{OH}		P1[0]	DATA ^[10] , I ² C SDA
14	I _{OH}	1	P1[2]	
15	I _{OH}		P1[4]	Optional external clock input (EXTCLK)
16	I _{OH}		P1[6]	
17	Input		XRES	Active high external reset with internal pull-down

Notes

 The center pad on the QFN package is connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.

10. These are the ISSP pins, that are not High Z at POR (Power-on-Reset). See the PSoC Technical Reference Manual for details.

11. All V_{SS} pins should be brought out to one common GND plane.

Din No	Pin No. Ty		Namo	Description
FIII NO.	Digital	Analog	Name	Description
18	I/O	1	P3[0]	
19	I/O	1	P3[2]	
20	I/O	1	P2[0]	
21	I/O	1	P2[2]	
22	I/O	1	P2[4]	
23	I/O	1	P2[6]	
24	I/O	1	P0[0]	
25	I/O	1	P0[2]	
26	I/O	1	P0[4]	
27	I/O	1	P0[6]	Analog bypass
28	Power		V _{DD}	Supply voltage
29	I/O	I	P0[7]	
30	I/O	1	P0[5]	
31	I/O	1	P0[3]	Integrating input
32	Power		V _{SS}	Ground connection ^[12]
CP	Power		V _{SS}	Center pad is connected to ground

Table 7. Pin Definitions – CY8C20434 32-Pin (QFN) [9]

A = Analog, I = Input, O = Output, OH = 5 mA high output drive.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20234, CY8C20334, CY8C20434, CY8C20534, and CY8C20634 PSoC devices. For the latest electrical specifications, check the most recent datasheet by visiting the web at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C as specified, except where mentioned.

Refer to Table 19 on page 25 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.

Figure 11. Voltage versus CPU Frequency and IMO Frequency Trim Options

Absolute Maximum Ratings

Table 10. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Мах	Units	Notes
T _{STG}	Storage Temperature	-55	25	+100	ç	Higher storage temperatures reduces data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrades reliability.
T _{BAKETEMP}	Bake temperature	_	125	See package label	°C	
t _{BAKETIME}	Bake time	See package label	-	72	Hours	
T _A	Ambient temperature with power applied	-40	Ι	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5		+6.0	V	
V _{IO}	DC input voltage	V _{SS} – 0.5	-	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tri-state	V _{SS} – 0.5		V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25		+50	mA	
ESD	Electro static discharge voltage	2000	_	_	V	Human body model ESD.
LU	Latch-up current	-	_	200	mA	

Table 14. 2.7-V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
V _{OH1}	High output voltage Port 1 pins with LDO regulator disabled	V _{DD} – 0.2	-	-	V	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os.
V _{OH2}	High output voltage Port 1 pins with LDO regulator disabled	V _{DD} – 0.5	-	-	V	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os.
V _{OL}	Low output voltage	_	-	0.75	V	I _{QL} = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5]).
I _{OH2}	High level source current port 1 Pins with LDO regulator disabled	2	-	-	mA	$V_{OH} = V_{DD} - 0.5$, for the limitations of the total current and I_{OH} at other V_{OH} levels see the notes for V_{OH} .
I _{OL}	Low level sink current	10	-	_	mA	V_{OH} = .75 V, see the limitations of the total current in the note for V_{OL}
V _{OLP1}	Low output voltage port 1 pins	_	-	0.4	V	I_{OL} = 5 mA Maximum of 50 mA sink current on even port pins (for example, P0[2] and P3[4]) and 50 mA sink current on odd port pins (for example, P0[3] and P2[5]). 2.4 V \leq V _{DD} < 3.6 V
V _{IL}	Input low voltage	-	_	0.75	V	$2.4~V \leq V_{DD} < 3.6~V$
V _{IH1}	Input high voltage	1.4	_	-	V	$2.4~V \leq V_{DD} < 2.7~V$
V _{IH2}	Input high voltage	1.6	-	-	V	$2.7~V \leq V_{DD} < 3.6~V$
V _H	Input hysteresis voltage	-	60	-	mV	
۱ _{IL}	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	0.5	1.7	5	pF	Package and pin dependent Temperature = 25 °C
C _{OUT}	Capacitive load on pins as output	0.5	1.7	5	pF	Package and pin dependent Temperature = 25 °C

DC Analog Mux Bus Specifications

Table 15 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 15. DC Analog Mux Bus Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{SW}	Switch resistance to common analog bus	1	_	400 800	Ω Ω	$V_{DD} \ge 2.7 V$ 2.4 V $\le V_{DD} \le 2.7 V$

DC I²C Specifications

Table 18 lists the guaranteed minimum and maximum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only. Flash endurance and retention specifications with the use of the EEPROM user module are valid only within the range: 25 °C + -20C during the Flash Write operation. Reference the EEPROM User Module datasheet instructions for EEPROM flash Write requirements outside of the 25 °C +/-20 °C temperature window.

Table 18. DC I²C Specifications^[22]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	I	$0.3 \times V_{DD}$	V	$2.4~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	-	-	V	$2.4~V \leq V_{DD} \leq 5.25~V$

AC Electrical Characteristics

AC Chip Level Specifications

Table 19, Table 20, and Table 21 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 19. 5-V and 3.3-V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{CPU1}	CPU frequency (3.3 V nominal)	0.75	-	12.6	MHz	12 MHz only for SLIMO Mode = 0.
F _{32K1}	Internal low speed oscillator frequency	15	32	64	kHz	
F _{32K_U}	Internal low speed oscillator (ILO) untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on this timing.
F _{IMO12}	Internal main oscillator stability for 12 MHz (commercial temperature) ^[23]	11.4	12	12.6	MHz	Trimmed for 3.3 V operation using factory trim values. See Figure 11 on page 19, SLIMO mode = 0.
F _{IMO6}	Internal main oscillator stability for 6 MHz (commercial temperature)	5.5	6.0	6.5	MHz	Trimmed for 3.3 V operation using factory trim values. See Figure 11 on page 19, SLIMO mode = 1.
DC _{IMO}	Duty cycle of IMO	40	50	60	%	
DC _{ILO}	Internal low speed oscillator duty cycle	20	50	80	%	
t _{XRST}	External reset pulse width	10	-	Ι	μS	
t _{POWERUP}	Time from end of POR to CPU executing code	Ι	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	
t _{jit_IMO} ^[24]	12 MHz IMO cycle-to-cycle jitter (RMS)	_	200	1600	ps	
	12 MHz IMO long term N cycle-to-cycle jitter (RMS)	1	600	1400	ps	N = 32
	12 MHz IMO period jitter (RMS)	_	100	900	ps	

Notes

- 22. All GPIO meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the above specs.
 23. 0 to 70 °C ambient, V_{DD} = 3.3 V.
 24. Refer to Cypress Jitter Specifications Application Note AN5054 at http://www.cypress.com for more information.

AC SPI Specifications

Table 31 and Table 32 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 31. SPI Master AC Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	-	-	12	MHz
DC _{SCLK}	SCLK duty cycle	-	-	50	-	%
t _{SETUP}	MISO to SCLK setup time	-	40	-	-	ns
t _{HOLD}	SCLK to MISO hold time	-	40	-	-	ns
t _{OUT_VAL}	SCLK to MOSI valid time	-	-	-	40	ns
t _{оит_н}	MOSI high time	-	40	_	-	ns

Table 32. SPI Slave AC Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	_	-	4	MHz
t _{LOW}	SCLK low time	-	41.67	-	-	ns
t _{HIGH}	SCLK high time	-	41.67	-	-	ns
t _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
t _{HOLD}	SCLK to MOSI hold time	-	50	-	-	ns
t _{SS_MISO}	SS low to MISO valid	-	-	-	153	ns
t _{SCLK_MISO}	SCLK to MISO valid	-	-	-	125	ns
t _{SS_HIGH}	SS high time	-	50	-	-	ns
t _{SS_SCLK}	Time from SS low to first SCLK	-	2/F _{SCLK}	-	-	ns
t _{SCLK_SS}	Time from last SCLK to SS high	_	2/F _{SCLK}	_	-	ns

Packaging Dimensions

This section illustrates the packaging specifications for the CY8C20234, CY8C20334, CY8C20434, CY8C20534, and CY8C20634 PSoC devices along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

Figure 14. 8-pin SOIC (150 Mils)

- 1. DIMENSIONS IN INCHES[MM] MIN. MAX.
- 2. PIN 1 ID IS OPTIONAL, ROUND ON SINGLE LEADFRAME RECTANGULAR ON MATRIX LEADFRAME
- 3. REFERENCE JEDEC MS-012
- 4. PACKAGE WEIGHT 0.07gms

PART #			
S08.15	STANDARD PKG		
SZ08.15	LEAD FREE PKG		
SW8.15	LEAD FREE PKG		

51-85066 *G

CY8C20134/CY8C20234/CY8C20334 CY8C20434/CY8C20534/CY8C20634

Figure 21. 30-Ball (1.85 × 2.31 × 0.40 mm) WLCSP

Important Note For information on the preferred dimensions for mounting the QFN packages, see the application note *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845* available at http://www.cypress.com. It is important to note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.

Thermal Impedances

Table 33 illustrates the minimum solder reflow peak temperature to achieve good solderability.

Table 33. Thermal Impedances Per Package

Package	Typical θ _{JA} ^[28]
8 SOIC	127 °C/W
16 SOIC	80 °C/W
16 QFN	46 °C/W
24 QFN ^[29]	25 °C/W
28 SSOP	96 °C/W
30 WLCSP	54 °C/W
32 QFN ^[29]	27 °C/W
48 QFN ^[29]	28 °C/W

Solder Reflow Specifications

Table 34 shows the solder reflow temperature limits that must not be exceeded.

Table 34. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
8-Pin SOIC	260 °C	30 seconds
16-Pin SOIC	260 °C	30 seconds
16-Pin QFN	260 °C	30 seconds
24-Pin QFN	260 °C	30 seconds
28-Pin SSOP	260 °C	30 seconds
30-Pin WLCSP	260 °C	30 seconds
32-Pin QFN	260 °C	30 seconds
48-Pin QFN	260 °C	30 seconds

Notes

^{28.} $T_J = T_A + Power \times \theta_{JA}$. 29. To achieve the thermal impedance specified for the QFN package, refer to application note *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845* available at http://www.cypress.com.

^{30.} Higher temperatures is required based on the solder melting point. Typical temperatures for solder are 220 ±5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

PSoC Programmer

PSoC Programmer is flexible enough and is used on the bench in development and also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE Cube In-Circuit Emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer Software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66 Family
- Cat-5 Adapter
- Mini-Eval Programming Board
- 110 ~ 240V Power Supply, Euro-Plug Adapter
- iMAGEcraft C Compiler (Registration Required)
- ISSP Cable
- USB 2.0 Cable and Blue Cat-5 Cable
- 2 CY8C29466-24PXI 28-PDIP Chip Samples

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample
- 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3214-PSoCEvalUSB

The CY3214-PSoCEvalUSB evaluation kit features a development board for the CY8C24794-24LFXI PSoC device. Special features of the board include both USB and capacitive sensing development and debugging support. This evaluation board also includes an LCD module, potentiometer, LEDs, an enunciator and plenty of bread boarding space to meet all of your evaluation needs. The kit includes:

- PSoCEvalUSB Board
- LCD Module
- MIniProg Programming Unit
- Mini USB Cable
- PSoC Designer and Example Projects CD
- Getting Started Guide
- Wire Pack

Acronyms

Acronyms Used

Table 37 lists the acronyms that are used in this document.

Table 37. Acronyms Used in this Datasheet

Acronym	Description	Acronym	Description
AC	alternating current	MIPS	million instructions per second
ADC	analog-to-digital converter	OCD	on-chip debug
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PGA	programmable gain amplifier
CPU	central processing unit	POR	power on reset
EEPROM	electrically erasable programmable read-only memory	PPOR	precision power on reset
GPIO	general purpose I/O	PSoC®	Programmable System-on-Chip
ICE	in-circuit emulator	PWM	pulse width modulator
IDAC	current DAC	QFN	quad flat no leads
IDE	integrated development environment	SLIMO	slow IMO
ILO	internal low speed oscillator	SPI [™]	serial peripheral interface
IMO	internal main oscillator	SRAM	static random access memory
I/O	input/output	SROM	supervisory read only memory
ISSP	in-system serial programming	SSOP	shrink small-outline package
LCD	liquid crystal display	USB	universal serial bus
LDO		WDT	watchdog timer
LED	light-emitting diode	WLCSP	wafer level chip scale package
LVD	low voltage detect	XRES	external reset
MCU	microcontroller unit		

Reference Documents

PSoC[®] CY8C20x34 and PSoC[®] CY8C20x24 Technical Reference Manual (TRM) – 001-13033

Design Aids – Reading and Writing $PSoC^{\textcircled{8}}$ Flash - AN2015 (001-40459)

Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845 available at http://www.cypress.com.

Document Conventions

Units of Measure

Table 38 lists the unit sof measures.

Table 38. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	ms	millisecond
pF	picofarad	ns	nanosecond
kHz	kilohertz	ps	picosecond
MHz	megahertz	μV	microvolts
kΩ	kilohm	mV	millivolts
Ω	ohm	V	volts
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nanoampere	%	percent
μs	microsecond		

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.
bias	1. A systematic deviation of a value from a reference value.
	The amount by which the average of a set of values departs from a reference value.
	3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

Glossary

SRAM	An acronym for static random access memory. A memory device where you can store and retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Document History Page

Document PSoC [®] Pro Document	Document Title: CY8C20134/CY8C20234/CY8C20334/CY8C20434/CY8C20534/CY8C20634, PSoC [®] Programmable System-on-Chip™ Document Number: 001-05356				
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
*	2717566	DRSW / AESA	06/11/2009	Updated AC Chip-Level, and AC Programming Specifications as follows: Modified F_{IMO6} (page 20), T_{WRITE} specifications (page 23) Added I_{OH} , I_{OL} (page 17), Flash endurance note (page 19), DCILO (page 20), F32K_U (page 20), $T_{POWERUP}$ (page 20), $T_{ERASEALL}$ (page 23), $T_{PROGRAM_HOT}$ (page 24), and $T_{PROGRAM_COLD}$ (page 24) specifications Added AC SPI Master and Slave Specifications Added 30-Ball WLCSP Package	
*J	2825336	ISW	12/10/2009	Updated pin description table for 48-pin OCD. Updated Ordering information table to include CY8C20534-12PVXA parts. Updated package diagrams for 48-pin QFN, 16-pin QFN (sawn), 24-pin QFN (sawn), and 30-ball WLCSP specs.	
*К	2892629	NJF	03/15/2010	Updated Programmable pin configuration details in Features. Updated Analog Multiplexer System. Updated Cypress website links. Updated PSoC Designer Software Subsystems. Added T _{BAKETEMP} and T _{BAKETIME} parameters in Absolute Maximum Ratings. Removed the following sections: DC Low Power Comparator Specifications, AC Analog Mux Bus Specifications, AC Low Power Comparator Specifications, Third Party Tools, and Build a PSoC Emulator into your Board. Modified Notes in Packaging Dimensions. Updated Ordering Code Definitions. Removed inactive parts from Ordering Information. Updated links in Sales, Solutions, and Legal Information.	
*L	2872902	VMAD	04/06/2010	Added part number CY8C20134 to the title. Added 8-pin and 16-pin SOIC pin and package details. Updated content to match current style guide and datasheet template. Moved acronyms and units of measure tables to page 35.	
*M	3043170	NJF	09/30/2010	Added PSoC Device Characteristics table . Added DC I ² C Specifications table. Added F _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changed were made to I ² C Timing Diagram. Updated for clearer understanding. Template and styles update.	
*N	3173718	NJF	02/16/2011	CY8C20134-12SX1I and CY8C20234-12SX2I typo error fixed in the ordering information table and changed in to CY8C20134-12SXI and CY8C20234-12SXI. Updated document version and date. Updated package diagram to 001-12919 *C.	
*0	3248613	TOF	06/10/2011	Under Table 13, the text "Table 13 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T _A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T _A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T _A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, and 2.7 V at 25 °C. These are for design guidance only." changed to "Table 13 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T _A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T _A \leq 85 °C, or Table 13 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T _A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T _A \leq 85 °C, or Table 14 for 2.4 V to 3.0 V and -40 °C \leq T _A \leq 85 °C. These are for design guidance only". Updated Table 34 on page 37 table. Updated sections, "Getting Started", "Development Tools", and "Designing with PSoC Designer" to remove references to the system level designs. Updated package diagram 51-85066 to *E revision.	
*P	3394775	KPOL	10/04/2011	Updated 16-pin SOIC and 16-pin QFN package drawings.	

Document History Page

Document Title: CY8C20134/CY8C20234/CY8C20334/CY8C20434/CY8C20534/CY8C20634, PSoC [®] Programmable System-on-Chip™ Document Number: 001-05356				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*Q	3638597	BVI	06/06/2012	Updated F_{SCLK} parameter in the Table 32, "SPI Slave AC Specifications," on page 31. Changed t_{OUT_HIGH} to t_{OUT_H} in Table 31, "SPI Master AC Specifications," on page 31 Updated package diagrams: 001-13937 to *D 001-44613 to *B Removed obsolete specs 001-17397 and 001-14503 referenced in page 40
*R	4306760	PRKU	03/26/2014	Added note to connect all V _{SS} pins to one common GND plane. Updated 16-pin COL (Sawn) package drawing.
*S	4455557	DIMA	08/13/2014	Replaced references of "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" with "Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845" in all instances across the document. Added CapSense Design Resources. Updated Ordering Information: Updated Table 36: Added CY8C20234-12SXIT and its corresponding details.
*T	4748586	DIMA	05/14/2015	Removed "CapSense Design Resources". Added More Information. Updated Packaging Dimensions: spec 51-85066 – Changed revision from *F to *G. spec 001-13937 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F. Updated to new template. Completing Sunset Review.