

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	12MHz
Connectivity	I ² C, SPI
Peripherals	LVD, POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20534-12pvxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

PSoC Functional Overview	.4
PSoC Core	.4
CapSense Analog System	.4
Additional System Resources	.5
PSoC Device Characteristics	.5
Getting Started	.6
Application Notes	.6
Development Kits	.6
Training	.6
CYPros Consultants	.6
Solutions Library	.6
Technical Support	.6
Development Tools	.7
PSoC Designer Software Subsystems	.7
Designing with PSoC Designer	. 8
Select User Modules	. 8
Configure User Modules	. 8
Organize and Connect	. 8
Generate, Verify, and Debug	. 8
Pin Information	.9
8-Pin SOIC Pinout	.9
16-Pin SOIC Pinout	10
48-Pin OCD Part Pinout	11
16-Pin Part Pinout	13
24-Pin Part Pinout	14
32-Pin Part Pinout	15
28-Pin Part Pinout	17
30-Ball Part Pinout	18
Electrical Specifications	19
Absolute Maximum Ratings	19

Operating Temperature	20
DC Electrical Characteristics	20
AC Electrical Characteristics	25
Packaging Dimensions	32
Thermal Impedances	37
Solder Reflow Specifications	37
Development Tool Selection	38
Software	38
Development Kits	38
Evaluation Tools	38
Device Programmers	39
Accessories (Emulation and Programming)	39
Ordering Information	40
Ordering Code Definitions	40
Acronyms	41
Acronyms Used	41
Reference Documents	41
Document Conventions	42
Units of Measure	42
Numeric Conventions	42
Glossary	42
Document History Page	47
Sales, Solutions, and Legal Information	50
Worldwide Sales and Design Support	50
Products	50
PSoC® Solutions	50
Cypress Developer Community	50
Technical Support	50

48-Pin OCD Part Pinout

The 48-Pin QFN part table and pin diagram is for the CY8C20000 On-Chip Debug (OCD) PSoC device. This part is only used for in-circuit debugging. It is NOT available for production.

Figure 5. CY8C20000 48-Pin OCD PSoC Device

Table 4. Pin Definitions – CY8C20000 48-Pin OCD (QFN) ^[3]

Pin No.	Digital	Analog	Name	Description
1			NC	No connection
2	I/O	I	P0[1]	
3	I/O	I	P2[7]	
4	I/O	I	P2[5]	
5	I/O	I	P2[3]	
6	I/O	I	P2[1]	
7	I/O	I	P3[3]	
8	I/O	I	P3[1]	
9	I _{OH}	I	P1[7]	I ² C SCL, SPI SS
10	I _{OH}	1	P1[5]	I ² C SDA, SPI MISO
11	I/O	I	P0[1]	
12			NC	No connection
13			NC	No Connection
14			NC	No Connection
15			NC	SPI CLK
16	I _{OH}	I	P1[3]	CLK ^[4] , I ² C SCL, SPI MOSI
17	I _{OH}	I	P1[1]	Ground connection

Notes

3. The center pad on the QFN package is connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically

floated and not connected to any other signal.
4. These are the ISSP pins, that are not High Z at POR (Power-on-Reset). See the *PSoC Technical Reference Manual* for details.

32-Pin Part Pinout

Figure 8. CY8C20434 32-Pin PSoC Device

Table 7. Pin Definitions – CY8C20434 32-Pin (QFN) [9]

Din No	Ту	Туре		Description				
FIII NO.	Digital	Analog	Name	Description				
1	I/O	-	P0[1]					
2	I/O	Ι	P2[7]					
3	I/O		P2[5]					
4	I/O	Ι	P2[3]					
5	I/O		P2[1]					
6	I/O	1	P3[3]					
7	I/O		P3[1]					
8	I _{OH}	1	P1[7]	I ² C SCL, SPI SS				
9	I _{OH}	1	P1[5]	I ² C SDA, SPI MISO				
10	I _{OH}		P1[3]	SPI CLK				
11	I _{OH}		P1[1]	CLK ^[10] , I ² C SCL, SPI MOSI				
12	Power		V _{SS}	Ground Connection ^[11]				
13	I _{OH}		P1[0]	DATA ^[10] , I ² C SDA				
14	I _{OH}	1	P1[2]					
15	I _{OH}		P1[4]	Optional external clock input (EXTCLK)				
16	I _{OH}		P1[6]					
17	Input XRES Active high external reset with internal pull-down		XRES	Active high external reset with internal pull-down				

Notes

 The center pad on the QFN package is connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it is electrically floated and not connected to any other signal.

10. These are the ISSP pins, that are not High Z at POR (Power-on-Reset). See the PSoC Technical Reference Manual for details.

11. All V_{SS} pins should be brought out to one common GND plane.

Din No	Pin No. Type		Namo	Description				
FIII NO.	Digital	Analog	Name	Description				
18	I/O	1	P3[0]					
19	I/O	1	P3[2]					
20	I/O	1	P2[0]					
21	I/O	1	P2[2]					
22	I/O	1	P2[4]					
23	I/O	1	P2[6]					
24	I/O	1	P0[0]					
25	I/O	1	P0[2]					
26	I/O	1	P0[4]					
27	I/O	1	P0[6]	Analog bypass				
28	Power		V _{DD}	Supply voltage				
29	I/O	I	P0[7]					
30	I/O	1	P0[5]					
31	I/O	1	P0[3]	Integrating input				
32	Power		V _{SS}	Ground connection ^[12]				
CP	Power		V _{SS}	Center pad is connected to ground				

Table 7. Pin Definitions – CY8C20434 32-Pin (QFN) [9]

A = Analog, I = Input, O = Output, OH = 5 mA high output drive.

30-Ball Part Pinout

Figure 10. CY8C20634 30-Ball PSoC Device

Table 9. 30-Ball Part Pinout (WLCSP)

Pin No	Pin No Type		Name	Description				
1 11 10.	Digital	Analog	Nume	Description				
A1	Power		V _{DD}	Supply voltage				
A2	I/O	I	P0[6]	Analog bypass				
A3	I/O	I	P0[4]					
A4	I/O	I	P0[3]	Integrating input				
A5	I/O	1	P2[7]					
B1	I/O	I	P0[2]					
B2	I/O	I	P0[0]					
B3	I/O	I	P2[6]					
B4	I/O	1	P0[5]					
B5	I/O	1	P0[1]					
C1	I/O		P2[4]					
C2	I/O		P2[2]					
C3	I/O		P3[1]					
C4	I/O	Ι	P0[7]					
C5	I/O		P2[1]					
D1	I/O	I	P2[0]					
D2	I/O		P3[0]					
D3	I/O		P3[2]					
D4	I _{OH}	I	P1[1]	CLK ^[15] , I ² C SCL, SPI MOSI				
D5	I/O	I	P2[3]					
E1	Input		XRES	Active high external reset with internal pull-down				
E2	I _{OH}		P1[6]					
E3	I _{OH}	Ι	P1[4]	Optional external clock input (EXTCLK)				
E4	I _{OH}		P1[5]	I ² C SDA, SPI MISO				
E5	I/O		P2[5]					
F1	Power		V _{SS}	Ground connection ^[16]				
F2	I _{OH}		P1[2]					
F3	I _{OH}	1	P1[0]	DATA ^[15] , I ² C SDA				
F4	I _{OH}		P1[3]	SPICLK				
F5	I _{OH}		P1[7]	I ² C SCL, SPI SS				

A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive.

Notes

These are the ISSP pins, that are not High Z at POR (Power-on-Reset). See the PSoC Technical Reference Manual for details.
 All V_{SS} pins should be brought out to one common GND plane.

Table 13. 5-V and 3.3-V DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OH7}	High output voltage Port 1 pins with 2.4 V LDO regulator enabled	2.1	2.4	2.7	V	I_{OH} < 10 µA, V_{DD} ≥ 3.0 V, maximum of 20 mA source current in all I/Os.
V _{OH8}	High output voltage Port 1 pins with 2.4 V LDO regulator enabled	2.0	-	-	V	I_{OH} < 200 µA, $V_{DD} \ge 3.0$ V, maximum of 20 mA source current in all I/Os.
V _{OH9}	High output voltage Port 1 pins with 1.8 V LDO regulator enabled	1.6	1.8	2.0	V	$\begin{array}{l} I_{OH} < 10 \ \mu A \\ 3.0V \leq V_{DD} \leq 3.6 \ V \\ 0 \ ^{\circ}C \leq T_A \leq 85 \ ^{\circ}C \\ Maximum of 20 \ mA \ source \ current \\ in \ all \ I/Os. \end{array}$
V _{OH10}	High output voltage Port 1 pins with 1.8 V LDO regulator enabled	1.5	_	_	V	$\begin{array}{l} I_{OH} < 100 \ \mu\text{A}. \\ 3.0V \leq V_{DD} \leq 3.6 \ V. \\ 0 \ ^{\circ}\text{C} \leq T_A \leq 85 \ ^{\circ}\text{C}. \\ \text{Maximum of } 20 \ \text{mA source current} \\ \text{in all I/Os.} \end{array}$
V _{OL}	Low output voltage	_	-	0.75	V	I_{OL} = 20 mA, V_{DD} > 3.0 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5]).
I _{OH}	High level source current	-	-	20	mA	$V_{OH} = V_{DD} - 0.9$. See the limitations of the total current in the Notes for V_{OH} .
I _{OH2}	High level source current port 0, 2, or 3 pins	1	-	-	mA	$\label{eq:V_OH} \begin{array}{l} V_{OH} = V_{DD} - 0.9, \mbox{ for the limitations} \\ \mbox{ of the total current and } I_{OH} \mbox{ at other} \\ V_{OH} \mbox{ levels, see the Notes for } V_{OH}. \end{array}$
I _{OH4}	High level source current port 1 Pins with LDO regulator disabled	5	-	-	mA	$V_{OH} = V_{DD} - 0.9$, for the limitations of the total current and I _{OH} at other V _{OH} levels, see the Notes for V _{OH} .
I _{OL}	Low level sink current	20	-	-	mA	V_{OL} = 0.75 V, see the limitations of the total current in the Notes for V_{OL}
V _{IL}	Input low voltage	-	-	0.8	V	$3.6~V \leq V_{DD} \leq 5.25~V$
V _{IH}	Input high voltage	2.0	-	_	V	$3.6~V \leq V_{DD} \leq 5.25~V$
V _H	Input hysteresis voltage	-	140	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA
C _{IN}	Capacitive load on pins as input	0.5	1.7	5	pF	Package and pin dependent Temperature = 25 °C
C _{OUT}	Capacitive load on pins as output	0.5	1.7	5	pF	Package and pin dependent Temperature = 25 °C

DC Programming Specifications

Table 17 lists the guaranteed minimum and maximum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only. Flash endurance and retention specifications with the use of the EEPROM User Module are valid only within the range: 25 °C +/-20C during the Flash Write operation. Reference the EEPROM User Module datasheet instructions for EEPROM flash write requirements outside of the 25 °C +/-20 °C temperature window.

Table 17.	DC Programming	Specifications
-----------	----------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools
V _{DDLV}	Low V _{DD} for verify	2.4	2.5	2.6	V	This specification applies to the functional requirements of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	2.7	_	5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	-	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output low voltage during programming or verify	-	-	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block)	50,000 ^[21]	_	-	-	Erase/write cycles per block.
Flash _{ENT}	Flash endurance (total) ^[20]	1,800,000	-	-	-	Erase/write cycles.
Flash _{DR}	Flash data retention	10	-	-	Years	

Notes

^{20.} A maximum of 36 × 50,000 block endurance cycles is allowed. This is balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36 × 2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and that no single block ever sees more than 50,000 cycles).

^{21.} The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V and 4.75 V to 5.25 V.

AC External Clock Specifications

Table 24, Table 25, Table 26, and Table 27 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 24. 5-V AC External Clock Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{OSCEXT}	Frequency	0.750	-	12.6	MHz	
_	High period	38	-	5300	ns	
_	Low period	38	-	-	ns	
-	Power-up IMO to switch	150	-	-	μs	

Table 25. 3.3-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.750	_	12.6	MHz	Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
_	High period with CPU clock divide by 1	41.7	-	5300	ns	
-	Low period with CPU clock divide by 1	41.7	-	-	ns	
-	Power-up IMO to switch	150	-	—	μs	

Table 26. 2.7-V (Nominal) AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.750	-	3.08	MHz	Maximum CPU frequency is 3 MHz at 2.7 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.15	-	6.35	MHz	If the frequency of the external clock is greater than 3 MHz, the CPU clock divider is set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
-	High period with CPU clock divide by 1	160	-	5300	ns	
-	Low period with CPU clock divide by 1	160	-	_	ns	
-	Power-up IMO to switch	150	-	-	μs	

Table 27. 2.7-V (Minimum) AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Foscext	Frequency with CPU clock divide by 1	0.750	_	6.3	MHz	Maximum CPU frequency is 6 MHz at 2.7 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.15	_	12.6	MHz	If the frequency of the external clock is greater than 6 MHz, the CPU clock divider is set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.
-	High period with CPU clock divide by 1	160	-	5300	ns	
-	Low period with CPU clock divide by 1	160	-	-	ns	
-	Power-up IMO to switch	150	_	_	μs	

AC SPI Specifications

Table 31 and Table 32 list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.

Table 31. SPI Master AC Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	-	-	12	MHz
DC _{SCLK}	SCLK duty cycle	-	-	50	-	%
t _{SETUP}	MISO to SCLK setup time	-	40	-	-	ns
t _{HOLD}	SCLK to MISO hold time	-	40	-	-	ns
t _{OUT_VAL}	SCLK to MOSI valid time	-	-	-	40	ns
t _{оит_н}	MOSI high time	-	40	_	-	ns

Table 32. SPI Slave AC Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	_	-	4	MHz
t _{LOW}	SCLK low time	-	41.67	-	-	ns
t _{HIGH}	SCLK high time	-	41.67	-	-	ns
t _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
t _{HOLD}	SCLK to MOSI hold time	-	50	-	-	ns
t _{SS_MISO}	SS low to MISO valid	-	-	-	153	ns
t _{SCLK_MISO}	SCLK to MISO valid	-	-	-	125	ns
t _{SS_HIGH}	SS high time	-	50	-	-	ns
t _{SS_SCLK}	Time from SS low to first SCLK	-	2/F _{SCLK}	-	-	ns
t _{SCLK_SS}	Time from last SCLK to SS high	_	2/F _{SCLK}	_	-	ns

Figure 15. 16-Pin SOIC (150 Mils)

Figure 17. 16-pin (3 × 3 mm × 0.6 Max) COL (Sawn)

19 UUUUU 0.50<u>+</u>0.05 -2.65±0.10- \subset Cđ 0.25+0.07 Π -0.40 ± 0.10 ⊷ 2.65±0.10 -

NOTES :

- 1. HATCH IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT : $29 \pm 3 \text{ mg}$
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

PIN# 1 ID

NOTES:

CY8C20134/CY8C20234/CY8C20334 CY8C20434/CY8C20534/CY8C20634

Figure 19. 32-Pin QFN 5 × 5 × 0.55 mm (Sawn)

1.25 REF-

51-85079 *F

- <u>0.55</u> 0.95

 $-\frac{0.22}{0.38}$

Figure 21. 30-Ball (1.85 × 2.31 × 0.40 mm) WLCSP

Important Note For information on the preferred dimensions for mounting the QFN packages, see the application note *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845* available at http://www.cypress.com. It is important to note that pinned vias for thermal conduction are not required for the low power 24, 32, and 48-pin QFN PSoC devices.

Thermal Impedances

Table 33 illustrates the minimum solder reflow peak temperature to achieve good solderability.

Table 33. Thermal Impedances Per Package

Package	Typical θ _{JA} ^[28]
8 SOIC	127 °C/W
16 SOIC	80 °C/W
16 QFN	46 °C/W
24 QFN ^[29]	25 °C/W
28 SSOP	96 °C/W
30 WLCSP	54 °C/W
32 QFN ^[29]	27 °C/W
48 QFN ^[29]	28 °C/W

Solder Reflow Specifications

Table 34 shows the solder reflow temperature limits that must not be exceeded.

Table 34. Solder Reflow Specifications

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
8-Pin SOIC	260 °C	30 seconds
16-Pin SOIC	260 °C	30 seconds
16-Pin QFN	260 °C	30 seconds
24-Pin QFN	260 °C	30 seconds
28-Pin SSOP	260 °C	30 seconds
30-Pin WLCSP	260 °C	30 seconds
32-Pin QFN	260 °C	30 seconds
48-Pin QFN	260 °C	30 seconds

Notes

^{28.} $T_J = T_A + Power \times \theta_{JA}$. 29. To achieve the thermal impedance specified for the QFN package, refer to application note *Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845* available at http://www.cypress.com.

^{30.} Higher temperatures is required based on the solder melting point. Typical temperatures for solder are 220 ±5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Ordering Information

Table 36 lists the CY8C20234, CY8C20334, CY8C20434, CY8C20534, and CY8C20634 PSoC device's key package features and ordering codes.

Table 36.	PSoC Device K	ev Features	and Ordering	Information
14010 001		o	and eraoning	

Ordering Code	Package	Flash (Bytes)	SRAM (Bytes)	Digital Blocks	CapSense- Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
CY8C20134-12SXI	8-Pin SOIC	8 K	512	0	1	6	6	0	No
CY8C20234-12SXI	16-Pin SOIC	8 K	512	0	1	13	13	0	Yes
CY8C20234-12SXIT	16-pin SOIC	8 K	512	0	1	13	13	0	Yes
CY8C20534-12PVXI	28-Pin SSOP	8 K	512	0	1	24	24 ^[31]	0	Yes
CY8C20534-12PVXIT	28-Pin SSOP	8 K	512	0	1	24	24 ^[31]	0	Yes
CY8C20000-12LFXI	48-Pin OCD QFN ^[16]	8 K	512	0	1	28	28 ^[31]	0	Yes
CY8C20234-12LKXI	16-Pin (3 × 3 mm 0.60 Max) Sawn QFN	8 K	512	0	1	13	13 ^[31]	0	Yes
CY8C20234-12LKXIT	16-Pin (3 × 3 mm 0.60 Max) Sawn QFN (Tape and Reel)	8 K	512	0	1	13	13 ^[31]	0	Yes
CY8C20334-12LQXI	24-Pin (4 × 4 mm 0.60 Max) Sawn QFN	8 K	512	0	1	20	20 ^[31]	0	Yes
CY8C20334-12LQXIT	24-Pin (4 × 4 mm 0.60 Max) Sawn QFN (Tape and Reel)	8 K	512	0	1	20	20 ^[31]	0	Yes
CY8C20434-12LQXI	32-Pin (5 × 5 mm 0.60 Max) Thin Sawn QFN	8 K	512	0	1	28	28	0	Yes
CY8C20434-12LQXIT	32-Pin (5 × 5 mm 0.60 Max) Thin Sawn QFN (Tape and Reel)	8 K	512	0	1	28	28	0	Yes
CY8C20634-12FDXI	30-Ball WLCSP	8 K	512	0	1	27	27	0	Yes
CY8C20634-12FDXIT	30-Ball WLCSP (Tape and Reel)	8 K	512	0	1	27	27	0	Yes

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Ordering Code Definitions

Document Conventions

Units of Measure

Table 38 lists the unit sof measures.

Table 38. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	ms	millisecond
pF	picofarad	ns	nanosecond
kHz	kilohertz	ps	picosecond
MHz	megahertz	μV	microvolts
kΩ	kilohm	mV	millivolts
Ω	ohm	V	volts
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nanoampere	%	percent
μs	microsecond		

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.
bias	1. A systematic deviation of a value from a reference value.
	 I ne amount by which the average of a set of values departs from a reference value. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

Glossary

External Reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
Flash	An electrically programmable and erasable, non-volatile technology that provides you the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is OFF.
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .
microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.

Glossary

modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
Phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
Power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is a type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on-Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.
serial	 Pertaining to a process in which all events occur one after the other. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.

Document History Page

Document Title: CY8C20134/CY8C20234/CY8C20334/CY8C20434/CY8C20534/CY8C20634, PSoC [®] Programmable System-on-Chip™ Document Number: 001-05356				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*Q	3638597	BVI	06/06/2012	Updated F_{SCLK} parameter in the Table 32, "SPI Slave AC Specifications," on page 31. Changed t_{OUT_HIGH} to t_{OUT_H} in Table 31, "SPI Master AC Specifications," on page 31 Updated package diagrams: 001-13937 to *D 001-44613 to *B Removed obsolete specs 001-17397 and 001-14503 referenced in page 40
*R	4306760	PRKU	03/26/2014	Added note to connect all V _{SS} pins to one common GND plane. Updated 16-pin COL (Sawn) package drawing.
*S	4455557	DIMA	08/13/2014	Replaced references of "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" with "Design Guidelines for Cypress Quad Flat No Extended Lead (QFN) Packaged Devices – AN72845" in all instances across the document. Added CapSense Design Resources. Updated Ordering Information: Updated Table 36: Added CY8C20234-12SXIT and its corresponding details.
*T	4748586	DIMA	05/14/2015	Removed "CapSense Design Resources". Added More Information. Updated Packaging Dimensions: spec 51-85066 – Changed revision from *F to *G. spec 001-13937 – Changed revision from *E to *F. spec 51-85079 – Changed revision from *E to *F. Updated to new template. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2005-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-05356 Rev. *T

Revised May 14, 2015

Page 50 of 50

PSoC Designer[™] and Programmable System-on-Chip[™] are trademarks and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.