

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6527t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6.5.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high. To adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low. To compensate, increment OSCTUNE to increase the clock frequency.

2.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is much greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.6.5.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast. To compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow. To compensate, increment the OSCTUNE register.

2.7 Clock Sources and Oscillator Switching

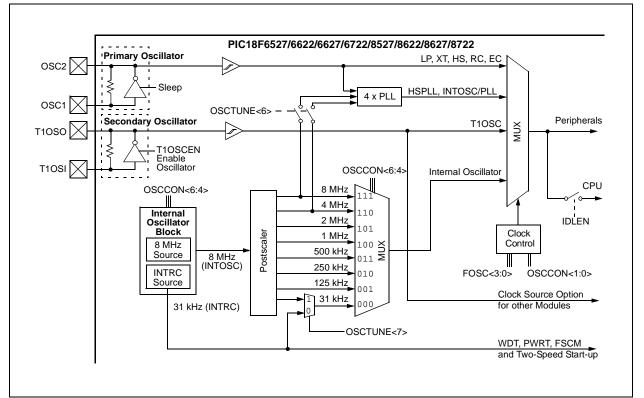
The PIC18F8722 family of devices includes a feature that allows the device clock source to be switched from the main oscillator to an alternate clock source. These devices also offer two alternate clock sources. When an alternate clock source is enabled, the various power-managed operating modes are available.

Essentially, there are three clock sources for these devices:

- Primary oscillators
- Secondary oscillators
- Internal oscillator block

The **primary oscillators** include the External Crystal and Resonator modes, the External RC modes, the External Clock modes and the internal oscillator block. The particular mode is defined by the FOSC<3:0> Configuration bits. The details of these modes are covered earlier in this chapter. The **secondary oscillators** are those external sources not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode.

The PIC18F8722 family of devices offers the Timer1 oscillator as a secondary oscillator. This oscillator, in all power-managed modes, is often the time base for functions such as a real-time clock.


Most often, a 32.768 kHz watch crystal is connected between the RC0/T1OSO/T13CKI and RC1/T1OSI pins. Like the LP mode oscillator circuit, loading capacitors are also connected from each pin to ground.

The Timer1 oscillator is discussed in greater detail in **Section 13.3 "Timer1 Oscillator"**.

In addition to being a primary clock source, the **internal oscillator block** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor.

The clock sources for the PIC18F8722 family of devices are shown in Figure 2-11. See **Section 25.0** "**Special Features of the CPU**" for Configuration register details.

FIGURE 2-11: PIC18F8722 FAMILY CLOCK DIAGRAM

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode, where the primary clock source is not stopped and
- the primary clock source is not any of the LP, XT, HS or HSPLL modes.

In these instances, the primary clock source either does not require an oscillator start-up delay since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC and INTIO Oscillator modes). However, a fixed delay of interval TCSD following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

TABLE 3-2:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Clock Source before Wake-up	Clock Source after Wake-up	Exit Delay	Clock Ready Status Bit (OSCCON)	
	LP, XT, HS			
Primary Device Clock	HSPLL	Tcsd ⁽¹⁾	OSTS	
(PRI_IDLE mode)	EC, RC	10.30 ()		
	INTOSC ⁽²⁾		IOFS	
	LP, XT, HS	Tost ⁽³⁾		
T1OSC or INTRC	HSPLL	Tost + t _{rc} ⁽³⁾	OSTS	
	EC, RC	TCSD ⁽¹⁾		
	INTOSC ⁽²⁾	TIOBST ⁽⁴⁾	IOFS	
	LP, XT, HS	Tost ⁽⁴⁾		
INTOSC ⁽²⁾	HSPLL	Tost + t _{rc} ⁽³⁾	OSTS	
	EC, RC	Tcsd ⁽¹⁾		
	INTOSC ⁽²⁾	None	IOFS	
	LP, XT, HS	Tost ⁽³⁾		
None	HSPLL	Tost + t _{rc} ⁽³⁾	OSTS	
(Sleep mode)	EC, RC	Tcsd ⁽¹⁾		
	INTOSC ⁽²⁾	TIOBST ⁽⁴⁾	IOFS	

Note 1: TCSD (parameter 38, Table 28-12) is a required delay when waking from Sleep and all Idle modes and runs concurrently with any other required delays (see Section 3.4 "Idle Modes").

2: Includes both the INTOSC 8 MHz source and postscaler derived frequencies. On Reset, INTOSC defaults to 1 MHz.

3: TOST is the Oscillator Start-up Timer (parameter 32, Table 28-12). t_{rc} is the PLL Lock-out Timer (parameter F12, Table 28-7); it is also designated as TPLL.

4: Execution continues during TIOBST (parameter 39, Table 28-12), the INTOSC stabilization period.

4.2 Master Clear (MCLR)

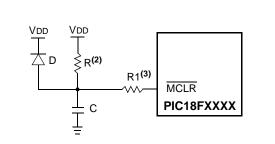
The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In the PIC18F8722 family of devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See Section 11.5 "PORTE, TRISE and LATE Registers" for more information.

4.3 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.


To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004, "Section **28.2** "**DC Characteristics: Power-Down and Supply Current**"). For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the POR bit (RCON<1>). The state of the bit is set to '0' whenever a POR occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any POR.

FIGURE 4-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)⁽¹⁾

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.

5.1.5.2 Table Reads and Table Writes

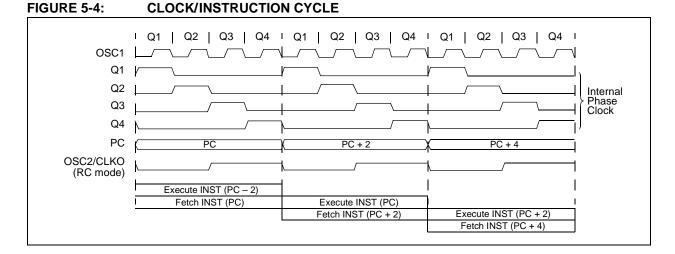
A better method of storing data in program memory allows two bytes of data to be stored in each instruction location.

Look-up table data may be stored two bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) register specifies the byte address and the Table Latch (TABLAT) register contains the data that is read from or written to program memory. Data is transferred to or from program memory one byte at a time.

Table read and table write operations are discussed further in Section 6.1 "Table Reads and Table Writes".

5.2 PIC18 Instruction Cycle

5.2.1 CLOCKING SCHEME


The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 5-4.

5.2.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 5-3).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 5-3: INSTRUCTION PIPELINE FLOW

_	Тсү0	TCY1	TCY2	TCY3	TCY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1				
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. BRA SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (Fo	orced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ address	s SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

NOTES:

7.0 EXTERNAL MEMORY BUS

Note: The External Memory Bus is not implemented on PIC18F6527/6622/6627/6722 (64-pin) devices.

The External Memory Bus (EMB) allows the device to access external memory devices (such as Flash, EPROM, SRAM, etc.) as program or data memory. It supports both 8-bit and 16-bit Data Width modes and four address widths from 8 to 20 bits. The bus is implemented with 28 pins, multiplexed across four I/O ports. Three ports (PORTD, PORTE and PORTH) are multiplexed with the address/data bus for a total of 20 available lines, while PORTJ is multiplexed with the bus control signals.

A list of the pins and their functions is provided in Table 7-1.

TABLE 7-1:	PIC18F8527/8622/8627/8722 EXTERNAL BUS – I/O PORT FUNCTIONS

Name	Port	Bit	External Memory Bus Function
RD0/AD0	PORTD	0	Address bit 0 or Data bit 0
RD1/AD1	PORTD	1	Address bit 1 or Data bit 1
RD2/AD2	PORTD	2	Address bit 2 or Data bit 2
RD3/AD3	PORTD	3	Address bit 3 or Data bit 3
RD4/AD4	PORTD	4	Address bit 4 or Data bit 4
RD5/AD5	PORTD	5	Address bit 5 or Data bit 5
RD6/AD6	PORTD	6	Address bit 6 or Data bit 6
RD7/AD7	PORTD	7	Address bit 7 or Data bit 7
RE0/AD8	PORTE	0	Address bit 8 or Data bit 8
RE1/AD9	PORTE	1	Address bit 9 or Data bit 9
RE2/AD10	PORTE	2	Address bit 10 or Data bit 10
RE3/AD11	PORTE	3	Address bit 11 or Data bit 11
RE4/AD12	PORTE	4	Address bit 12 or Data bit 12
RE5/AD13	PORTE	5	Address bit 13 or Data bit 13
RE6/AD14	PORTE	6	Address bit 14 or Data bit 14
RE7/AD15	PORTE	7	Address bit 15 or Data bit 15
RH0/A16	PORTH	0	Address bit 16
RH1/A17	PORTH	1	Address bit 17
RH2/A18	PORTH	2	Address bit 18
RH3/A19	PORTH	3	Address bit 19
RJ0/ALE	PORTJ	0	Address Latch Enable (ALE) Control pin
RJ1/OE	PORTJ	1	Output Enable (OE) Control pin
RJ2/WRL	PORTJ	2	Write Low (WRL) Control pin
RJ3/WRH	PORTJ	3	Write High (WRH) Control pin
RJ4/BA0	PORTJ	4	Byte Address bit 0 (BA0)
RJ5/CE	PORTJ	5	Chip Enable (CE) Control pin
RJ6/LB	PORTJ	6	Lower Byte Enable (LB) Control pin
RJ7/UB	PORTJ	7	Upper Byte Enable (UB) Control pin

Note: For the sake of clarity, only I/O port and external bus assignments are shown here. One or more additional multiplexed features may be available on some pins.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RB0/INT0/FLT0	RB0	0	0	DIG	LATB<0> data output.
		1	I	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared.
	INT0	1	I	ST	External interrupt 0 input.
	FLT0	1	Ι	ST	ECCPx PWM Fault input, enabled in software.
RB1/INT1	RB1	0	0	DIG	LATB<1> data output.
		1	I	TTL	PORTB<1> data input; weak pull-up when RBPU bit is cleared.
	INT1	1	I	ST	External interrupt 1 input.
RB2/INT2	RB2	0	0	DIG	LATB<2> data output.
		1	I	TTL	PORTB<2> data input; weak pull-up when RBPU bit is cleared.
	INT2	1	I	ST	External interrupt 2 input.
RB3/INT3/	RB3	0	0	DIG	LATB<3> data output.
ECCP2/P2A		1	I	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared and capture input is disabled.
	INT3	1	I	ST	External interrupt 3 input.
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output. Takes priority over port data.
		1	I	ST	ECCP2 capture input.
	P2A ⁽¹⁾	0	0	DIG	ECCP2 Enhanced PWM output, channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
RB4/KBI0	RB4	0	0	DIG	LATB<4> data output.
		1	I	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared.
	KBI0	1	I	TTL	Interrupt-on-pin change.
RB5/KBI1/PGM	RB5	0	0	DIG	LATB<5> data output
		1	I	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.
	KBI1	1	I	TTL	Interrupt-on-pin change.
	PGM	x	I	ST	Single-Supply Programming mode entry (ICSP). Enabled by LVP Configuration bit; all other pin functions disabled.
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.
		1	I	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.
	KBI2	1	I	TTL	Interrupt-on-pin change.
	PGC	х	I	ST	Serial execution (ICSP [™]) clock input for ICSP and ICD operation ⁽²⁾ .
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.
		1	I	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.
	KBI3	1	I	TTL	Interrupt-on-pin change.
	PGD	х	0	DIG	Serial execution data output for ICSP and ICD operation ⁽²⁾ .
		х	I	ST	Serial execution data input for ICSP and ICD operation ⁽²⁾ .

TABLE 11-3: PORTB FUNCTIONS

Legend: PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

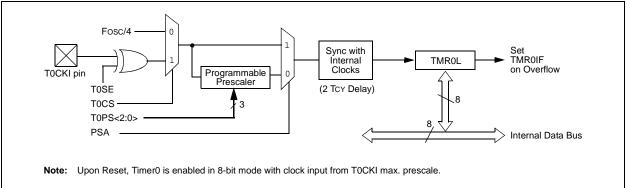
Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared (Microprocessor, Extended Microcontroller and Microcontroller with Boot Block modes, 80-pin devices only). Default assignment is RC1.

2: All other pin functions are disabled when ICSP or ICD operations are enabled.

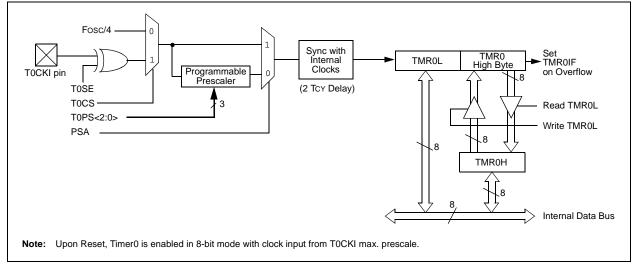
12.1 Timer0 Operation

Timer0 can operate as either a timer or a counter; the mode is selected with the TOCS bit (T0CON<5>). In Timer mode (T0CS = 0), the module increments on every clock by default unless a different prescaler value is selected (see **Section 12.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the TOCS bit (= 1). In this mode, Timer0 increments either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>); clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.


An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

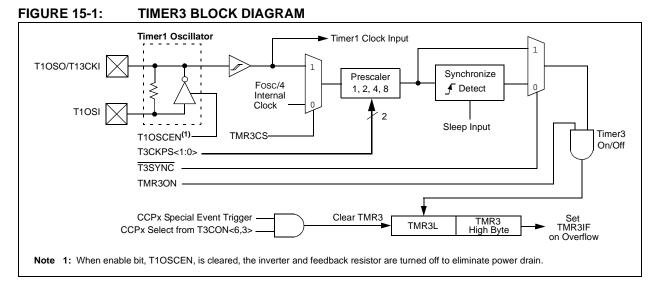
12.2 Timer0 Reads and Writes in 16-bit Mode


TMR0H is not the actual high byte of Timer0 in 16-bit mode; it is actually a buffered version of the real high byte of Timer0 which is not directly readable nor writable (refer to Figure 12-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

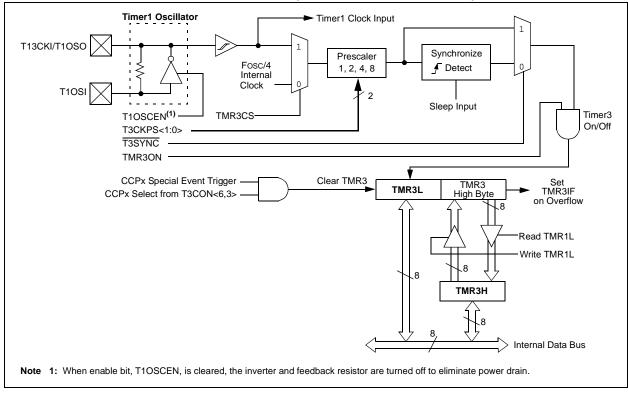
Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 12-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

FIGURE 12-2: TIMER0 BLOCK DIAGRAM (16-BIT MODE)


15.1 Timer3 Operation

Timer3 can operate in one of three modes:

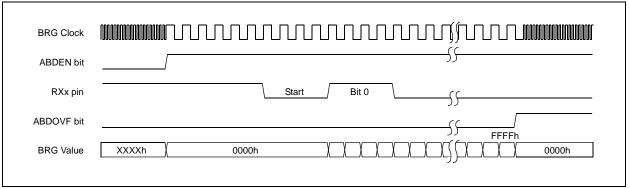

- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

As with Timer1, the RC1/T1OSI and RC0/T1OSO/ T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 15-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

REGISTER 18-3: ECCPxAS: ENHANCED CCP AUTO-SHUTDOWN CONFIGURATION REGISTER


SxBD0
bit (

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

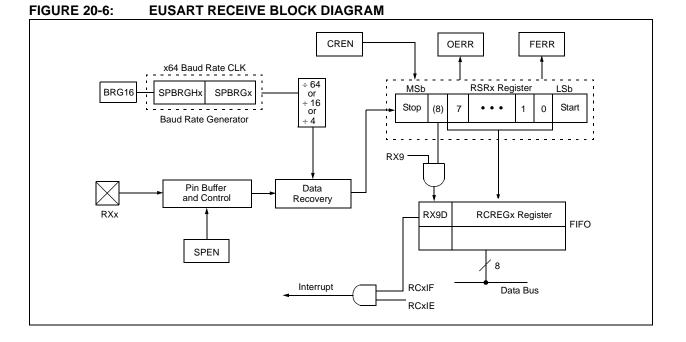
bit 7	ECCPxASE: ECCP Auto-Shutdown Event Status bit 0 = ECCP outputs are operating 1 = A shutdown event has occurred; ECCP outputs are in shutdown state
bit 6-4	ECCPxAS<2:0>: ECCP Auto-Shutdown Source Select bits 000 = Auto-shutdown is disabled 001 = Comparator 1 output 010 = Comparator 2 output 011 = Either Comparator 1 or 2 100 = FLT0 101 = FLT0 or Comparator 1 110 = FLT0 or Comparator 2 111 = FLT0 or Comparator 1 or Comparator 2
bit 3-2	PSSxAC<1:0>: Pins A and C Shutdown State Control bits 00 = Drive pins A and C to '0' 01 = Drive pins A and C to '1' 1x = Pins A and C tri-state
bit 1-0	PSSxBD<1:0>: Pins B and D Shutdown State Control bits 00 = Drive pins B and D to '0' 01 = Drive pins B and D to '1' 1x = Pins B and D tri-state

BRG Value	XXXXh	0000h	XXXXXXXXXXXXXXX001Ch
RXx pin		Edge #1 Edge #2 Start Bit 0 Bit 1 Bit 2 Bit 3	Edge #3 Edge #4 Edge #5 Bit 4 Bit 5 Bit 6 Bit 7 Stop Bit
BRG Clock	ົມທານທານສາມທານສາມທານກໍ່າ	www.iwwwwwwww	
ABDEN bit	Set by User —		Auto-Cleared
RCxIF bit (Interrupt)			
Read RCREGx			
SPBRGx		XXXXh	X 1Ch
SPBRGHx		XXXXh	∑ 00h

FIGURE 20-2: BRG OVERFLOW SEQUENCE

20.2.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 20-6. The data is received on the RXx pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.


To set up an Asynchronous Reception:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCxIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- Flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCxIE, was set.
- Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREGx register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

20.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- If interrupts are required, set the RCEN bit and select the desired priority level with the RCxIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- The RCxIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCxIE and GIE bits are set.
- 8. Read the RCSTAx register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREGx to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

BNC	Branch if N	lot Carry		BNN	Branch if I	Not Negative	e	
Syntax:	BNC n		Syntax:	BNN n	BNN n			
Operands:	-128 ≤ n ≤ ′	$-128 \le n \le 127$		Operands:	-128 ≤ n ≤	$-128 \le n \le 127$		
Operation:	if Carry bit is '0' (PC) + 2 + 2n \rightarrow PC		Operation:	if Negative bit is '0' (PC) + 2 + 2n \rightarrow PC				
Status Affected:	None			Status Affected:	None			
Encoding:	1110	0011 nn:	nn nnnn	Encoding:	1110	0111 n	nnn nnnn	
Description:	If the Carry will branch.	bit is '0', then	the program	Description:	If the Nega program w	tive bit is '0', ill branch.	, then the	
	added to th incremente instruction,	d to fetch the the new addre n. This instruc	e PC will have next ess will be		added to th incremente instruction,	d to fetch the the new add	the PC will have e next	
Words:	1			Words:	1			
Cycles:	1(2)			Cycles:	1(2)			
Q Cycle Activity: If Jump:				Q Cycle Activity: If Jump:				
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Decode	Read literal 'n'	Process Data	Write to PC	Decode	Read literal 'n'	Process Data	Write to PC	
No	No	No	No	No	No	No	No	
operation	operation	operation	operation	operation	operation	operation	operation	
If No Jump:				If No Jump:				
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Decode	Read literal 'n'	Process Data	No operation	Decode	Read literal 'n'	Process Data	No operation	
Example:	HERE	BNC Jump		Example:	HERE	BNN Jun	np	
Before Instru PC After Instruct If Carry PC	= ad ion = 0;	dress (HERE		Before Instru PC After Instruct If Negat PC	= ac ion ive = 0;	ldress (HER		
	C = ad = 1;	dress (Jump) dress (HERE			; = ac ive = 1;	ldress (Jum ldress (HER	- /	

SUB	WFB	Subtract	W from f	with Bor	·ow					
Synta	ax:	SUBWFB	f {,d {,a}	}						
	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$								
•	ation:		$-(\overline{C}) \rightarrow de$	st						
	s Affected:		N, OV, C, DC, Z							
Enco	-	0101	10da	ffff	ffff					
Desc	ription:	from regis method). in W. If 'd'	ster 'f' (2's If 'd' is '0', is '1', the i	and the Carry flag (borrow) er 'f' (2's complement 'd' is '0', the result is stored '1', the result is stored back ' (default).						
		If 'a' is '1',		e Access Bank is selected. e BSR is used to select the default).						
		If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.								
Word	ls:	1								
Cycle		1								
QC	ycle Activity:	0.0		_	.					
	Q1 Decode	Q2 Read	Q: Proce		Q4 Write to					
	Decoue	register 'f'	Dat		estination					
<u>Exan</u>	nple 1:	SUBWFB	REG,	1, 0						
	Before Instruct	ion								
	REG W C	= 19h = 0Dh = 1	(000 (000	1 1001) 0 1101)						
	After Instructio									
	REG W C Z	= 0Ch = 0Dh = 1 = 0	(000 (000	0 1011) 0 1101)						
	N	= 0 = 0	; result is positive							
Exan	nple 2:	SUBWFB	REG, 0	, 0						
	Before Instruct									
	REG W C	= 1Bh = 1Ah = 0		1 1011) 1 1010)						
	After Instructio REG W	= 1Bh = 00h	(000	1 1011)						
	C Z N	= 1 = 1 = 0	; resu	lt is zero						
	nple 3:	SUBWFB	REG,	1, 0						
	Before Instruct REG W C	ion = 03h = 0Eh = 1		0 0011) 0 1101)						
	After Instructio REG	= F5h		1 0100) comp]						
	W C Z N	= 0Eh = 0 = 0	(000	0 1101)						
	N	= 1	; resu	lt is nega	tive					

SWAPF	Swap f			
Syntax:	SWAPF f	{,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$			
Operation:	(f<3:0>) → (f<7:4>) →			
Status Affected:	None			
Encoding:	0011	10da	ffff	ffff
Description:	The upper 'f' are exch is placed ir placed in re	anged. If wW. If 'd'	'd' is '0', t is '1', the	he result
	If 'a' is '0', t If 'a' is '1', t GPR bank	he BSR	is used to	
	If 'a' is '0' a set is enab in Indexed mode when Section 26 Bit-Oriento Literal Offi	led, this i Literal O never f ≤ 5.2.3 "By ed Instru	nstruction ffset Addro 95 (5Fh). te-Oriento ctions in	operates essing See ed and Indexed
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4
Decode	Read register 'f'	Proce Data		Vrite to stination
Example:	SWAPF I	REG, 1,	0	
Before Instruc				
REG After Instructio REG	= 53h on = 35h			

27.11 PICSTART[®] Plus Development Programmer

The PICSTART[®] Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

27.12 PICkit[™] 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

27.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

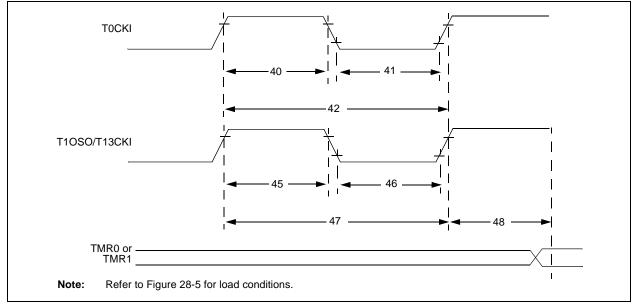

DC CH/	ARACTE	ERISTICS					unless otherwise stated) ≤ +85°C for industrial
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Data EEPROM Memory					
D120	ED	Byte Endurance	100K	1M	—	E/W	-40°C to +85°C
D121	Vdrw	VDD for Read/Write	Vmin	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	_	4	—	ms	
D123	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽¹⁾	1M	10M	—	E/W	-40°C to +85°C
D125	IDDP	Supply Current during Programming	_	10	—	mA	
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	5.5	V	VMIN = Minimum operating voltage
D132B	Vpew	VDD for Self-Timed Write and Row Erase	VMIN	—	5.5	V	VMIN = Minimum operating voltage
D133A	Tiw	Self-Timed Write Cycle Time	_	2	—	ms	
D134	TRETD	Characteristic Retention	40	100	-	Year	Provided no other specifications are violated
D135	Iddp	Supply Current during Programming	_	10	—	mA	

TABLE 28-1:	MEMORY PROGRAMMING REQUIREMENTS
-------------	---------------------------------

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Refer to Section 8.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

FIGURE 28-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS



Param No.	Symbol		Characterist	ic	Min	Max	Units	Conditions
40	T⊤0H	T0CKI High	Pulse Width	No prescaler	0.5 Tcy + 20	—	ns	
				With prescaler	10	—	ns	
41	T⊤0L	T0CKI Low	Pulse Width	No prescaler	0.5 Tcy + 20	—	ns	
				With prescaler	10	—	ns	
42	T⊤0P	T0CKI Peri	bd	No prescaler	Tcy + 10	—	ns	
				With prescaler	Greater of: 20 ns or (TcY + 40)/N		ns	N = prescale value (1, 2, 4,, 256)
45	T⊤1H	T13CKI	Synchronous, no	o prescaler	0.5 Tcy + 20	—	ns	
	High Time		Synchronous,	PIC18FXXXX	10	—	ns	
			with prescaler	PIC18LFXXXX	25	—	ns	VDD = 2.0V
			Asynchronous	PIC18FXXXX	30	_	ns	
				PIC18LFXXXX	50	_	ns	VDD = 2.0V
46	T⊤1L	T13CKI	Synchronous, no	o prescaler	0.5 TCY + 5	_	ns	
		Low Time	Synchronous,	PIC18FXXXX	10	_	ns	
			with prescaler	PIC18LFXXXX	25	_	ns	VDD = 2.0V
			Asynchronous	PIC18FXXXX	30	_	ns	
				PIC18LFXXXX	50	_	ns	VDD = 2.0V
47	TT1P	T13CKI Input Period	Synchronous		Greater of: 20 ns or (TcY + 40)/N		ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	_	ns	
	F⊤1	T13CKI Os	cillator Input Freq	uency Range	DC	50	kHz	
48	TCKE2TMRI	Delay from Timer Incre	External T13CKI ment	Clock Edge to	2 Tosc	7 Tosc		

TABLE 28-13:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
---------------------	---

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	;
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		80	
Lead Pitch	е		0.50 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	φ	0°	3.5°	7°
Overall Width	E		14.00 BSC	
Overall Length	D		14.00 BSC	
Molded Package Width	E1		12.00 BSC	
Molded Package Length	D1		12.00 BSC	
Lead Thickness	С	0.09	_	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

PORTA	
Associated Registers	136
Functions	
LATA Register	
PORTA Register	
TRISA Register	
PORTB	100
Associated Registers	120
-	
Functions	
LATB Register	
PORTB Register	137
RB7:RB4 Interrupt-on-Change Flag	
(RBIF Bit)	137
TRISB Register	137
PORTC	
Associated Registers	142
Functions	
LATC Register	
PORTC Register	
RC3/SCKx/SCLx Pin	
TRISC Register	
PORTD	
Associated Registers	
Functions	
LATD Register	143
PORTD Register	143
TRISD Register	143
PORTE	
Analog Port Pins	158
Associated Registers	
Functions	
LATE Register	
	140
PSP Mode Select (PSPMODE Bit)	
RE0/ <u>RD</u> Pin	
RE1/ <u>WR</u> Pin	
RE2/CS Pin	158
TRISE Register	146
PORTF	
Associated Registers	150
Functions	
LATF Register	
PORTF Register	
TRISF Register	149
	150
Associated Registers	
Functions	
LATG Register	151
PORTG Register	
TRISG Register	151
PORTH	
Associated Registers	155
Functions	
LATH Register	
PORTH Register	
TRISH Register	
PORTJ	104
	457
Associated Registers	
Functions	
LATJ Register	
PORTJ Register	
TRISJ Register	156

Power-Managed Modes 41
and A/D Operation278
and EUSART Operation251
and Multiple Sleep Commands 42
and PWM Operation
and SPI Operation
Associated Registers 109
Clock Transitions and Status Indicators
Effects on Clock Sources
Entering
by Interrupt
by WDT Time-out
Without a Start-up Delay
Idle Modes
PRI IDLE
RC_IDLE
SEC_IDLE
Run Modes
PRI_RUN
RC_RUN
SEC RUN
Selecting
Sleep Mode
Summary (table)
Power-on Reset (POR)
Power-up Timer (PWRT)53
Time-out Sequence
Power-up Delays
Power-up Timer (PWRT) 40
Prescaler
Timer2 193
Timer2
Timer2193Prescaler, Timer0163Prescaler, Timer2185
Timer2 193 Prescaler, Timer0 163 Prescaler, Timer2 185 PRI_IDLE Mode 46
Timer2 193 Prescaler, Timer0 163 Prescaler, Timer2 185 PRI_IDLE Mode 46 PRI_RUN Mode 42 Program Counter 66 PCL, PCH and PCU Registers 66
Timer2 193 Prescaler, Timer0 163 Prescaler, Timer2 185 PRI_IDLE Mode 46 PRI_RUN Mode 42
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memory66
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Set85Code Protection318
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Set85
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64Microcontroller Mode63
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64Microcontroller Mode63Microprocessor Mode63
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64Microprocessor Mode63Microprocessor with Boot Block Mode63
Timer2 193 Prescaler, Timer0 163 Prescaler, Timer2 185 PRI_IDLE Mode 46 PRI_RUN Mode 42 Program Counter 66 PCL, PCH and PCU Registers 66 PCLATH and PCLATU Registers 66 Program Memory and Extended Instruction Set 85 Code Protection 318 51 Extended Microcontroller Mode 63 10 Instructions 70 70 Two-Word 71 11 Interrupt Vector 63 68 Map and Stack (diagram) 64 Microprocessor Mode 63 Microprocessor with Boot Block Mode 63 Reset Vector 63
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64Microprocessor Mode63Microprocessor with Boot Block Mode63Program Verification and Code Protection317
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64Microprocessor Mode63Microprocessor with Boot Block Mode63Reset Vector63Program Verification and Code Protection317Associated Registers318
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64Microprocessor Mode63Microprocessor with Boot Block Mode63Reset Vector63Program Verification and Code Protection317Associated Registers318Programming, Device Instructions321
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64Microprocessor Mode63Microprocessor With Boot Block Mode63Program Verification and Code Protection317Associated Registers318Programming, Device Instructions321PSP. See Parallel Slave Port.53
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64Microprocessor Mode63Microprocessor with Boot Block Mode63Program Verification and Code Protection317Associated Registers318Programming, Device Instructions321PSP. See Parallel Slave Port.Pulse-Width Modulation. See PWM (CCP Module)
Timer2 193 Prescaler, Timer0 163 Prescaler, Timer2 185 PRI_IDLE Mode 46 PRI_RUN Mode 42 Program Counter 66 PCL, PCH and PCU Registers 66 PCLATH and PCLATU Registers 66 Program Memory and Extended Instruction Set 85 Code Protection 318 Extended Microcontroller Mode 63 Instructions 70 Two-Word 71 Interrupt Vector 63 Look-up Tables 68 Map and Stack (diagram) 64 Microprocessor Mode 63 Microprocessor With Boot Block Mode 63 Program Verification and Code Protection 317 Associated Registers 318 Programming, Device Instructions 321 PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). and PWM (ECCP Module).
Timer2193Prescaler, Timer0163Prescaler, Timer2185PRI_IDLE Mode46PRI_RUN Mode42Program Counter66PCL, PCH and PCU Registers66PCLATH and PCLATU Registers66Program Memoryand Extended Instruction Setand Extended Instruction Set85Code Protection318Extended Microcontroller Mode63Instructions70Two-Word71Interrupt Vector63Look-up Tables68Map and Stack (diagram)64Microprocessor Mode63Microprocessor With Boot Block Mode63Program Verification and Code Protection317Associated Registers318Programing, Device Instructions321PSP.See Parallel Slave Port.Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module).PUSH350
Timer2 193 Prescaler, Timer0 163 Prescaler, Timer2 185 PRI_IDLE Mode 46 PRI_RUN Mode 42 Program Counter 66 PCL, PCH and PCU Registers 66 PCLATH and PCLATU Registers 66 Program Memory and Extended Instruction Set 85 Code Protection 318 Extended Microcontroller Mode 63 Instructions 70 Two-Word 71 Interrupt Vector 63 Look-up Tables 68 Map and Stack (diagram) 64 Microprocessor Mode 63 Microprocessor With Boot Block Mode 63 Program Verification and Code Protection 317 Associated Registers 318 Programming, Device Instructions 321 PSP. See Parallel Slave Port. Pulse-Width Modulation. See PWM (CCP Module) and PWM (ECCP Module). and PWM (ECCP Module).