

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6622t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/80-Pin, 1-Mbit, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology

Power Management Features:

- Run: CPU On, Peripherals On
- Idle: CPU Off, Peripherals On
- Sleep: CPU Off, Peripherals Off
- Ultra Low 50 nA Input Leakage
- Run mode Currents Down to 25 μA Typical
- Idle mode Currents Down to 6.8 µA Typical
- Sleep mode Current Down to 120 nA Typical
- Timer1 Oscillator: 900 nA, 32 kHz, 2V
- Watchdog Timer: 1.6 μA, 2V Typical
- Two-Speed Oscillator Start-up

Flexible Oscillator Structure:

- Four Crystal modes, up to 40 MHz
- 4x Phase Lock Loop (PLL) Available for Crystal and Internal Oscillators
- Internal Oscillator Block:
 - Fast wake from Sleep and Idle, 1 μs typical
 - Provides a complete range of clock speeds
 - from 31 kHz to 32 MHz when used with PLL
- User-tunable to compensate for frequency drift
- Secondary oscillator using Timer1 @ 32 kHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops

Peripheral Highlights:

- High-Current Sink/Source 25 mA/25 mA
- Three Programmable External Interrupts
- Four Input Change Interrupts
- Enhanced Capture/Compare/PWM (ECCP) module (40/44-pin devices only):
 - One, two or four PWM outputs
 - Programmable dead time
 - Auto-shutdown and auto-restart

Peripheral Highlights (Continued):

- Up to 2 Capture/Compare/PWM (CCP) modules, one with Auto-Shutdown (28-pin devices)
- Master Synchronous Serial Port (MSSP) module Supporting 3-Wire SPI (all 4 modes) and I²C[™] Master and Slave modes
- Enhanced Addressable USART module:
 - Supports RS-485, RS-232 and LIN/J2602
 - RS-232 operation using internal oscillator block (no external crystal required)
- 10-Bit, up to 13-Channel Analog-to-Digital (A/D) Converter module:
 - Conversion available during Sleep
- Dual Analog Comparators with Input Multiplexing
- Programmable 16-Level High/Low-Voltage Detection (HLVD) module

Special Microcontroller Features:

- C Compiler Optimized Architecture
- 100,000 Erase/Write Cycle Enhanced Flash Program Memory Typical
- 1,000,000 Erase/Write Cycle Data EEPROM Memory Typical
- Flash/Data EEPROM Retention: 100 Years Typical
- Self-Programmable under Software Control
- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
 - Programmable period from 4 ms to 131s
- Single-Supply 5V In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- In-Circuit Debug (ICD) via Two Pins
- Wide Operating Voltage Range: 2.0V to 5.5V
- Programmable Brown-out Reset (BOR) with Software Enable Option

	Prog	ram Memory	Data Memory			10-Bit	CCP/		MSSI	c	E	tors	it s	Bus
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	I/O	A/D	ECCP (PWM)		SPI	Master I ² C™	EUSAR	Comparators	Timers 8/16-Bit	External
PIC18F6527	48K	24576	3936	1024	54	12	2/3	2	Y	Y	2	2	2/3	Ν
PIC18F6622	64K	32768	3936	1024	54	12	2/3	2	Y	Y	2	2	2/3	Ν
PIC18F6627	96K	49152	3936	1024	54	12	2/3	2	Y	Y	2	2	2/3	Ν
PIC18F6722	128K	65536	3936	1024	54	12	2/3	2	Y	Y	2	2	2/3	Ν
PIC18F8527	48K	24576	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y
PIC18F8622	64K	32768	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y
PIC18F8627	96K	49152	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y
PIC18F8722	128K	65536	3936	1024	70	16	2/3	2	Y	Y	2	2	2/3	Y

Din Nama	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF0/AN5	18			
RF0		I/O	ST	Digital I/O.
AN5		I	Analog	Analog input 5.
RF1/AN6/C2OUT	17	1/0	07	
RF1 AN6		I/O I	ST Analog	Digital I/O. Analog input 6.
C2OUT		0	Analog	Comparator 2 output.
	10	Ŭ		
RF2/AN7/C1OUT RF2	16	I/O	ST	Digital I/O.
AN7		1/0	Analog	Analog input 7.
C1OUT		ò		Comparator 1 output.
RF3/AN8	15			
RF3	15	I/O	ST	Digital I/O.
AN8		1/0	Analog	Analog input 8.
RF4/AN9	14		Ű	
RF4	14	I/O	ST	Digital I/O.
AN9		"U	Analog	Analog input 9.
RF5/AN10/CVREF	13		5	
RF5	13	I/O	ST	Digital I/O.
AN10		"." I	Analog	Analog input 10.
CVREF		0	Analog	Comparator reference voltage output.
RF6/AN11	12			
RF6		I/O	ST	Digital I/O.
AN11		I	Analog	Analog input 11.
RF7/SS1	11			
RF7		I/O	ST	Digital I/O.
SS1		I	TTL	SPI slave select input.
	compatible input	CMO		= CMOS compatible input or output
		-	OS levels	Analog= Analog input
I = Input P = Powe		O I ² C™		 Output I²C/SMBus input buffer
				ion bit, CCP2MX, is set.

TABLE 1-3:	PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)
IADLL I-J.	

1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set. Note

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

4.2 Master Clear (MCLR)

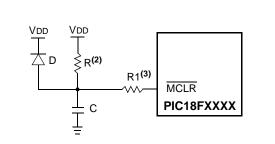
The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In the PIC18F8722 family of devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See Section 11.5 "PORTE, TRISE and LATE Registers" for more information.

4.3 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.


To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004, "Section **28.2** "**DC Characteristics: Power-Down and Supply Current**"). For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the POR bit (RCON<1>). The state of the bit is set to '0' whenever a POR occurs; it does not change for any other Reset event. POR is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any POR.

FIGURE 4-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)⁽¹⁾

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.

4.4 Brown-out Reset (BOR)

The PIC18F8722 family of devices implements a BOR circuit that provides the user with a number of configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits. There are a total of four BOR configurations which are summarized in Table 4-1.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below VBOR (parameter D005, **Section 28.1 "DC Characteristics"**) for greater than TBOR (parameter 35, Table 28-12) will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

If the Power-up Timer is enabled, it will be invoked after VDD rises above VBOR; it then will keep the chip in Reset for an additional time delay, TPWRT (parameter 33, Table 28-12). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

BOR and the Power-on Timer (PWRT) are independently configured. Enabling BOR Reset does not automatically enable the PWRT.

4.4.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<6>). Setting SBOREN enables the BOR to function as previously described. Clearing SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise it is read as '0'.

Placing the BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change the BOR configuration. It also allows the user to tailor device power consumption in software by eliminating the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

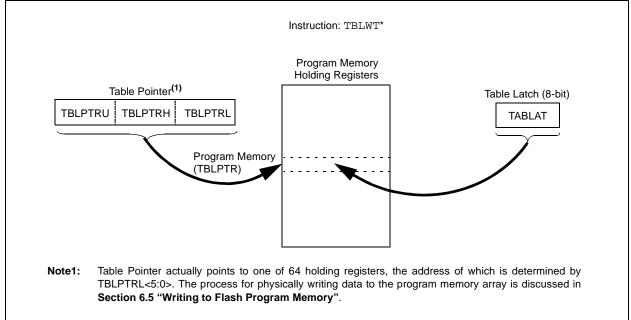
Note:	Even when BOR is under software control, the BOR Reset voltage level is still set by
	the BORV<1:0> Configuration bits. It cannot be changed in software.

4.4.2 DETECTING BOR

When BOR is enabled, the BOR bit always resets to '0' on any BOR or POR event. This makes it difficult to determine if a BOR event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any POR event. If BOR is '0' while POR is '1', it can be reliably assumed that a BOR event has occurred.

4.4.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, the BOR remains under hardware control and operates as previously described. Whenever the device enters Sleep mode, however, the BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.


This mode allows for applications to recover from brown-out situations, while actively executing code, when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

BOR Configuration		Status of	
BOREN1	BOREN0	SBOREN (RCON<6>)	BOR Operation
0	0	Unavailable	BOR disabled; must be enabled by reprogramming the Configuration bits.
0	1	Available	BOR enabled in software; operation controlled by SBOREN.
1	0	Unavailable	BOR enabled in hardware in Run and Idle modes, disabled during Sleep mode.
1	1	Unavailable	BOR enabled in hardware; must be disabled by reprogramming the Configuration bits.

TABLE 4-1: BOR CONFIGURATIONS

NOTES:

FIGURE 6-2: TABLE WRITE OPERATION

6.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

6.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 6-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The EEPGD control bit determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

The CFGS control bit determines if the access will be to the Configuration/Calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on Configuration registers regardless of EEPGD (see **Section 25.0** "**Special Features of the CPU**"). When clear, memory selection access is determined by EEPGD.

The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is						
	read as '1'. This can indicate that a write						
	operation was prematurely terminated by						
	a Reset, or a write operation was						
	attempted improperly.						

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software; it is cleared in hardware at the completion of the write operation.

Note: The EEIF interrupt flag bit (PIR2<4>) is set when the write is complete. It must be cleared in software.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RC6/TX1/CK1	RC6	0	0	DIG	LATC<6> data output.
		1	Ι	ST	PORTC<6> data input.
	TX1	0	0	DIG	Asynchronous serial transmit data output (EUSART1 module). Takes priority over port data.
	CK1	0	0	DIG	Synchronous serial clock output (EUSART1 module). Takes priority over port data.
		1	Ι	ST	Synchronous serial clock input (EUSART1 module).
RC7/RX1/DT1	RC7	0	0	DIG	LATC<7> data output.
		1	Ι	ST	PORTC<7> data input.
	RX1	1	Ι	ST	Asynchronous serial receive data input (EUSART1 module)
	DT1	1	0	DIG	Synchronous serial data output (EUSART1 module). Takes priority over port data. User must configure as input.
		1	I	ST	Synchronous serial data input (EUSART1 module). User must configure as an input.

TABLE 11-5: PORTC FUNCTIONS (CONTINUED)

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; $I^2C/SMB = I^2C/SMB$ us input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for ECCP2 when CCP2MX Configuration bit is set.

TABLE 11-6:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	60
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	60
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	60

11.9 PORTJ, TRISJ and LATJ Registers

Note:	PORTJ	is	available	only	on
	PIC18F8	527/86	22/8627/8722	2 devices.	

PORTJ is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISJ. Setting a TRISJ bit (= 1) will make the corresponding PORTJ pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISJ bit (= 0) will make the corresponding PORTJ pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATJ) is also memory mapped. Read-modify-write operations on the LATJ register, read and write the latched output value for PORTJ.

All pins on PORTJ are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins ar	е					
configured as digital inputs.							

When the external memory interface is enabled, all of the PORTJ pins function as control outputs for the interface. This occurs automatically when the interface is enabled by clearing the EBDIS control bit (MEMCON<7>). The TRISJ bits are also overridden.

EXAMPLE 11-9:	INITIALIZING PORTJ
EAAIVIFLE II-9.	

CLRF	PORTJ	;	Initialize PORTJ by
		;	clearing output
		;	data latches
CLRF	LATJ	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISJ	;	Set RJ3:RJ0 as inputs
		;	RJ5:RJ4 as output
		;	RJ7:RJ6 as inputs

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	57
RCON	IPEN	SBOREN	_	RI	TO	PD	POR	BOR	56
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	60
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	60
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	60
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	60
PIE3	SSP2IE	BCL2IF	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	60
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	60
TMR2	Timer2 Re	gister							58
PR2	Timer2 Per	riod Register							58
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	58
TMR4	Timer4 Re	gister							61
PR4	Timer4 Per	riod Register							61
T4CON	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	61
CCPR1L	Enhanced	Capture/Cor	mpare/PWM	Register 1 Lo	ow Byte				59
CCPR1H	Enhanced	Capture/Cor	mpare/PWM	Register 1 H	igh Byte				59
CCPR2L	Enhanced	Enhanced Capture/Compare/PWM Register 2 Low Byte							
CCPR2H	Enhanced	Capture/Cor	mpare/PWM	Register 2 H	igh Byte				59
CCP4CON	—		DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0	61
CCP5CON			DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0	61

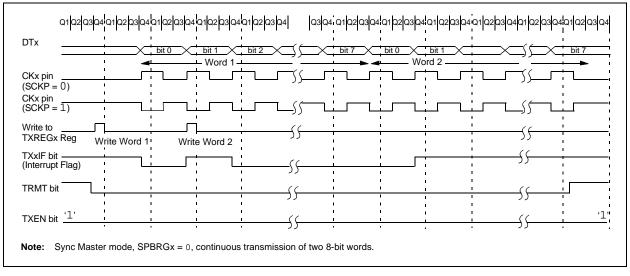
TABLE 17-4: REGISTERS ASSOCIATED WITH PWM, TIMER2 AND TIMER4

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM, Timer2 or Timer4.

20.3 EUSART Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTAx<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTAx<4>). In addition, enable bit SPEN (RCSTAx<7>) is set in order to configure the TXx and RXx pins to CKx (clock) and DTx (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CKx line. Clock polarity is selected with the SCKP bit (BAUDCONx<4>); setting SCKP sets the Idle state on CKx as high, while clearing the bit sets the Idle state as low. This option is provided to support Microwire devices with this module.


20.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION

The EUSART transmitter block diagram is shown in Figure 20-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSRx). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREGx. The TXREGx register is loaded with data in software. The TSRx register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSRx is loaded with new data from the TXREGx (if available). Once the TXREGx register transfers the data to the TSRx register (occurs in one TcY), the TXREGx is empty and the TXxIF flag bit is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXxIE. TXxIF is set regardless of the state of enable bit TXxIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREGx register.

While flag bit TXxIF indicates the status of the TXREGx register, another bit, TRMT (TXSTAx<1>), shows the status of the TSRx register. TRMT is a read-only bit which is set when the TSRx is empty. No interrupt logic is tied to this bit, so the user must poll this bit in order to determine if the TSRx register is empty. The TSRx is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

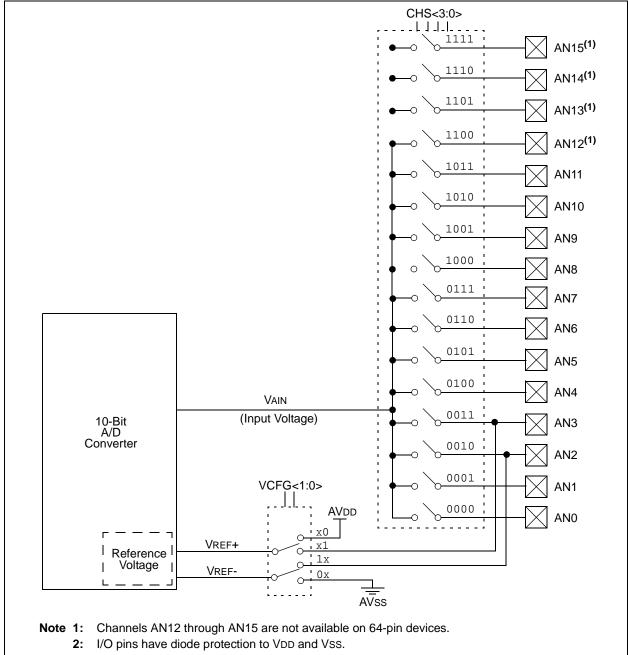
- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXxIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 20-11: SYNCHRONOUS TRANSMISSION

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unk	nown
bit 7	ADFM: A/D F	Result Format S	Select bit				
	1 = Right just 0 = Left justifi						
bit 6	Unimplemen	ted: Read as '	0'				
bit 5-3	ACQT<2:0>:	A/D Acquisitio	n Time Select	bits			
	111 = 20 TAD)					
	110 = 16 TAD						
	101 = 12 TAD)					
	100 = 8 TAD 011 = 6 TAD						
	011 = 0 TAD 010 = 4 TAD						
	010 = 4 TAD 001 = 2 TAD						
	000 = 0 TAD ⁽¹⁾	1)					
bit 2-0	ADCS<2:0>:	A/D Conversio	n Clock Seled	ct bits			
	111 = FRC (C	lock derived fro	m A/D RC os	cillator) ⁽¹⁾			
	110 = Fosc/6			,			
	101 = Fosc/1	-					
	100 = Fosc/4						
		lock derived fro	om A/D RC os	scillator)(1)			
	010 = Fosc/3 001 = Fosc/8						
	001 = FOSC/2 000 = FOSC/2						

Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

REGISTER 21-3: ADCON2: A/D CONTROL REGISTER 2


The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF- pins.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D converter can be configured as an analog input, or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0 register) is cleared and A/D Interrupt Flag bit, ADIF (PIR1<6>), is set. The block diagram of the A/D module is shown in Figure 21-1.

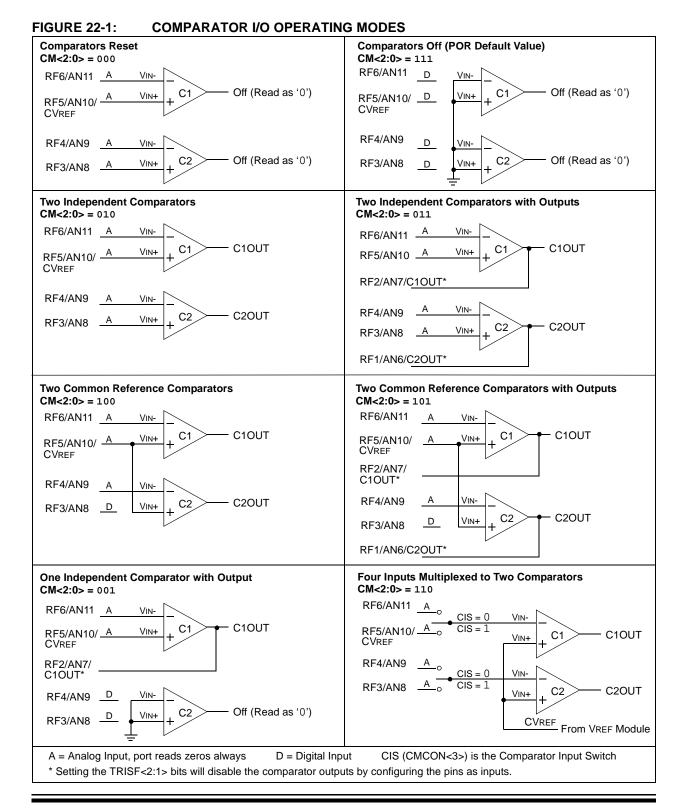
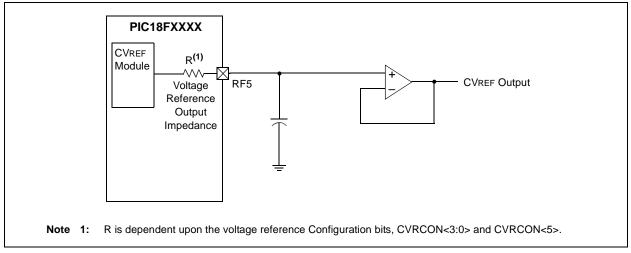


FIGURE 21-1: A/D BLOCK DIAGRAM


22.1 Comparator Configuration

There are eight modes of operation for the comparators, shown in Figure 22-1. Bits CM<2:0> of the CMCON register are used to select these modes. The TRISF register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in **Section 28.0 "Electrical Characteristics"**.

Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.

FIGURE 23-2: COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 23-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	59
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	59
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	60

Legend: Shaded cells are not used with the comparator voltage reference.

DEC	FSZ	Decrement	f, Skip if 0	
Synta	ax:	DECFSZ f	{,d {,a}}	
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$		
Oper	ation:	(f) – 1 \rightarrow de skip if result	-	
Statu	is Affected:	None		
Enco	oding:	0010	11da fff	f ffff
Desc	ription:	decremente placed in W	ts of register 'f ed. If 'd' is '0', ' /. If 'd' is '1', th < in register 'f'	the result is le result is
		which is alre	is '0', the nex eady fetched i s executed ins le instruction.	s discarded
			ne Access Bar ne BSR is use (default).	
		set is enablin Indexed I mode when Section 26 Bit-Oriente	nd the extended ed, this instruct Literal Offset A lever $f \le 95$ (50 .2.3 "Byte-Or ad Instruction set Mode" for	ction operates Addressing Fh). See iented and s in Indexed
Word	ls:	1		
Cycle	es:		rcles if skip an 2-word instru	
QC	ycle Activity:			
	Q1	Q2	Q3	Q4
	Decode	Read register 'f'	Process Data	Write to destination
lf sk	in:	register i	Dala	uestination
	Q1	Q2	Q3	Q4
	No	No	No	No
	operation	operation	operation	operation
lf sk		d by 2-word in:		04
	Q1 No	Q2 No	Q3 No	Q4 No
	operation	operation	operation	operation
	No	No	No	No
	operation	operation	operation	operation
<u>Exar</u>	nple:	HERE	DECFSZ GOTO	CNT, 1, 1 LOOP
	Before Instruc	CONTINUE		
	PC After Instructio	= Address	(HERE)	
	CNT If CNT	= CNT - 1 = 0;		
	PC If CNT	= Address \neq 0;		
	PC	= Address	6 (HERE + 2)

DCF	SNZ	Decrement	t f, Skip if not	: 0			
Synta	ax:	DCFSNZ	f {,d {,a}}				
Oper	ands:	$0 \le f \le 255$					
		d ∈ [0,1] a ∈ [0,1]					
Oper	ation:	(f) – 1 \rightarrow de skip if resul					
Statu	is Affected:	None					
		0100	11da ffi				
	oding:						
Desc	cription:	decremente placed in V	ts of register 'f ed. If 'd' is '0', /. If 'd' is '1', th k in register 'f'	the result is ne result is			
		instruction discarded a	is not '0', the which is alread and a NOP is e aking it a two-o	dy fetched is xecuted			
		,	he Access Baı he BSR is use (default).				
		set is enabl in Indexed mode wher Section 26	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed				
More	40.	1		details.			
Word		-					
Cycle	95.		ycles if skip a a 2-word instr				
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	Write to			
	•	register 'f'	Data	destination			
lf sk		02	02	04			
	Q1 No	Q2 No	Q3 No	Q4 No			
	operation	operation	operation	operation			
lf sk	ip and followed	d by 2-word in					
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exan</u>	nple:	ZERO	DCFSNZ TEN : :	MP, 1, 0			
	Before Instruc TEMP	=	?				
	After Instructio						
	TEMP If TEMP	=	TEMP – 1, 0;				
	PC	=	Address (ZERO)			
		= ≠					

GOTO		Unconditi	onal Brai	nch			
Syntax:		GOTO k					
Operands:		$0 \le k \le 10^4$	≤ k ≤ 1048575				
Operation:		$k \rightarrow PC<2$	0:1>				
Status Affe	cted:	None					
Encoding: 1st word (k 2nd word(k	,	1110 1111	1111 k19kkk	k7kł kkk		kkkk0 kkkk8	
Description	1:	GOTO allow anywhere range. The PC<20:1> instruction	within enti 20-bit va . GOTO is a	re 2-M lue 'k'	lbyte is lo	e memory aded into	
Words:		2					
Cycles:		2					
Q Cycle A	ctivity:						
(Q1	Q2	Q3			Q4	
Dec	code	Read literal 'k'<7:0>,	No operat	ion	'k'•	ad literal <19:8>, te to PC	
	No ration	No operation	No operat	ion	ор	No eration	
	nstructic PC =	GOTO THE on Address (1					

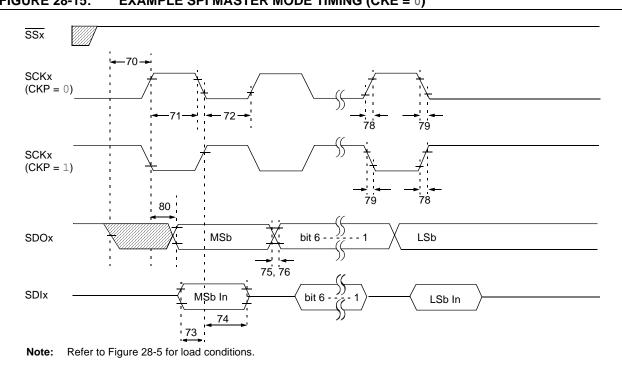
INCF	Increment	f				
Syntax:	INCF f {,c	d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]				
Operation:	(f) + 1 \rightarrow de	est				
Status Affected:	C, DC, N,	OV, Z				
Encoding:	0010	10da	fff	f	ffff	
Description:	The conten incremente placed in V placed bac	d. If 'd' is V. If 'd' is	'0', th '1', th	ne re e re:	esult is sult is	
	If 'a' is '0', t If 'a' is '1', t GPR bank	he BSR i				
	set is enab in Indexed mode wher Section 26 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3			Q4	
Decode	Read register 'f'	Proce: Data			Vrite to stination	
Example:	INCF	CNT,	L, O			
Before Instruc CNT Z DC After Instructio CNT Z C DC	= FFh = 0 = ? = ?					

NEGF	Negate f					
Syntax:	NEGF f {,a}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$					
Operation:	$(\overline{f}) + 1 \rightarrow f$					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0110 110a ffff ffff					
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'.					
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).					
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						

 Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:	NEGF	REG,	1

Before Instru	ction			
REG	=	0011	1010	[3Ah]
After Instruct	ion			
REG	=	1100	0110	[C6h]


	No Operation				
ax:	NOP				
ands:	None	None			
ation:	No operation				
s Affected:	None				
ding:	0000 0000 0000 0000 1111 xxxx xxx xxxx				
ription:	No operati	on.			
ls:	1	1			
es:	1	1			
ycle Activity:					
Q1	Q2	Q2 Q3 Q4			Q4
Decode	No operation	No No n operation operation			
	ands: ation: s Affected: ding: ription: ls: es: ycle Activity: Q1	Ax: NOP ands: None ation: No operati s Affected: None ding: 0000 1111 ription: No operati ls: 1 es: 1 ycle Activity: Q1 Q1 Q2 Decode No	Ax: NOP ands: None ation: No operation s Affected: None ding: 0000 1111 xxxx ription: No operation. ls: 1 es: 1 ycle Activity: Q1 Q2 Q3 Decode No	Ax: NOP ands: None ation: No operation s Affected: None ding: 0000 0000 1111 xxxx xxx ription: No operation. ls: 1 es: 1 ycle Activity: Q1 Q2 Q3 Decode No No	NOP ands: None ation: No operation s Affected: None ding: 0000 0000 0000 1111 xxxx xxxx ription: No operation. ls: 1 es: 1 ycle Activity: Q1 Q2 Q3 Decode No

Example:

None.

RRNCF	Rotate Riç	ght f (no carry))
Syntax:	RRNCF	f {,d {,a}}	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]		
Operation:		lest <n 1="" –="">, lest<7></n>	
Status Affected:	N, Z		
Encoding:	0100	00da fff	ff ffff
Description:	one bit to t is placed in placed bac If 'a' is '0', selected, o is '1', then per the BS If 'a' is '0' a set is enab in Indexed mode whe Section 20 Bit-Orient	the of register 'f he right. If 'd' is he right. If 'd' is h W. If 'd' is '1', k in register 'f' the Access Bar overriding the B3 the bank will be R value (defaul and the extended oled, this instruct Literal Offset A never f \leq 95 (5F 5.2.3 "Byte-Ori ed Instruction	 '0', the result the result is (default). hk will be SR value. If 'a' e selected as lt). ed instruction stion operates uddressing Fh). See iented and
	Literal Off	set Mode" for ► register	details.
Words:	Ľ	· ·	details.
Words:	1	· ·	details.
Cycles:	Ľ	· ·	details.
	1	· ·	details.
Cycles: Q Cycle Activity:	1 1	► register	details.
Cycles: Q Cycle Activity: Q1	1 1 Q2 Read	Q3 Process	details. f Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG	1 1 Q2 Read register 'f' RRNCF stion = 1101	Q3 Process Data REG, 1, 0	details. f Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct	1 1 Q2 Read register 'f' RRNCF stion = 1101	Q3 Process Data REG, 1, 0 0111	details. f Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruct REG After Instruction	1 1 Q2 Read register 'f' RRNCF ettion = 1101 on	Q3 Process Data REG, 1, 0 0111 1011	details. f Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instructor REG After Instructor REG Example 2: Before Instructor	1 1 2 Read register 'f' RRNCF tion = 1101 on = 1110 RRNCF	Q3 Process Data REG, 1, 0 0111 1011	details. f Q4 Write to
Cycles: Q Cycle Activity: Q1 Decode Example 1: Before Instruction REG After Instruction REG Example 2:	1 1 1 Q2 Read register 'f' RRNCF ettion = 1101 RRNCF ttion = 1110 RRNCF ttion = 1101	► register Q3 Process Data REG, 1, 0 0111 1011 REG, 0, 0	details. f Q4 Write to

Syntax:	SETF f {,;	a}				
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:	$FFh\tof$					
Status Affected:	None					
Encoding:	0110	0110 100a ffff ffff				
Description:	The conten are set to F		specified	register		
	If 'a' is '0', t If 'a' is '1', t GPR bank	he BSR i	s used to			
	If 'a' is '0' a set is enabl in Indexed mode when Section 26 Bit-Oriente	ed, this i Literal Of never f ≤ .2.3 "By ed Instru	nstruction ffset Addre 95 (5Fh). te-Oriente ctions in	operates essing See ed and		
	Literal Offs	set Mode	" for deta	ails.		
Words:	Literal Offs	set Mode	e" for deta	ails.		
Words: Cycles:		set Mode	e" for deta	ails.		
	1	set Mode	e" for deta	iils.		
Cycles:	1	Q3		ails. Q4		
Cycles: Q Cycle Activity:	1 1		ss			
Cycles: Q Cycle Activity: Q1	1 1 Q2 Read	Q3 Proce Data	ss	Q4 Write		
Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruc REG	1 1 Q2 Read register 'f' SETF tion = 5A	Q3 Proce Data RE6	ss a re	Q4 Write		
Cycles: Q Cycle Activity: Q1 Decode <u>Example:</u> Before Instruc	1 1 Q2 Read register 'f' SETF tion = 5A	Q3 Proce Data RE4	ss a re	Q4 Write		

FIGURE 28-15: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 28-16: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristi	c	Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow In	put	Тсү	—	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	—	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input	to SCKx Edge	20	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to th of Byte 2	e 1st Clock Edge	1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDIx Data Input t	o SCKx Edge	40		ns	
75	TDOR	SDOx Data Output Rise Time	PIC18FXXXX		25	ns	
			PIC18LFXXXX		45	ns	VDD = 2.0V
76	TDOF	SDOx Data Output Fall Time			25	ns	
78	TscR	SCKx Output Rise Time	PIC18FXXXX	—	25	ns	
		(Master mode)	PIC18LFXXXX		45	ns	VDD = 2.0V
79	TscF	SCKx Output Fall Time (Maste	r mode)	—	25	ns	
80	TscH2doV,	SDOx Data Output Valid after	PIC18FXXXX	—	50	ns	
	TscL2DoV	SCKx Edge	PIC18LFXXXX	—	100	ns	VDD = 2.0V

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

Bus Collision During Start
Condition (SDAx Only)241
Bus Collision for Transmit and Acknowledge
Capture/Compare/PWM (All ECCP/CCP
Modules)
CLKO and I/O
Clock Synchronization
Clock/Instruction Cycle69
EUSART Synchronous Receive
(Master/Slave)
EUSART Synchronous Transmission
(Master/Slave)
Example SPI Master Mode (CKE = 0)
Example SPI Master Mode (CKE = 1)
Example SPI Slave Mode (CKE = 0)
Example SPI Slave Mode (CKE = 1)
External Clock (All Modes Except PLL)
External Memory Rus for Sleen
(Microprocessor Mode)
External Memory Bus for TBLRD (Extended
Microcontroller Mode)104, 107
External Memory Bus for TBLRD
(Microprocessor Mode)
External Memory Bus for TBLRD with 1 TCY
Wait State (Microprocessor Mode)
Fail-Safe Clock Monitor (FSCM)
First Start Bit Timing
Full-Bridge PWM Output
Half-Bridge PWM Output
High/Low-Voltage Detect Characteristics
High-Voltage Detect Operation
(VDIRMAG = 1)
I ² C Acknowledge Sequence
I ² C Bus Data
I ² C Bus Start/Stop Bits
I ² C Master Mode (7 or 10-Bit Transmission)
I ² C Master Mode (7-Bit Reception)
$I^{2}C$ Slave Mode (10-Bit Reception, SEN = 0)
I^2C Slave Mode (10-Bit Reception, SEN = 1)
$I^{2}C$ Slave Mode (10-Bit Transmission)
I^2C Slave Mode (7-bit Reception, SEN = 0)
I^2C Slave Mode (7-Bit Reception, SEN = 1)
I ² C Slave Mode (7-Bit Transmission)
I ² C Slave Mode General Call Address
Sequence (7 or 10-Bit Address Mode)
I ² C Stop Condition Receive or Transmit Mode
Low-Voltage Detect Operation (VDIRMAG = 0) 293
Master SSP I ² C Bus Data
Master SSP I ² C Bus Start/Stop Bits
Parallel Slave Port
(PIC18F8527/8622/8627/8722)
Parallel Slave Port (PSP) Read
Parallel Slave Port (PSP) Write
Program Memory Read
Program Memory Write
PWM Auto-Shutdown (P1RSEN = 0,
Auto-Restart Disabled)
PWM Auto-Shutdown (P1RSEN = 1,
Auto-Restart Enabled)
PWM Direction Change
PWM Direction Change at Near
100% Duty Cycle
PWM Output
Repeated Start Condition
Repeated Start Condition

Timer (OST) and Power-up Timer (PWRT) 403
Send Break Character Sequence
Slave Synchronization
Slow Rise Time (MCLR Tied to VDD,
VDD Rise > TPWRT)
SPI Mode (Master Mode)
SPI Mode (Slave Mode, CKE = 0)
Synchronous Reception (Master Mode, SREN) 266
Synchronous Transmission
Synchronous Transmission (Through TXEN)
Time-out Sequence on POR w/PLL Enabled
(MCLR Tied to VDD)
Time-out Sequence on Power-up
(MCLR Not Tied to VDD, Case 1)
Time-out Sequence on Power-up
(MCLR Not Tied to VDD, Case 2)
Time-out Sequence on Power-up
(MCLR Tied to VDD, VDD Rise < TPWRT)
Timer0 and Timer1 External Clock
Transition for Entry to Idle Mode
Transition for Entry to SEC_RUN Mode
Transition for Entry to Sleep Mode
(INTOSC to HSPLL)
Transition for Wake from Idle to Run Mode
Transition for Wake from Sleep (HSPLL)
Transition from RC_RUN Mode to
PRI_RUN Mode 44
Transition from SEC_RUN Mode to
PRI_RUN Mode (HSPLL)
Transition to RC_RUN Mode 44
Typical Opcode Fetch, 8-Bit Mode 108
Timing Diagrams and Specifications
A/D Conversion Requirements 417
A/D Conversion Requirements
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Master Mode, CKE = 0) 408
A/D Conversion Requirements 417 AC Characteristics 399 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 408 Example SPI Mode Requirements 408
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Evample SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408
A/D Conversion Requirements 417 AC Characteristics 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 409
A/D Conversion Requirements 417 AC Characteristics 399 Capture/Compare/PWM Requirements 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 409 Example S
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Evample SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 400 CKE = 1) 410 External Clock Requirements 398
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 409 Example SPI Slave Mode Requirements 400 (CKE = 1) 410 External Clock Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 417 Requirements 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 408 Example SPI Slave Mode Requirements 409 Example SPI Slave Mode Requirements 410 External Clock Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 412
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Evample SPI Mode Requirements 417 (Master Mode, CKE = 0) 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 412 I ² C Bus Start/Stop Bits Requirements 411 Master SSP I ² C Bus Data Requirements 411
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 417 Requirements 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 408 Example SPI Slave Mode Requirements 409 Example SPI Slave Mode Requirements 410 External Clock Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 412
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Evample SPI Mode Requirements 417 (Master Mode, CKE = 0) 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 412 I ² C Bus Start/Stop Bits Requirements 411 Master SSP I ² C Bus Data Requirements 411
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 416 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Slave Mode, CKE = 0) 409 Example SPI Slave Mode Requirements 398 I ² C Bus Data Requirements 398 I ² C Bus Start/Stop Bits Requirements 411 Master SSP I ² C Bus Data Requirements 414 Master SSP I ² C Bus Start/Stop Bits 413 Parallel Slave Port Requir
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 400, 401 Requirements 415 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 417 (Master Mode, CKE = 0) 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Mode Requirements 410 Example SPI Slave Mode, CKE = 0) 409 Example SPI Slave Mode Requirements 398 I ² C Bus Data Requirements 398 I ² C Bus Data Requirements 412 I ² C Bus Start/Stop Bits Requirements 414 Master SSP I ² C Bus Start/Stop Bits 413 Parallel Slave Port Requirements 413 Parallel Slave Port Requirements 413
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 400, 401 Requirements 415 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 398 I^2C Bus Data Requirements 398 I^2C Bus Data Requirements (Slave Mode) 411 Master SSP I^2C Bus Data Requirements 414 Master SSP I^2C Bus Start/Stop Bits 413 Parallel Slave Port Requirements 413 Parallel Slave Port Requirements 413 PLL Clock 399
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 400, 401 Requirements 415 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 410 Example SPI Slave Mode Requirements 398 I ² C Bus Data Requirements (Slave Mode) 411 External Clock Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 414 Master SSP I ² C Bus Start/Stop Bits 413 Parallel Slave Port Requirements 413 Parallel Slave Port Requirements 413 Parallel Slave Port Requirements 414