

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8527t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Туре	Туре	Description			
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.			
RB0/INT0/FLT0 RB0 INT0 FLT0	58	I/O I I	TTL ST ST	Digital I/O. External interrupt 0. PWM Fault input for ECCPx.			
RB1/INT1 RB1 INT1	57	I/O I	TTL ST	Digital I/O. External interrupt 1.			
RB2/INT2 RB2 INT2	56	I/O I	TTL ST	Digital I/O. External interrupt 2.			
RB3/INT3/ECCP2/P2A RB3 INT3 ECCP2 ⁽¹⁾	55	I/O I O	TTL ST —	Digital I/O. External interrupt 3. Enhanced Capture 2 input/Compare 2 output/ PWM 2 output.			
P2A ⁽¹⁾		0	_	ECCP2 PWM output A.			
RB4/KBI0 RB4 KBI0	54	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.			
RB5/KBI1/PGM RB5 KBI1 PGM	53	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.			
RB6/KBI2/PGC RB6 KBI2 PGC	52	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pir			
RB7/KBI3/PGD RB7 KBI3 PGD	47 ompatible input	I/O I I/O CMC	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin. = CMOS compatible input or output			

TABLE 1-4. PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)

= Schmitt Trigger input with CMOS levels Analog= Analog input ST

•	- 00111111	ingger input man enree level	o / malog = / malog mput
	= Input	0	= Output
	= Power	I ² C™/SMB	= I ² C/SMBus input buffer

$$P = Power \qquad I^2 C^{TM}/SMB$$

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

- 2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).
- 3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).
- 4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).
- 5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

Т

Pin Name	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTD is a bidirectional I/O port.		
RD0/AD0/PSP0 RD0 AD0 PSP0	72	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 0. Parallel Slave Port data.		
RD1/AD1/PSP1 RD1 AD1 PSP1	69	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 1. Parallel Slave Port data.		
RD2/AD2/PSP2 RD2 AD2 PSP2	68	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 2. Parallel Slave Port data.		
RD3/AD3/PSP3 RD3 AD3 PSP3	67	I/O I/O I/O	ST TTL TTL	Digital I/O. External memory address/data 3. Parallel Slave Port data.		
RD4/AD4/PSP4/SDO2 RD4 AD4 PSP4 SDO2	66	I/O I/O I/O O	ST TTL TTL —	Digital I/O. External memory address/data 4. Parallel Slave Port data. SPI data out.		
RD5/AD5/PSP5/ SDI2/SDA2 RD5 AD5 PSP5 SDI2 SDA2	65	I/O I/O I/O I	ST TTL TTL ST I ² C/SMB	Digital I/O. External memory address/data 5. Parallel Slave Port data. SPI data in. I ² C™ data I/O.		
RD6/AD6/PSP6/ SCK2/SCL2 RD6 AD6 PSP6 SCK2 SCL2	64	I/O I/O I/O I/O	ST TTL TTL ST I ² C/SMB	Digital I/O. External memory address/data 6. Parallel Slave Port data. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C mode.		
RD7/AD7/PSP7/SS2 RD7 AD7 <u>PSP</u> 7 SS2	63	I/O I/O I/O I	ST TTL TTL TTL	Digital I/O. External memory address/data 7. Parallel Slave Port data. SPI slave select input.		
		0		 CMOS compatible input or output Analog input Output I²C/SMBus input buffer 		

TABLE 1-4: PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

- 2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).
- 3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode, where the primary clock source is not stopped and
- the primary clock source is not any of the LP, XT, HS or HSPLL modes.

In these instances, the primary clock source either does not require an oscillator start-up delay since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC and INTIO Oscillator modes). However, a fixed delay of interval TCSD following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

TABLE 3-2:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Clock Source before Wake-up	Clock Source after Wake-up	Exit Delay	Clock Ready Status Bit (OSCCON)
	LP, XT, HS		
Primary Device Clock	HSPLL	Tcsd ⁽¹⁾	OSTS
(PRI_IDLE mode)	EC, RC	10.30 ()	
	INTOSC ⁽²⁾		IOFS
	LP, XT, HS	Tost ⁽³⁾	
T1OSC or INTRC	HSPLL	Tost + t _{rc} ⁽³⁾	OSTS
	EC, RC	TCSD ⁽¹⁾	
	INTOSC ⁽²⁾	TIOBST ⁽⁴⁾	IOFS
	LP, XT, HS	Tost ⁽⁴⁾	
INTOSC ⁽²⁾	HSPLL	Tost + t _{rc} ⁽³⁾	OSTS
	EC, RC	Tcsd ⁽¹⁾	
	INTOSC ⁽²⁾	None	IOFS
	LP, XT, HS	Tost ⁽³⁾	
None	HSPLL	Tost + t _{rc} ⁽³⁾	OSTS
(Sleep mode)	EC, RC	Tcsd ⁽¹⁾	
	INTOSC ⁽²⁾	TIOBST ⁽⁴⁾	IOFS

Note 1: TCSD (parameter 38, Table 28-12) is a required delay when waking from Sleep and all Idle modes and runs concurrently with any other required delays (see Section 3.4 "Idle Modes").

2: Includes both the INTOSC 8 MHz source and postscaler derived frequencies. On Reset, INTOSC defaults to 1 MHz.

3: TOST is the Oscillator Start-up Timer (parameter 32, Table 28-12). t_{rc} is the PLL Lock-out Timer (parameter F12, Table 28-7); it is also designated as TPLL.

4: Execution continues during TIOBST (parameter 39, Table 28-12), the INTOSC stabilization period.

5.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has 8 two-word instructions: CALL, MOVFF, GOTO, LSFR, ADDULNK, CALLW, MOVSS and SUBULNK. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 5-4 shows how this works.

Note: See Section 5.6 "PIC18 Instruction Execution and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

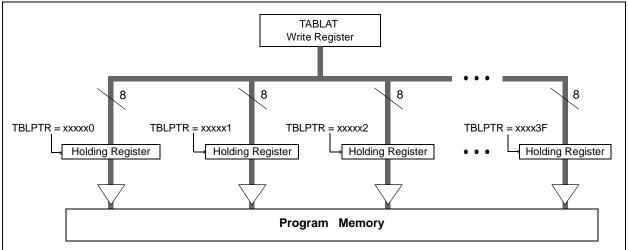
CASE 1:	
Object Code	Source Code
0110 0110 0000 0000	TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2 ; No, skip this word
1111 0100 0101 0110	; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3 ; continue code
CASE 2:	
Object Code	Source Code
0110 0110 0000 0000	TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2 ; Yes, execute this word
1111 0100 0101 0110	; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3 ; continue code

EXAMPLE 5-4: TWO-WORD INSTRUCTIONS

6.5 Writing to Flash Program Memory

The minimum programming block is 32 words or 64 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 64 holding registers used by the table writes for programming.


Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 64 holding registers before executing a write operation.

FIGURE 6-5: TABLE WRITES TO FLASH PROGRAM MEMORY

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the row erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write the 64 bytes into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory;
 - clear the CFGS bit to access program memory;
 - set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write for TIW (see parameter D133A).
- 13. Re-enable interrupts.
- 14. Verify the memory (table read).

An example of the required code is shown in Example 6-3 on the following page.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 64 bytes in the holding register.

8.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADRH:EEADR register pair, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 8-1.

8.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADRH:EEADR register pair and the data written to the EEDATA register. The sequence in Example 8-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADRH:EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

8.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 8-1: DATA EEPROM READ

MOVLW MOVWF	DATA_EE_ADDRH EEADRH	; ; Upper bits of Data Memory Address to read
MOVLW	DATA_EE_ADDR	;
MOVWF	EEADR	; Lower bits of Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access EEPROM
BSF	EECON1, RD	; EEPROM Read
MOVF	EEDATA, W	; W = EEDATA

EXAMPLE 8-2:	DATA EEPROM WRITE

	MOVLW	DATA_EE_ADDRH	;
	MOVWF	EEADRH	; Upper bits of Data Memory Address to write
	MOVLW	DATA_EE_ADDR	;
	MOVWF	EEADR	; Lower bits of Data Memory Address to write
	MOVLW	DATA_EE_DATA	;
	MOVWF	EEDATA	; Data Memory Value to write
	BCF	EECON1, EPGD	; Point to DATA memory
	BCF	EECON1, CFGS	; Access EEPROM
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	55h	i
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BSF	INTCON, GIE	; Enable Interrupts
			; User code execution
	BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

TABLE 11-13: PORTG FUNCTIONS

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description		
RG0/ECCP3/P3A	RG0	0	0	DIG	LATG<0> data output.		
		1	I	ST	PORTG<0> data input.		
	ECCP3	0	0	DIG	ECCP3 compare and ECCP3 PWM output. Takes priority over port data.		
		1	Ι	ST	ECCP3 capture input.		
	P3A	0	0	DIG	ECCP3 Enhanced PWM output, channel B. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.		
RG1/TX2/CK2	RG1	0	0	DIG	LATG<1> data output.		
		1	Ι	ST	PORTG<1> data input.		
	TX2	0	0	DIG	Asynchronous serial transmit data output (EUSART2 module). Takes priority over port data.		
	CK2	0	0	DIG	Synchronous serial clock output (EUSART2 module). Takes priority over port data.		
		1	Ι	ST	Synchronous serial clock input (EUSART2 module).		
RG2/RX2/DT2	RG2	0	0	DIG	LATG<2> data output.		
		1	Ι	ST	PORTG<2> data input.		
	RX2	1	I	ST	Asynchronous serial receive data input (EUSART2 module).		
	DT2	1	0	DIG	Synchronous serial data output (EUSART2 module). Takes priority over port data. User must configure as an input.		
		1	Ι	ST	Synchronous serial data input (EUSART2 module). User must configure as an input.		
RG3/CCP4/P3D	RG3	0	0	DIG	LATG<3> data output.		
		1	Ι	ST	PORTG<3> data input.		
	CCP4	0	0	DIG	CCP4 compare and PWM output; takes priority over port data and P3D function.		
		1	Ι	ST	CCP4 capture input.		
	P3D	0	0	DIG	ECCP3 Enhanced PWM output, channel D. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.		
RG4/CCP5/P1D	RG4	0	0	DIG	LATG<4> data output.		
		1	Ι	ST	PORTG<4> data input.		
	CCP5	0	0	DIG	CCP5 compare and PWM output. Takes priority over port data and P1D function.		
		1	Ι	ST	CCP5 capture input.		
	P1D	0	0	DIG	ECCP1 Enhanced PWM output, channel B. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.		
RG5/MCLR/Vpp	RG5	(1)	I	ST	PORTG<5> data input; enabled when MCLRE Configuration bit is clear.		
	MCLR	_	I	ST	External Master Clear input; enabled when MCLRE Configuration bit is set.		
	Vpp	_	Ι	ANA	High-voltage detection; used for ICSP [™] mode entry detection. Always available regardless of pin mode.		

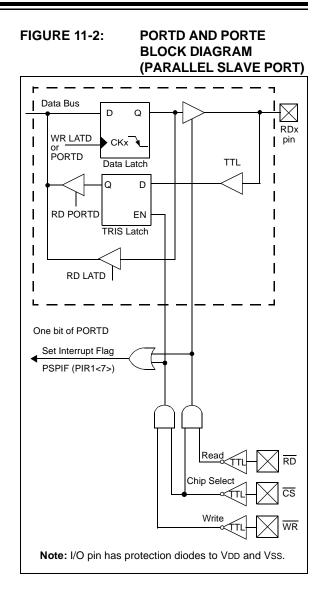
Legend: PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: RG5 does not have a corresponding TRISG bit.

11.10 Parallel Slave Port

PORTD can also function as an 8-bit wide Parallel Slave Port, or microprocessor port, when control bit PSPMODE (PSPCON<4>) is set. It is asynchronously readable and writable by the external world through the RD and \overline{WR} control input pins.

Note:	For PIC18F8527/8622/8627/8722 devices,
	the Parallel Slave Port is available only in
	Microcontroller mode.


The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (Chip Select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (set).

A write to the PSP occurs when both the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ lines are first detected low and ends when either are detected high. The PSPIF and IBF flag bits are both set when the write ends.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are first detected low. The data in PORTD is read out and the OBF bit is set. If the user writes new data to PORTD to set OBF, the data is immediately read out; however, the OBF bit is not set.

When either the \overline{CS} or \overline{RD} lines are detected high, the PORTD pins return to the input state and the PSPIF bit is set. User applications should wait for PSPIF to be set before servicing the PSP; when this happens, the IBF and OBF bits can be polled and the appropriate action taken.

The timing for the control signals in Write and Read modes is shown in Figure 11-3 and Figure 11-4, respectively.

18.4.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the ECCP1 module for PWM operation using Timer2:

- 1. Configure the PWM pins, P1A and P1B (and P1C and P1D, if used), as inputs by setting the corresponding TRIS bits.
- 2. Set the PWM period by loading the PR2 register.
- 3. If auto-shutdown is required do the following:
 - Disable auto-shutdown (ECCP1AS = 0)
 - Configure source (FLT0, Comparator 1 or Comparator 2)
 - Wait for non-shutdown condition
- Configure the ECCP1 module for the desired PWM mode and configuration by loading the CCP1CON register with the appropriate values:
 - Select one of the available output configurations and direction with the P1M<1:0> bits.
 - Select the polarities of the PWM output signals with the CCP1M<3:0> bits.
- 5. Set the PWM duty cycle by loading the CCPR1L register and CCP1CON<5:4> bits.
- 6. For Half-Bridge Output mode, set the dead-band delay by loading ECCP1DEL<6:0> with the appropriate value.
- 7. If auto-shutdown operation is required, load the ECCP1AS register:
 - Select the auto-shutdown sources using the ECCP1AS<2:0> bits.
 - Select the shutdown states of the PWM output pins using the PSS1AC<1:0> and PSS1BD<1:0> bits.
 - Set the ECCP1ASE bit (ECCP1AS<7>).
 - Configure the comparators using the CMCON register.
 - Configure the comparator inputs as analog inputs.
- 8. If auto-restart operation is required, set the P1RSEN bit (ECCP1DEL<7>).
- 9. Configure and start TMR2:
 - Clear the TMR2 interrupt flag bit by clearing the TMR2IF bit (PIR1<1>).
 - Set the TMR2 prescale value by loading the T2CKPS bits (T2CON<1:0>).
 - Enable Timer2 by setting the TMR2ON bit (T2CON<2>).
- 10. Enable PWM outputs after a new PWM cycle has started:
 - Wait until TMRx overflows (TMRxIF bit is set).
 - Enable the ECCP1/P1A, P1B, P1C and/or P1D pin outputs by clearing the respective TRIS bits.
 - Clear the ECCP1ASE bit (ECCP1AS<7>).

18.4.10 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2 or Timer4 will not increment and the state of the module will not change. If the ECCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from INTOSC and the postscaler may not be stable immediately.

In PRI_IDLE mode, the primary clock will continue to clock the ECCP1 module without change. In all other power-managed modes, the selected power-managed mode clock will clock Timer2 or Timer4. Other power-managed mode clocks will most likely be different than the primary clock frequency.

18.4.10.1 Operation with Fail-Safe Clock Monitor

If the Fail-Safe Clock Monitor is enabled, a clock failure will force the device into the power-managed RC_RUN mode and the OSCFIF bit (PIR2<7>) will be set. The ECCP1 will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

See the previous section for additional details.

18.4.11 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the CCP registers to their Reset states.

This forces the Enhanced CCP module to reset to a state compatible with the standard CCP module.

REGISTER 19-2: SSPxCON1: MSSPx CONTROL REGISTER 1 (SPI MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WCOL	SSPOV ⁽¹⁾	SSPEN ⁽²⁾	CKP	SSPM3 ⁽³⁾	SSPM2 ⁽³⁾	SSPM1 ⁽³⁾	SSPM0 ⁽³⁾				
bit 7							bit (
Legend:											
R = Reada	able bit	W = Writable	oit	-	nented bit, rea	d as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7	WCOL: Write	e Collision Dete	ct bit								
	(must be	cleared in softv		le it is still transı	mitting the prev	vious word					
	0 = No collis										
bit 6	SSPOV: Rec	SSPOV: Receive Overflow Indicator bit ⁽¹⁾									
		SPI Slave mode:									
				PxBUF register							
				Overflow can or							
	the SSP) ware).	XBUF, even if o	nly transmitti	ing data, to avo	ad setting over	flow (must be c	cleared in soft				
	0 = No overfl	low									
bit 5		SSPEN: Synchronous Serial Port Enable bit ⁽²⁾									
		1 = Enables serial port and configures SCKx, SDOx, SDIx and SSx as serial port pins									
		•	•	iese pins as I/O							
bit 4		CKP: Clock Polarity Select bit									
	1 = Idle state	1 = Idle state for clock is a high level									
	0 = Idle state	for clock is a lo	w level								
bit 3-0	SSPM<3:0>:	Synchronous S	Serial Port M	ode Select bits ⁽³	3)						
		$0101 = $ SPI Slave mode, clock = SCKx pin, \overline{SSx} pin control disabled, \overline{SSx} can be used as I/O pin									
	0100 = SPI S	Slave mode, clo	ck = SCKx p	in, SSx pin cont	trol enabled						
		Master mode, cl									
		Master mode, cl									
		Master mode, cl									
	0000 = SPI N	Master mode, cl	ock = Fosc/4	4							
Note 1:	In Master mode, the writing to the SSP		s not set sind	ce each new rec	ception (and tra	ansmission) is ir	nitiated by				
2:	When enabled, the	•	e properly co	onfigured as inn	ut or output						
			C property of								

3: Bit combinations not specifically listed here are either reserved or implemented in I^2C^{TM} mode only.

19.4.14 SLEEP OPERATION

While in Sleep mode, the I²C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

19.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

19.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPxSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLxIF bit.

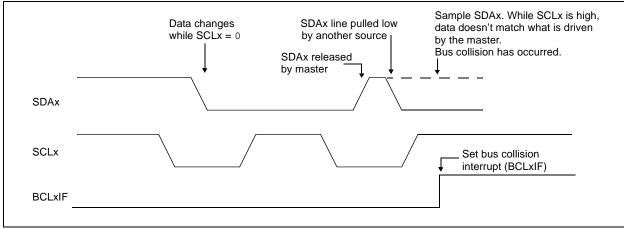
The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

19.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I^2C port to its Idle state (Figure 19-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the l^2C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 19-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

20.1 Baud Rate Generator (BRG)

The BRG is a dedicated 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCONx<3>) selects 16-bit mode.

The SPBRGHx:SPBRGx register pair controls the period of a free running timer. In Asynchronous mode, bits BRGH (TXSTAx<2>) and BRG16 (BAUDCONx<3>) also control the baud rate. In Synchronous mode, BRGH is ignored. Table 20-1 shows the formula for computation of the baud rate for different EUSART modes which only apply in Master mode (internally generated clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRGHx:SPBRGx registers can be calculated using the formulas in Table 20-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 20-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 20-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRGHx:SPBRGx registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

20.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRGx register pair.

20.1.2 SAMPLING

The data on the RXx pin (either RC7/RX1/DT1 or RG2/ RX2/DT2) is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RXx pin.

Configuration Bits			BRG/EUSART Mode	Baud Rate Formula	
SYNC	BRG16	BRGH	BRG/EUSART Mode	Bauu Kate Formula	
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]	
0	0	1	8-bit/Asynchronous	$E_{0000}/[16.(n+1)]$	
0	1	0	16-bit/Asynchronous	Fosc/[16 (n + 1)]	
0	1	1	16-bit/Asynchronous		
1	0	x	8-bit/Synchronous	Fosc/[4 (n + 1)]	
1	1	x	16-bit/Synchronous		

TABLE 20-1: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPBRGHx:SPBRGx register pair

20.2.5 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The frame Break character is sent whenever the SENDB and TXEN bits (TXSTAx<3> and TXSTAx<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREGx will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREGx for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 20-10 for the timing of the Break character sequence.

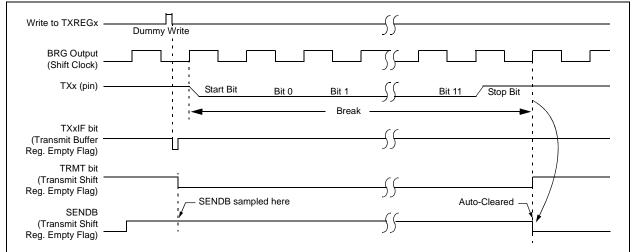
20.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREGx with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREGx to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREGx becomes empty, as indicated by the TXxIF, the next data byte can be written to TXREGx.

20.2.6 RECEIVING A BREAK CHARACTER


The Enhanced USART module can receive a Break character in two ways.

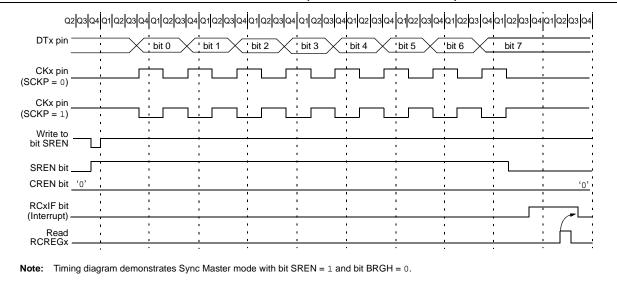
The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in **Section 20.2.4 "Auto-Wake-up on Sync Break Character"**. By enabling this feature, the EUSART will sample the next two transitions on RXx/DTx, cause an RCxIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TXxIF interrupt is observed.

FIGURE 20-10: SEND BREAK CHARACTER SEQUENCE

20.3.2 EUSART SYNCHRONOUS MASTER RECEPTION


Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTAx<5>), or the Continuous Receive Enable bit, CREN (RCSTAx<4>). Data is sampled on the RXx pin on the falling edge of the clock.

If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.

- 3. Ensure bits, CREN and SREN, are clear.
- 4. If interrupts are desired, set enable bit, RCxIE.
- 5. If 9-bit reception is desired, set bit, RX9.
- 6. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 7. Interrupt flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCxIE, was set.
- 8. Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREGx register.
- 10. If any error occurred, clear the error by clearing bit, CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 20-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

IADLE 20		TC INFAAAA INSTRUCTION SI			,				
Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status	Notes
		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL C	OPERA	TIONS							
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	/IORY ←	PROGRAM MEMORY OPERATION	ONS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	5
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	5
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	5
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	5

TABLE 26-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

BNC	Branch if N	Not Carry		BNN	Branch if	Not Negative	e	
Syntax:	BNC n			Syntax:	BNN n			
Operands:	-128 ≤ n ≤ 1	127		Operands:	-128 ≤ n ≤	127		
Operation:	if Carry bit (PC) + 2 +			Operation:	if Negative (PC) + 2 +			
Status Affected	: None			Status Affected:	None			
Encoding:	1110	0011 nn:	nn nnnn	Encoding:	1110	0111 n	nnn nnnn	
Description:	If the Carry will branch.	bit is '0', then	the program	Description:	If the Nega program w	ative bit is '0', ill branch.	then the	
	added to th incremente instruction,	d to fetch the the new addre n. This instruc	e PC will have next ess will be		added to th incremente instruction,	ed to fetch the , the new add n. This instru	the PC will have e next	
Words:	1			Words:	1			
Cycles:	1(2)			Cycles:	1(2)			
Q Cycle Activit If Jump:	ty:			Q Cycle Activit	y:			
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Decode	e Read literal 'n'	Process Data	Write to PC	Decode	Read literal 'n'	Process Data	Write to PC	
No	No	No	No	No	No	No	No	
operatio	n operation	operation	operation	operation	n operation	operation	operation	
If No Jump:				If No Jump:				
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Decode	e Read literal 'n'	Process Data	No operation	Decode	Read literal 'n'	Process Data	No operation	
Example:	HERE	BNC Jump		Example:	HERE	BNN Jum	qı	
Before Ins PC After Instru If Ca	= ad uction rry = 0;	dress (HERE		Before Inst PC After Instru If Neg	= ac action gative = 0;			
PC = address (Jump) If Carry = 1; PC = address (HERE + 2)				If Neg	PC = address (Jump) If Negative = 1; PC = address (HERE + 2)			

GOT	0	Unconditi	Unconditional Branch					
Synta	ax:	GOTO k	GOTO k					
Oper	ands:	$0 \le k \le 10^4$	48575					
Oper	ation:	$k \rightarrow PC<2$	0:1>					
Statu	s Affected:	None						
	ding: ord (k<7:0>) vord(k<19:8>)	1110 1111	1111 k19kkk	k7kł kkk		kkkk0 kkkk8		
Desc	ription:	anywhere range. The PC<20:1>	GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.					
Word	s:	2	2					
Cycle	es:	2	2					
QC	ycle Activity:							
-	Q1	Q2	Q3	Q3		Q4		
	Decode	Read literal 'k'<7:0>,	No operat	No operation		ad literal <19:8>, te to PC		
No operation		No operation	No operation		ор	No eration		
Example: GOTO THERE After Instruction PC = Address (THERE)								

INCF	Increment	f					
Syntax:	INCF f {,c	d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ d \equiv [0,1]					
Operation:	(f) + 1 \rightarrow de	est					
Status Affected:	C, DC, N,	OV, Z					
Encoding:	0010	10da	fff	f	ffff		
Description:	The conten incremente placed in V placed bac	ed. If 'd' is V. If 'd' is '	'0', th '1', th	ie re	esult is sult is		
	lf 'a' is '1', t	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).					
	set is enab in Indexed mode wher Section 26 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3			Q4		
Decode	Read register 'f'	Proces Data			Vrite to stination		
Example:	INCF	CNT,	L, 0				
Before Instruc CNT Z DC After Instructio CNT Z C DC	= FFh = 0 = ? = ?						

CALLW	Subroutine	Subroutine Call using WREG					
Syntax:	CALLW	CALLW					
Operands:	None						
Operation:	(W) → PCL (PCLATH) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$					
Status Affected:	None						
Encoding:	0000	0000 000	01 0100				
Description	pushed ont contents of existing val contents of latched into respectively executed as new next in	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched.					
		Unlike CALL, there is no option to update W, STATUS or BSR.					
Words:	1						
Cycles:	2						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read	Push PC to	No				
No	WREG No	stack No	operation No				
operation	operation	operation	operation				
Example: Before Instruct PC PCLATH PCLATU W After Instruction PC TOS PCLATH PCLATU	= address = 10h = 00h = 06h on = 001006 = address = 10h	CALLW (HERE) h ; (HERE + 2)				

MOVSF	Move Inde	xed to f							
Syntax:									
Operands:	$0 \le z_s \le 12$ $0 \le f_d \le 409$	7							
Operation:	((FSR2) + z								
Status Affected:	None								
Encoding: 1st word (source) 2nd word (destin.)	1110 1111	1011 Oz ffff ff							
Description:	moved to d actual addr determined offset 'z _s ', ii of FSR2. Th register is s 'f _d ' in the se	The contents of the source register are moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ', in the first word, to the value of FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both addresses can be anywhere in the 4096-byte data							
	The MOVSF PCL, TOSU	The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.							
	an indirect	If the resultant source address points to an indirect addressing register, the value returned will be 00h.							
Words:	2								
Cycles:	2								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Determine source addr	Determine source addr	Read source reg						
Decode	No operation No dummy read	No operation	Write register 'f' (dest)						
Example:	Example: MOVSF [05h], REG2								
Before Instruct FSR2 Contents of 85h REG2 After Instruction FSR2 Contents of 85h REG2	= 80 = 33 = 11 on = 80	h h h							

28.2 DC Characteristics: Power-Down and Supply Current PIC18F6X27/6X22/8X27/8X22 (Industrial, Extended) PIC18LF6X27/6X22/8X27/8X22 (Industrial)

(Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for industrial								
			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param Device No.		Тур	Max	Units	ts Conditions					
	Power-Down Current (IPD) ⁽¹⁾									
	PIC18LF6X27/6X22/8X27/8X22	120	700	nA	-40°C					
		120	700	nA	+25°C	VDD = 2.0V (Sleep mode)				
		0.24	3.0	μA	+85°C	(Cheep mode)				
	PIC18LF6X27/6X22/8X27/8X22	120	900	nA	-40°C					
		120	900	nA	+25°C	VDD = 3.0V (Sleep mode)				
		0.36	6	μA	+85°C	(Ciccp mode)				
	All devices	0.12	2	μA	-40°C					
			2	μΑ	+25°C	VDD = 5.0V				
		0.48	9	μΑ	+85°C	(Sleep mode)				
	Extended devices only	12	100	μΑ	+125°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD OR VSS;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** When operation below -10°C is expected, use T1OSC High-Power mode, where LPT1OSC (CONFIG3H<2>) = 0. When operation will always be above -10°C, then the low-power Timer1 oscillator may be selected.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com