



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 40MHz                                                                     |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, SPI, UART/USART                                |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                               |
| Number of I/O              | 70                                                                        |
| Program Memory Size        | 64KB (32K x 16)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 1K x 8                                                                    |
| RAM Size                   | 3.8K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 4.2V ~ 5.5V                                                               |
| Data Converters            | A/D 16x10b                                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 80-TQFP                                                                   |
| Supplier Device Package    | 80-TQFP (12x12)                                                           |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18f8622-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Din Nome                                                     | Pin Number                          | Pin                                      | Buffer                                  | Description                                                                                                                                                          |
|--------------------------------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              | TQFP                                | Туре                                     | Туре                                    | Description                                                                                                                                                          |
|                                                              |                                     |                                          |                                         | PORTD is a bidirectional I/O port.                                                                                                                                   |
| RD0/PSP0<br>RD0<br>PSP0                                      | 58                                  | I/O<br>I/O                               | ST<br>TTL                               | Digital I/O.<br>Parallel Slave Port data.                                                                                                                            |
| RD1/PSP1<br>RD1<br>PSP1                                      | 55                                  | I/O<br>I/O                               | ST<br>TTL                               | Digital I/O.<br>Parallel Slave Port data.                                                                                                                            |
| RD2/PSP2<br>RD2<br>PSP2                                      | 54                                  | I/O<br>I/O                               | ST<br>TTL                               | Digital I/O.<br>Parallel Slave Port data.                                                                                                                            |
| RD3/PSP3<br>RD3<br>PSP3                                      | 53                                  | I/O<br>I/O                               | ST<br>TTL                               | Digital I/O.<br>Parallel Slave Port data.                                                                                                                            |
| RD4/PSP4/SDO2<br>RD4<br>PSP4<br>SDO2                         | 52                                  | I/O<br>I/O<br>O                          | ST<br>TTL                               | Digital I/O.<br>Parallel Slave Port data.<br>SPI data out.                                                                                                           |
| RD5/PSP5/SDI2/SDA2<br>RD5<br>PSP5<br>SDI2<br>SDA2            | 51                                  | I/O<br>I/O<br>I<br>I/O                   | ST<br>TTL<br>ST<br>I <sup>2</sup> C/SMB | Digital I/O.<br>Parallel Slave Port data.<br>SPI data in.<br>I <sup>2</sup> C™ data I/O.                                                                             |
| RD6/PSP6/SCK2/SCL2<br>RD6<br>PSP6<br>SCK2<br>SCL2            | 50                                  | I/O<br>I/O<br>I/O<br>I/O                 | ST<br>TTL<br>ST<br>I <sup>2</sup> C/SMB | Digital I/O.<br>Parallel Slave Port data.<br>Synchronous serial clock input/output for SPI mode.<br>Synchronous serial clock input/output for I <sup>2</sup> C mode. |
| RD7/PSP7/SS2<br>RD7<br>PSP7<br>SS2                           | 49                                  | I/O<br>I/O<br>I                          | ST<br>TTL<br>TTL                        | Digital I/O.<br>Parallel Slave Port data.<br>SPI slave select input.                                                                                                 |
| Legend: TTL = TTL co<br>ST = Schmi<br>I = Input<br>P = Power | ompatible input<br>tt Trigger input | CMO<br>with CM<br>O<br>I <sup>2</sup> C™ | S<br>OS levels                          | <ul> <li>CMOS compatible input or output</li> <li>Analog = Analog input</li> <li>Output</li> <li>I<sup>2</sup>C/SMBus input buffer</li> </ul>                        |

#### TABLE 1-3: PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)

**Note 1:** Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.



| CALL, RCAL                | 21                        |                           |                           |                     |  |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------|--|
| KEIFIE, KE                | Stack                     | evel 1                    |                           | ٦Ć                  |  |
|                           |                           |                           |                           |                     |  |
|                           | Stack L                   | evel 31                   |                           |                     |  |
|                           | Reset                     | Vector                    |                           |                     |  |
|                           | High-Priority I           | nterrunt Vector           |                           | 00086               |  |
|                           | Tigh-Thomy T              |                           |                           | 000611              |  |
|                           | Low-Priority I            | nterrupt Vector           |                           | 0018h               |  |
| On-Chip<br>Program Memory | On-Chip<br>Program Memory | On-Chip<br>Program Memory | On-Chip<br>Program Memory |                     |  |
| PIC18FX527                | PIC18FX622                | PIC18FX627                | PIC18FX722                |                     |  |
| 0C000h                    | 0FFFh<br>10000h           |                           |                           | I Isar Memory Space |  |
|                           |                           | 017FFFh<br>018000h        |                           |                     |  |
|                           |                           |                           |                           |                     |  |
| Read '0'                  | Read '0'                  | Read '0'                  |                           |                     |  |
|                           |                           |                           |                           | 01EEEb              |  |

#### TABLE 5-1: MEMORY ACCESS FOR PIC18F8527/8622/8627/8722 PROGRAM MEMORY MODES

|                                 | Inte              | rnal Program Men   | nory           | External Program Memory |                    |                |  |
|---------------------------------|-------------------|--------------------|----------------|-------------------------|--------------------|----------------|--|
| Operating Mode                  | Execution<br>From | Table Read<br>From | Table Write To | Execution<br>From       | Table Read<br>From | Table Write To |  |
| Microprocessor                  | No Access         | No Access          | No Access      | Yes                     | Yes                | Yes            |  |
| Microprocessor<br>w/ Boot Block | Yes               | Yes                | Yes            | Yes                     | Yes                | Yes            |  |
| Microcontroller                 | Yes               | Yes                | Yes            | No Access               | No Access          | No Access      |  |
| Extended<br>Microcontroller     | Yes               | Yes                | Yes            | Yes                     | Yes                | Yes            |  |

### 5.3.5 STATUS REGISTER

The STATUS register, shown in Register 5-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('000u uluu'). It is recommended that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in Table 26-2 and Table 26-3.

Note: The C and DC bits operate as the borrow and digit borrow bits, respectively, in subtraction.

## REGISTER 5-2: STATUS: ARITHMETIC STATUS REGISTER

| U-0           | U-0                                                                              | U-0                                                                          | R/W-x                                                                  | R/W-x                                                                      | R/W-x                                                                        | R/W-x                                                                    | R/W-x                                                              |
|---------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|
|               |                                                                                  | —                                                                            | N                                                                      | OV                                                                         | Z                                                                            | DC <sup>(1)</sup>                                                        | C <sup>(2)</sup>                                                   |
| bit 7         |                                                                                  |                                                                              |                                                                        |                                                                            |                                                                              |                                                                          | bit 0                                                              |
|               |                                                                                  |                                                                              |                                                                        |                                                                            |                                                                              |                                                                          |                                                                    |
| Legend:       |                                                                                  |                                                                              |                                                                        |                                                                            |                                                                              |                                                                          |                                                                    |
| R = Read      | lable bit                                                                        | W = Writable                                                                 | bit                                                                    | U = Unimplei                                                               | mented bit, read                                                             | d as '0'                                                                 |                                                                    |
| -n = Value    | e at POR                                                                         | '1' = Bit is se                                                              | t                                                                      | '0' = Bit is cle                                                           | ared                                                                         | x = Bit is unkr                                                          | nown                                                               |
| bit 7-5       | Unimplemen                                                                       | ted: Read as                                                                 | 0'                                                                     |                                                                            |                                                                              |                                                                          |                                                                    |
| bit 4         | N: Negative b                                                                    | bit                                                                          |                                                                        |                                                                            |                                                                              |                                                                          |                                                                    |
|               | This bit is use<br>negative (ALI<br>1 = Result wa<br>0 = Result wa               | ed for signed a<br>U MSB = 1).<br>as negative<br>as positive                 | rithmetic (2's d                                                       | complement). I                                                             | t indicates whe                                                              | ther the result w                                                        | vas                                                                |
| bit 3         | OV: Overflow<br>This bit is use<br>magnitude wl<br>1 = Overflow<br>0 = No overfl | bit<br>bit for signed a<br>hich causes the<br>occurred for si<br>ow occurred | rithmetic (2's o<br>e sign bit (bit 7<br>gned arithmet                 | complement). I<br>7 of the result)<br>tic (in this arithi                  | t indicates an o<br>to change state<br>netic operation                       | verflow of the 7<br>)                                                    | -bit                                                               |
| bit 2         | Z: Zero bit                                                                      |                                                                              |                                                                        |                                                                            |                                                                              |                                                                          |                                                                    |
|               | 1 = The resul<br>0 = The resul                                                   | t of an arithme<br>t of an arithme                                           | tic or logic op<br>tic or logic op                                     | eration is zero<br>eration is not z                                        | ero                                                                          |                                                                          |                                                                    |
| bit 1         | DC: Digit Car                                                                    | ry/borrow bit(1)                                                             | )                                                                      |                                                                            |                                                                              |                                                                          |                                                                    |
|               | For addwf, a                                                                     | DDLW, SUBLW a                                                                | and SUBWF ins                                                          | structions:                                                                |                                                                              |                                                                          |                                                                    |
|               | 1 = A carry-o<br>0 = No carry-                                                   | ut from the 4th<br>out from the 41                                           | low-order bit<br>h low-order bi                                        | of the result oc<br>t of the result                                        | curred                                                                       |                                                                          |                                                                    |
| bit 0         | C: Carry/borr<br>For ADDWF, A<br>1 = A carry-o<br>0 = No carry-                  | ow bit <sup>(2)</sup><br>DDLW, SUBLW a<br>ut from the Mo<br>out from the M   | and SUBWF ins<br>st Significant I<br>ost Significan                    | structions:<br>bit of the result<br>t bit of the resu                      | occurred<br>It occurred                                                      |                                                                          |                                                                    |
| Note 1:<br>2: | For borrow, the po<br>operand. For rotat<br>For borrow, the po                   | larity is reverse<br>e (RRF, RLF) in<br>larity is reverse<br>e (RRF, RLF) in | ed. A subtractions this<br>structions, this<br>ed. A subtractions this | on is executed<br>s bit is loaded v<br>on is executed<br>s bit is loaded v | by adding the 2<br>with either bit 4<br>by adding the 2<br>with either the 1 | 's complement<br>or bit 3 of the so<br>'s complement<br>high or low-orde | of the second<br>ource register.<br>of the second<br>er bit of the |

source register.







#### REGISTER 10-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

| R/W-0           | R/W-0                  | U-0                                 | R/W-0           | R/W-0             | R/W-0           | R/W-0                     | R/W-0       |
|-----------------|------------------------|-------------------------------------|-----------------|-------------------|-----------------|---------------------------|-------------|
| OSCFIF          | CMIF                   | _                                   | EEIF            | BCL1IF            | HLVDIF          | TMR3IF                    | CCP2IF      |
| bit 7           |                        |                                     |                 |                   |                 |                           | bit 0       |
|                 |                        |                                     |                 |                   |                 |                           |             |
| Legend:         |                        |                                     |                 |                   |                 |                           |             |
| R = Readable    | bit                    | W = Writable                        | bit             | U = Unimpler      | mented bit, rea | d as '0'                  |             |
| -n = Value at F | POR                    | '1' = Bit is set                    |                 | '0' = Bit is cle  | ared            | x = Bit is unkr           | nown        |
|                 |                        |                                     |                 |                   |                 |                           |             |
| bit 7           | OSCFIF: Osc            | illator Fail Inte                   | rrupt Flag bit  |                   |                 |                           |             |
|                 | 1 = Device of          | scillator failed,                   | clock input ha  | as changed to I   | NTOSC (must     | be cleared in so          | oftware)    |
| hit C           |                        | ock operating                       | Flog bit        |                   |                 |                           |             |
| DILO            |                        | arator interrupt                    | Flag bit        | the cleared in    | coftwara)       |                           |             |
|                 | 1 = Compara0 = Compara | itor input has c                    | ot changed      | t be cleared in a | soliwale)       |                           |             |
| bit 5           | Unimplemen             | ted: Read as '                      | 0'              |                   |                 |                           |             |
| bit 4           | EEIF: EEPRO            | DM or Flash W                       | rite Operation  | Interrupt Flag    | bit             |                           |             |
|                 | 1 = The write          | operation is c                      | omplete (mus    | t be cleared in   | software)       |                           |             |
|                 | 0 = The write          | operation is n                      | ot complete o   | r has not been    | started         |                           |             |
| bit 3           | BCL1IF: MSS            | SP1 Bus Collisi                     | ion Interrupt F | lag bit           |                 |                           |             |
|                 | 1 = A bus c            | ollision occurr                     | ed while the    | MSSP1 modu        | ule configured  | in l <sup>2</sup> C™ Mast | er mode was |
|                 | 0 – No bus c           | ing (must be ci<br>ollision occurre | eared in softw  | /are)             |                 |                           |             |
| hit 2           |                        | /I ow-Voltage                       | Detect Interru  | nt Flag bit       |                 |                           |             |
| 5112            | 1 = A low-vol          | tage condition                      | occurred (mu    | ist be cleared in | n software)     |                           |             |
|                 | 0 = The devie          | ce voltage is al                    | bove the Low-   | -Voltage Detect   | t trip point    |                           |             |
| bit 1           | TMR3IF: TMF            | R3 Overflow In                      | terrupt Flag b  | it                |                 |                           |             |
|                 | 1 = TMR3 re            | gister overflow                     | ed (must be c   | leared in softw   | are)            |                           |             |
|                 | 0 = TMR3 re            | gister did not o                    | verflow         |                   |                 |                           |             |
| bit 0           | CCP2IF: ECC            | CP2 Interrupt F                     | lag bit         |                   |                 |                           |             |
|                 | <u>Capture mode</u>    | <u>ə:</u><br>TMP3 register          | conturo occu    | rrod (must bo c   | loared in coffw | (ara)                     |             |
|                 | 0 = No TMR1            | 1/TMR3 register                     | er capture occu | urred             |                 | ale)                      |             |
|                 | Compare mod            | de:                                 | ·               |                   |                 |                           |             |
|                 | 1 = A TMR1/            | TMR3 register                       | compare mat     | ch occurred (m    | nust be cleared | in software)              |             |
|                 | 0 = No TMR1            | 1/TMR3 registe                      | er compare ma   | atch occurred     |                 |                           |             |
|                 | <u>PWM mode:</u>       | s mode                              |                 |                   |                 |                           |             |
|                 | Unused in this         | s moue.                             |                 |                   |                 |                           |             |

| R/W-0           | R/W-0                                                                                         | R/W-1                      | R/W-1           | R/W-1            | R/W-1            | R/W-1           | R/W-1  |
|-----------------|-----------------------------------------------------------------------------------------------|----------------------------|-----------------|------------------|------------------|-----------------|--------|
| SSP2IP          | BCL2IP                                                                                        | RC2IP                      | TX2IP           | TMR4IP           | CCP5IP           | CCP4IP          | CCP3IP |
| bit 7           |                                                                                               |                            |                 |                  |                  |                 | bit 0  |
|                 |                                                                                               |                            |                 |                  |                  |                 |        |
| Legend:         |                                                                                               |                            |                 |                  |                  |                 |        |
| R = Readable    | bit                                                                                           | W = Writable               | bit             | U = Unimpler     | mented bit, read | d as '0'        |        |
| -n = Value at F | POR                                                                                           | '1' = Bit is set           |                 | '0' = Bit is cle | ared             | x = Bit is unkr | nown   |
|                 |                                                                                               |                            |                 |                  |                  |                 |        |
| bit 7           | SSP2IP: MS                                                                                    | SP2 Interrupt P            | riority bit     |                  |                  |                 |        |
|                 | 1 = High price                                                                                | ority                      |                 |                  |                  |                 |        |
| bit 6           | BCI 2IP: MS                                                                                   | SP2 Bus Collisi            | ion Interrupt F | Priority bit     |                  |                 |        |
| Site            | 1 = High price                                                                                | ority                      |                 | nonty sit        |                  |                 |        |
|                 | 0 = Low prior                                                                                 | ority                      |                 |                  |                  |                 |        |
| bit 5           | RC2IP: EUS                                                                                    | ART2 Receive               | Interrupt Prior | rity bit         |                  |                 |        |
|                 | 1 = High price                                                                                | ority                      |                 |                  |                  |                 |        |
| L:1 4           | 0 = Low prio                                                                                  | ority                      |                 |                  |                  |                 |        |
| DIT 4           | 1 High price                                                                                  |                            | Interrupt Prio  | rity bit         |                  |                 |        |
|                 | $1 = \operatorname{High} \operatorname{pric}$<br>$0 = \operatorname{Low} \operatorname{pric}$ | brity                      |                 |                  |                  |                 |        |
| bit 3           | TMR4IP: TM                                                                                    | R4 to PR4 Mat              | ch Interrupt P  | riority bit      |                  |                 |        |
|                 | 1 = High pric                                                                                 | ority                      |                 | 2                |                  |                 |        |
|                 | 0 = Low prior                                                                                 | ority                      |                 |                  |                  |                 |        |
| bit 2           | CCP5IP: CC                                                                                    | P5 Interrupt Pri           | ority bit       |                  |                  |                 |        |
|                 | 1 = High price                                                                                | ority                      |                 |                  |                  |                 |        |
| hit 1           |                                                                                               | DA Intorrunt Dri           | ority bit       |                  |                  |                 |        |
| DICT            | 1 – High pric                                                                                 | r4 interrupt r ii<br>arity |                 |                  |                  |                 |        |
|                 | 0 = Low prior                                                                                 | ority                      |                 |                  |                  |                 |        |
| bit 0           | CCP3IP: EC                                                                                    | CP3 Interrupt P            | Priority bit    |                  |                  |                 |        |
|                 | 1 = High pric                                                                                 | ority                      |                 |                  |                  |                 |        |
|                 | 0 = Low prio                                                                                  | ority                      |                 |                  |                  |                 |        |

#### REGISTER 10-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

| Pin Name  | Function           | TRIS<br>Setting | I/O | l/O<br>Type | Description                                                                                                                               |
|-----------|--------------------|-----------------|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| RH0/A16   | RH0                | 0               | 0   | DIG         | LATH<0> data output.                                                                                                                      |
|           |                    | 1               | Ι   | ST          | PORTH<0> data input.                                                                                                                      |
|           | A16                | x               | 0   | DIG         | External memory interface, address line 16. Takes priority over port data.                                                                |
| RH1/A17   | RH1                | 0               | 0   | DIG         | LATH<1> data output.                                                                                                                      |
|           |                    | 1               | Ι   | ST          | PORTH<1> data input.                                                                                                                      |
|           | A17                | x               | 0   | DIG         | External memory interface, address line 17. Takes priority over port data.                                                                |
| RH2/A18   | RH2                | 0               | 0   | DIG         | LATH<2> data output.                                                                                                                      |
|           |                    | 1               | Ι   | ST          | PORTH<2> data input.                                                                                                                      |
|           | A18                | x               | 0   | DIG         | External memory interface, address line 18. Takes priority over port data.                                                                |
| RH3/A19   | RH3                | 0               | 0   | DIG         | LATH<3> data output.                                                                                                                      |
|           |                    | 1               | Ι   | ST          | PORTH<3> data input.                                                                                                                      |
|           | A19                | x               | 0   | DIG         | External memory interface, address line 19. Takes priority over port data.                                                                |
| RH4/AN12/ | RH4                | 0               | 0   | DIG         | LATH<4> data output.                                                                                                                      |
| P3C       |                    | 1               | Ι   | ST          | PORTH<4> data input.                                                                                                                      |
|           | AN12               | 1               | Ι   | ANA         | A/D input channel 12. Default configuration on POR.                                                                                       |
|           | P3C <sup>(1)</sup> | 0               | 0   | DIG         | ECCP3 Enhanced PWM output, channel C. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data. |
| RH5/AN13/ | RH5                | 0               | 0   | DIG         | LATH<5> data output.                                                                                                                      |
| P3B       |                    | 1               | Ι   | ST          | PORTH<5> data input.                                                                                                                      |
|           | AN13               | 1               | Ι   | ANA         | A/D input channel 13. Default configuration on POR.                                                                                       |
|           | P3B <sup>(1)</sup> | 0               | 0   | DIG         | ECCP3 Enhanced PWM output, channel B. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data. |
| RH6/AN14/ | RH6                | 0               | 0   | DIG         | LATH<6> data output.                                                                                                                      |
| P1C       |                    | 1               | Ι   | ST          | PORTH<6> data input.                                                                                                                      |
|           | AN14               | 1               | Ι   | ANA         | A/D input channel 14. Default configuration on POR.                                                                                       |
|           | P1C <sup>(1)</sup> | 0               | 0   | DIG         | ECCP1 Enhanced PWM output, channel C. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data. |
| RH7/AN15/ | RH7                | 0               | 0   | DIG         | LATH<7> data output.                                                                                                                      |
| P1B       |                    | 1               | Ι   | ST          | PORTH<7> data input.                                                                                                                      |
|           | AN15               | 1               | Ι   | ANA         | A/D input channel 15. Default configuration on POR.                                                                                       |
|           | P1B <sup>(1)</sup> | 0               | 0   | DIG         | ECCP1 Enhanced PWM output, channel B. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data. |

TABLE 11-15: PORTH FUNCTIONS

**Legend:** PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

| TABLE 11-16: | SUMMARY C | <b>OF REGISTERS</b> | ASSOCIATED | WITH PORTH |
|--------------|-----------|---------------------|------------|------------|
|              |           |                     |            |            |

| Name   | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Reset<br>Values<br>on page |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------------------|
| TRISH  | TRISH7 | TRISH6 | TRISH5 | TRISH4 | TRISH3 | TRISH2 | TRISH1 | TRISH0 | 60                         |
| PORTH  | RH7    | RH6    | RH5    | RH4    | RH3    | RH2    | RH1    | RH0    | 60                         |
| LATH   | LATH7  | LATH6  | LATH5  | LATH4  | LATH3  | LATH2  | LATH1  | LATH0  | 60                         |
| ADCON1 | —      | —      | VCFG1  | VCFG0  | PCFG3  | PCFG2  | PCFG1  | PCFG0  | 59                         |

© 2008 Microchip Technology Inc.

# 15.0 TIMER3 MODULE

The Timer3 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Module Reset on CCP Special Event Trigger

A simplified block diagram of the Timer3 module is shown in Figure 15-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 15-2.

The Timer3 module is controlled through the T3CON register (Register 15-1). It also selects the clock source options for the CCP modules (see **Section 17.1.1** "**CCP Modules and Timer Resources**" for more information).

## REGISTER 15-1: T3CON: TIMER3 CONTROL REGISTER

| R/W-0 | R/W-0  | R/W-0   | R/W-0   | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|-------|--------|---------|---------|--------|--------|--------|--------|
| RD16  | T3CCP2 | T3CKPS1 | T3CKPS0 | T3CCP1 | T3SYNC | TMR3CS | TMR3ON |
| bit 7 |        |         |         |        |        |        | bit 0  |

| Legend:         |                                      |                                                                                  |                                                            |                                        |
|-----------------|--------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------|
| R = Readable b  | oit                                  | W = Writable bit                                                                 | U = Unimplemented bit,                                     | , read as '0'                          |
| -n = Value at P | OR                                   | '1' = Bit is set                                                                 | '0' = Bit is cleared                                       | x = Bit is unknown                     |
|                 |                                      |                                                                                  |                                                            |                                        |
| bit 7           | RD16: 16-Bit                         | Read/Write Mode Enable                                                           | e bit                                                      |                                        |
|                 | 1 = Enables re<br>0 = Enables re     | egister read/write of Time<br>egister read/write of Time                         | er3 in one 16-bit operation<br>er3 in two 8-bit operations |                                        |
| bit 6, 3        | T3CCP<2:1>:                          | Timer3 and Timer1 to C                                                           | CPx Enable bits                                            |                                        |
|                 | 11 = Timer3<br>10 = Timer3<br>Timer1 | and Timer4 are the clock<br>and Timer4 are the clock<br>and Timer2 are the clock | sources for ECCP1, ECCP3<br>sources for ECCP3, CCP4        | 2, ECCP3, CCP4 and CCP5<br>and CCP5;   |
|                 | 01 = Timer3<br>Timer1                | and Timer2 are the clock<br>and Timer2 are the clock<br>and Timer2 are the clock | sources for ECCP2, ECCP3                                   | 3, CCP4 and CCP5;                      |
|                 | 00 = Timer1                          | and Timer2 are the clock                                                         | sources for ECCP1, ECCP2                                   | 2, ECCP3, CCP4 and CCP5                |
| bit 5-4         | T3CKPS<1:0:                          | : Timer3 Input Clock Pre                                                         | escale Select bits                                         |                                        |
|                 | 11 = 1:8 Pres                        | cale value                                                                       |                                                            |                                        |
|                 | 10 = 1.4 Pres                        | cale value                                                                       |                                                            |                                        |
|                 | 00 = 1:1 Pres                        | cale value                                                                       |                                                            |                                        |
| bit 2           | T3SYNC: Tim<br>(Not usable if        | er3 External Clock Input<br>the device clock comes                               | Synchronization Control bit from Timer1/Timer3.)           |                                        |
|                 | When TMR3C                           | <u>CS = 1:</u>                                                                   |                                                            |                                        |
|                 | 1 = Do not syn                       | nchronize external clock                                                         | input                                                      |                                        |
|                 | When TMR3C                           | S = 0                                                                            |                                                            |                                        |
|                 | This bit is igno                     | ored. Timer3 uses the int                                                        | ernal clock when TMR3CS =                                  | : 0.                                   |
| bit 1           | TMR3CS: Tim                          | ner3 Clock Source Select                                                         | t bit                                                      |                                        |
|                 | 1 = External c<br>0 = Internal c     | clock input from Timer1 o<br>lock (Fosc/4)                                       | scillator or T13CKI (on the ris                            | ing edge after the first falling edge) |
| bit 0           | TMR3ON: Tim                          | ner3 On bit                                                                      |                                                            |                                        |
|                 | 1 = Enables T<br>0 = Stops Tim       | ïmer3<br>er3                                                                     |                                                            |                                        |
|                 |                                      |                                                                                  |                                                            |                                        |

## 17.2 Capture Mode

In Capture mode, the CCPRxH:CCPRxL register pair captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on the corresponding CCPx pin. An event is defined as one of the following:

- every falling edge
- every rising edge
- every 4th rising edge
- every 16th rising edge

The event is selected by the mode select bits, CCPxM<3:0> (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit, CCPxIF, is set; it must be cleared in software. If another capture occurs before the value in the CCPRx registers is read, the old captured value is overwritten by the new captured value.

#### 17.2.1 CCPx PIN CONFIGURATION

In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

| Note: | If a CCPx pin is configured as an output, a |  |  |  |  |  |
|-------|---------------------------------------------|--|--|--|--|--|
|       | write to the port can cause a capture       |  |  |  |  |  |
|       | condition.                                  |  |  |  |  |  |

#### 17.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation will not work. The timer to be used with each CCP module is selected in the T3CON register (see Section 17.1.1 "CCP Modules and Timer Resources").

## 17.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCPxIF, should also be cleared following any such change in operating mode.

#### 17.2.4 CCP PRESCALER

There are four prescaler settings in Capture mode; they are specified as part of the operating mode selected by the mode select bits (CCPxM<3:0>). Whenever the CCP module is turned off, or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 17-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

#### EXAMPLE 17-1: CHANGING BETWEEN CAPTURE PRESCALERS (CCP5 SHOWN)

| CLRF<br>MOVLW | CCP5CON<br>NEW_CAPT_PS | ;<br>; | Turn CCP module off<br>Load WREG with the |
|---------------|------------------------|--------|-------------------------------------------|
|               |                        | ;      | new prescaler mode                        |
|               |                        | ;      | value and CCP ON                          |
| MOVWF         | CCP5CON                | ;      | Load CCP5CON with                         |
|               |                        | ;      | this value                                |
|               |                        |        |                                           |

#### FIGURE 17-2: CAPTURE MODE OPERATION BLOCK DIAGRAM



The CCPRxH register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPRxH and 2-bit latch match TMR2 (TMR4), concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 (TMR4) prescaler, the CCPx pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

#### EQUATION 17-3:

PWM Resolution (max) = 
$$\frac{\log(\frac{Fosc}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCPx pin will not be cleared.

### 17.4.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 (PR4) register.
- Set the PWM duty cycle by writing to the CCPRxL register and CCPxCON<5:4> bits.
- 3. Make the CCPx pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 (TMR4) prescale value, then enable Timer2 (Timer4) by writing to T2CON (T4CON).
- 5. Configure the CCPx module for PWM operation.

#### TABLE 17-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

| PWM Frequency              | 2.44 kHz | 9.77 kHz | 39.06 kHz | 156.25 kHz | 312.50 kHz | 416.67 kHz |
|----------------------------|----------|----------|-----------|------------|------------|------------|
| Timer Prescaler (1, 4, 16) | 16       | 4        | 1         | 1          | 1          | 1          |
| PR2 Value                  | FFh      | FFh      | FFh       | 3Fh        | 1Fh        | 17h        |
| Maximum Resolution (bits)  | 10       | 10       | 10        | 8          | 7          | 6.58       |

### 19.4.9 I<sup>2</sup>C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I<sup>2</sup>C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPxCON2<1>) will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
  - **2:** A bus collision during the Repeated Start condition occurs if:
    - SDAx is sampled low when SCLx goes from low-to-high.
    - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

### 19.4.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower 5 bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

## FIGURE 19-20: REPEATED START CONDITION WAVEFORM



## 22.2 Comparator Operation

A single comparator is shown in Figure 22-2, along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 22-2 represent the uncertainty, due to input offsets and response time.

#### 22.3 Comparator Reference

Depending on the comparator operating mode, either an external or internal voltage reference may be used. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is adjusted accordingly (Figure 22-2).



#### 22.3.1 EXTERNAL REFERENCE SIGNAL

When external voltage references are used, the comparator module can be configured to have the comparators operate from the same or different reference sources. However, threshold detector applications may require the same reference. The reference signal must be between Vss and VDD and can be applied to either pin of the comparator(s).

#### 22.3.2 INTERNAL REFERENCE SIGNAL

The comparator module also allows the selection of an internally generated voltage reference from the comparator voltage reference module. This module is described in more detail in **Section 23.0 "Comparator Voltage Reference Module"**.

The internal reference is only available in the mode where four inputs are multiplexed to two comparators (CM<2:0> = 110). In this mode, the internal voltage reference is applied to the VIN+ pin of both comparators.

## 22.4 Comparator Response Time

Response time is the minimum time, after selecting a new reference voltage or input source, before the comparator output has a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used (see Section 28.0 "Electrical Characteristics").

## 22.5 Comparator Outputs

The comparator outputs are read through the CMCON register. These bits are read-only. The comparator outputs may also be directly output to the RF1 and RF2 I/O pins. When enabled, multiplexors in the output path of the RF1 and RF2 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response time given in the specifications. Figure 22-3 shows the comparator output block diagram.

The TRISF bits will still function as an output enable/ disable for the RF1 and RF2 pins while in this mode.

The polarity of the comparator outputs can be changed using the C2INV and C1INV bits (CMCON<5:4>).

- Note 1: When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.
  - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.

## 24.2 HLVD Setup

The following steps are needed to set up the HLVD module:

- 1. Write the value to the HLVDL<3:0> bits that selects the desired HLVD trip point.
- Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- Enable the HLVD interrupt if interrupts are desired by setting the HLVDIE and GIE bits (PIE2<2> and INTCON<7>). An interrupt will not be generated until the IRVST bit is set.

## 24.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022B (Section 28.2 "DC Characteristics"). Depending on the application, the HLVD module does not need to be operating constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled.

## 24.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification parameter D420 (**Section 28.2 "DC Characteristics**"), may be used by other internal circuitry, such as the Programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36 (Table 28-12).

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval. Refer to Figure 24-2 or Figure 24-3.





| MUL   | LW                                                             | Multiply L                                                          | iteral with                                                                                                                                                                                        | w             |                                   |  |  |  |
|-------|----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------|--|--|--|
| Synta | ax:                                                            | MULLW                                                               | k                                                                                                                                                                                                  |               |                                   |  |  |  |
| Oper  | ands:                                                          | $0 \le k \le 25$                                                    | $0 \le k \le 255$                                                                                                                                                                                  |               |                                   |  |  |  |
| Oper  | ation:                                                         | (W) x k $\rightarrow$                                               | PRODH:PF                                                                                                                                                                                           | RODL          |                                   |  |  |  |
| Statu | is Affected:                                                   | None                                                                |                                                                                                                                                                                                    |               |                                   |  |  |  |
| Enco  | oding:                                                         | 0000                                                                | 1101                                                                                                                                                                                               | kkkk          | kkkk                              |  |  |  |
| Desc  | cription:                                                      | An unsign<br>out betwee<br>8-bit literal<br>placed in F<br>PRODH co | An unsigned multiplication is carried<br>out between the contents of W and the<br>8-bit literal 'k'. The 16-bit result is<br>placed in PRODH:PRODL register pair.<br>PRODH contains the high byte. |               |                                   |  |  |  |
|       |                                                                | W is uncha                                                          | anged.                                                                                                                                                                                             |               |                                   |  |  |  |
|       |                                                                | None of th                                                          | e status fla                                                                                                                                                                                       | gs are a      | iffected.                         |  |  |  |
|       |                                                                | Note that r<br>possible in<br>is possible                           | Note that neither Overflow nor Carry is<br>possible in this operation. A Zero result<br>is possible but not detected.                                                                              |               |                                   |  |  |  |
| Word  | ds:                                                            | 1                                                                   | 1                                                                                                                                                                                                  |               |                                   |  |  |  |
| Cycle | es:                                                            | 1                                                                   |                                                                                                                                                                                                    |               |                                   |  |  |  |
| QC    | ycle Activity:                                                 |                                                                     |                                                                                                                                                                                                    |               |                                   |  |  |  |
|       | Q1                                                             | Q2                                                                  | Q3                                                                                                                                                                                                 |               | Q4                                |  |  |  |
|       | Decode                                                         | Read<br>literal 'k'                                                 | Process<br>Data                                                                                                                                                                                    | re<br>Pl<br>P | Write<br>gisters<br>RODH:<br>RODL |  |  |  |
| Exan  | nple:                                                          | MULLW                                                               | 0C4h                                                                                                                                                                                               |               |                                   |  |  |  |
|       | Before Instruc<br>W<br>PRODH<br>PRODL<br>After Instructio<br>W | tion<br>= E:<br>= ?<br>= ?<br>on<br>= E:                            | 2h<br>2h                                                                                                                                                                                           |               |                                   |  |  |  |

| MULWF                                                   | Multiply W                                                                                                                                                                                                                                       | with f                                                            |                         |                                       |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|---------------------------------------|--|--|--|
| Syntax:                                                 | MULWF                                                                                                                                                                                                                                            | f {,a}                                                            |                         |                                       |  |  |  |
| Operands:                                               | $\begin{array}{l} 0 \leq f \leq 255 \\ a  \in  [0,1] \end{array}$                                                                                                                                                                                | $\begin{array}{l} 0 \leq f \leq 255 \\ a  \in  [0,1] \end{array}$ |                         |                                       |  |  |  |
| Operation:                                              | (W) x (f) $\rightarrow$ PRODH:PRODL                                                                                                                                                                                                              |                                                                   |                         |                                       |  |  |  |
| Status Affected:                                        | None                                                                                                                                                                                                                                             | None                                                              |                         |                                       |  |  |  |
| Encoding:                                               | 0000                                                                                                                                                                                                                                             | 0000 001a ffff ffff                                               |                         |                                       |  |  |  |
| Description:                                            | An unsigned multiplication is carried out<br>between the contents of W and the<br>register file location 'f'. The 16-bit result is<br>stored in the PRODH:PRODL register<br>pair. PRODH contains the high byte. Both<br>W and 'f' are unchanged. |                                                                   |                         |                                       |  |  |  |
|                                                         | None of the status flags are affected.                                                                                                                                                                                                           |                                                                   |                         |                                       |  |  |  |
|                                                         | Note that neither Overflow nor Carry is possible in this operation. A Zero result is possible but not detected.                                                                                                                                  |                                                                   |                         |                                       |  |  |  |
|                                                         | If 'a' is '0', t<br>'a' is '1', the<br>GPR bank                                                                                                                                                                                                  | he Acces<br>e BSR is ι<br>(default).                              | s Bank is<br>ised to se | selected. If<br>elect the             |  |  |  |
|                                                         | If 'a' is '0' and the extended instruction so<br>is enabled, this instruction operates in<br>Indexed Literal Offset Addressing mode<br>whenever f ≤ 95 (5Fh). See<br>Section 26.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed   |                                                                   |                         |                                       |  |  |  |
| Words:                                                  | 1                                                                                                                                                                                                                                                |                                                                   |                         |                                       |  |  |  |
| Cycles:                                                 | 1                                                                                                                                                                                                                                                |                                                                   |                         |                                       |  |  |  |
| Q Cycle Activity:                                       |                                                                                                                                                                                                                                                  |                                                                   |                         |                                       |  |  |  |
| Q1                                                      | Q2                                                                                                                                                                                                                                               | C                                                                 | 3                       | Q4                                    |  |  |  |
| Decode                                                  | Read<br>register 'f                                                                                                                                                                                                                              | Proc<br>Da                                                        | ess<br>ta               | Write<br>registers<br>PRODH:<br>PRODL |  |  |  |
| Example:                                                | MULWF                                                                                                                                                                                                                                            | REG,                                                              | 1                       |                                       |  |  |  |
| Before Instruction<br>W = C4h<br>REG = B5h<br>PRODH = ? |                                                                                                                                                                                                                                                  |                                                                   |                         |                                       |  |  |  |

= = =

C4h B5h 8Ah 94h

After Instruction

W REG PRODH PRODL

| RETI  | RETURN Return from Subroutine |                                                                                                                                   |                                                                                                                                                                                                                                                                                                |                |                |  |  |  |
|-------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--|--|--|
| Synta | ax:                           | RETURN                                                                                                                            | {s}                                                                                                                                                                                                                                                                                            |                |                |  |  |  |
| Oper  | ands:                         | $s \in \left[0,1\right]$                                                                                                          | s ∈ [0,1]                                                                                                                                                                                                                                                                                      |                |                |  |  |  |
| Oper  | ation:                        | $(TOS) \rightarrow F$<br>if s = 1<br>$(WS) \rightarrow W$<br>(STATUSS)<br>$(BSRS) \rightarrow$<br>PCLATU, F                       | $(TOS) \rightarrow PC,$<br>if s = 1<br>$(WS) \rightarrow W,$<br>$(STATUSS) \rightarrow STATUS,$<br>$(BSRS) \rightarrow BSR,$<br>PCLATU, PCLATH are unchanged                                                                                                                                   |                |                |  |  |  |
| Statu | s Affected:                   | None                                                                                                                              |                                                                                                                                                                                                                                                                                                |                |                |  |  |  |
| Enco  | ding:                         | 0000                                                                                                                              | 0000                                                                                                                                                                                                                                                                                           | 0001           | 001s           |  |  |  |
| Desc  | ription:                      | Return from<br>popped an<br>is loaded in<br>'s'= 1, the<br>registers W<br>loaded into<br>registers W<br>'s' = 0, no<br>occurs (de | popped and the top of the stack (TOS)<br>is loaded into the program counter. If<br>'s'= 1, the contents of the shadow<br>registers WS, STATUSS and BSRS are<br>loaded into their corresponding<br>registers W, STATUS and BSR. If<br>'s' = 0, no update of these registers<br>occurs (default) |                |                |  |  |  |
| Word  | ls:                           | 1                                                                                                                                 | 1                                                                                                                                                                                                                                                                                              |                |                |  |  |  |
| Cycle | es:                           | 2                                                                                                                                 |                                                                                                                                                                                                                                                                                                |                |                |  |  |  |
| QC    | ycle Activity:                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                |                |                |  |  |  |
|       | Q1                            | Q2                                                                                                                                | Q                                                                                                                                                                                                                                                                                              | 3              | Q4             |  |  |  |
|       | Decode                        | No<br>operation                                                                                                                   | Proce<br>Dat                                                                                                                                                                                                                                                                                   | ess F<br>a fro | POP PC         |  |  |  |
|       | No<br>operation               | No<br>operation                                                                                                                   | No<br>operat                                                                                                                                                                                                                                                                                   | tion o         | No<br>peration |  |  |  |
| Exam  | nple:                         | RETURN                                                                                                                            |                                                                                                                                                                                                                                                                                                |                |                |  |  |  |

| After Inst | ruction: |
|------------|----------|
| PC         | = TOS    |

| Rotate Left                                                                                                                                                                                                                           | f through Car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RLCF f {                                                                                                                                                                                                                              | ,d {,a}}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| $0 \leq f \leq 255$                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| d ∈ [0,1]<br>a ∈ [0,1]                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| $a \in [0, 1]$                                                                                                                                                                                                                        | $(f_{a}, p_{a}) \rightarrow doot an + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| $(1<1>) \rightarrow de$<br>$(f<7>) \rightarrow C,$<br>$(C) \rightarrow dest<$                                                                                                                                                         | $(f<7>) \rightarrow C,$<br>(C) $\rightarrow$ dest<0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| C, N, Z                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 0011                                                                                                                                                                                                                                  | 01da fff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f ffff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| The contents of register 'f' are rotated<br>one bit to the left through the Carry flag.<br>If 'd' is '0', the result is placed in W. If 'd'<br>is '1', the result is stored back in register<br>'f' (default).                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| If 'a' is '0', the Access Bank is selected.<br>If 'a' is '1', the BSR is used to select the<br>GPR bank (default).                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| set is enabled, this instruction operates<br>in Indexed Literal Offset Addressing<br>mode whenever f ≤ 95 (5Fh). See<br>Section 26.2.3 "Byte-Oriented and<br>Bit-Oriented Instructions in Indexed<br>Literal Offset Mode" for details |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| C                                                                                                                                                                                                                                     | <ul> <li>registe</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rf <mark>≁</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 1                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 1                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| ·                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 02                                                                                                                                                                                                                                    | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Read                                                                                                                                                                                                                                  | Process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Write to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| register 'f'                                                                                                                                                                                                                          | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| RLCF                                                                                                                                                                                                                                  | REG, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| tion                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                       | 0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| = 1110<br>= 0                                                                                                                                                                                                                         | 0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| = 1110<br>= 0                                                                                                                                                                                                                         | 0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                       | 0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                       | 0110<br>1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                       | Rotate Left<br>RLCF f {<br>$0 \le f \le 255$<br>$d \in [0,1]$<br>$a \in [0,1]$<br>$a \in [0,1]$<br>(f <n>) <math>\rightarrow de</math><br/>(f&lt;7&gt;) <math>\rightarrow C</math>,<br/>(C) <math>\rightarrow destechtor C, N, Z 0011 The content one bit to th If 'd' is '0', tt is '1', the ref 'f' (default). If 'a' is '0', tt If 'a' is '0' at set is enabl in Indexed I mode when Section 26 Bit-Oriente Literal Offs 1 1 Q2 Read register 'f' RLCF</math></n> | Rotate Left f through CarRLCFf {,d {,a}} $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ (f(-r>) $\rightarrow$ dest(-n + 1>,(f(-7>) $\rightarrow$ C,(C) $\rightarrow$ dest(-0>C, N, Z $0011$ $011a$ $01da$ $fff$ The contents of register 'f'one bit to the left through tIf 'd' is '0', the result is placeis '1', the result is stored bar'f' (default).If 'a' is '0', the Access BanIf 'a' is '0' and the extendeset is enabled, this instructin Indexed Literal Offset Acmode whenever $f \le 95$ (5FSection 26.2.3 "Byte-OriesBit-Oriented InstructionsLiteral Offset Mode" for cols11Q2Q3ReadProcessregister 'f'DataRLCFREG, 0, |  |  |  |  |

| RLNCF                                                                         | Rotate Lef                                                                   | it f (no carry)                                                                                      |                                                                                       | RRCF              | Rotate Rig                                                                                                                                                                                                 | ht f through                                                                                                                        | Carry                                                                                                             |  |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Syntax:                                                                       | RLNCF                                                                        | f {,d {,a}}                                                                                          |                                                                                       | Syntax:           | RRCF f{                                                                                                                                                                                                    | ,d {,a}}                                                                                                                            |                                                                                                                   |  |
| Operands:                                                                     | 0 ≤ f ≤ 255<br>d ∈ [0,1]<br>a ∈ [0,1]                                        |                                                                                                      |                                                                                       | Operands:         | $\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$                                                                                                                             |                                                                                                                                     |                                                                                                                   |  |
| Operation:                                                                    | $(f < n >) \rightarrow d$<br>$(f < 7 >) \rightarrow d$                       | est <n +="" 1="">,<br/>est&lt;0&gt;</n>                                                              |                                                                                       | Operation:        | $(f < n >) \rightarrow de$<br>$(f < 0 >) \rightarrow C$                                                                                                                                                    | est <n 1="" –="">,<br/>,</n>                                                                                                        |                                                                                                                   |  |
| Status Affected:                                                              | N, Z                                                                         |                                                                                                      |                                                                                       |                   | $(C) \rightarrow dest$                                                                                                                                                                                     |                                                                                                                                     |                                                                                                                   |  |
| Encoding:                                                                     | 0100                                                                         | 01da ff                                                                                              | ff ffff                                                                               | Encoding:         | 0, N, Z                                                                                                                                                                                                    | 00do ff                                                                                                                             | ff fff                                                                                                            |  |
| Description:                                                                  | The conter<br>one bit to t<br>is placed ir<br>stored bac<br>If 'a' is '0', t | hts of register '<br>he left. If 'd' is<br>n W. If 'd' is '1'<br>k in register 'f'<br>the Access Ba  | f' are rotated<br>'0', the result<br>, the result is<br>(default).<br>nk is selected. | Description:      | 0011 00da ffff ffff<br>The contents of register 'f' are rotated<br>one bit to the right through the Carry<br>flag. If 'd' is '0', the result is placed in W<br>If 'd' is '1', the result is placed back in |                                                                                                                                     |                                                                                                                   |  |
|                                                                               | If 'a' is '1', t<br>GPR bank<br>If 'a' is '0' a<br>set is enab               | the BSR is use<br>(default).<br>and the extend                                                       | d to select the<br>led instruction                                                    |                   | If 'a' is '0', the Access Bank is selecte<br>If 'a' is '1', the BSR is used to select th<br>GPR bank (default).                                                                                            |                                                                                                                                     |                                                                                                                   |  |
|                                                                               | in Indexed<br>mode when<br>Section 26<br>Bit-Oriente<br>Literal Off          | Literal Offset<br>never f ≤ 95 (5<br>5.2.3 "Byte-Or<br>ed Instruction<br>set Mode" for<br>register f | Addressing<br>iFh). See<br>riented and<br>ns in Indexed<br>details.                   |                   | If 'a' is '0' a<br>set is enab<br>in Indexed<br>mode wher<br>Section 26<br>Bit-Oriente<br>Literal Offs                                                                                                     | nd the extend<br>led, this instru<br>Literal Offset $J$<br>never f $\leq$ 95 (5<br>.2.3 "Byte-Or<br>ed Instruction<br>set Mode" for | ed instruction<br>ction operates<br>Addressing<br>Fh). See<br><b>riented and</b><br><b>in Indexed</b><br>details. |  |
| Words:                                                                        | 1                                                                            |                                                                                                      |                                                                                       |                   | → C                                                                                                                                                                                                        | → registe                                                                                                                           | er f 🔶                                                                                                            |  |
| Cycles:                                                                       | 1                                                                            |                                                                                                      |                                                                                       |                   |                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                   |  |
| Q Cycle Activity:                                                             |                                                                              |                                                                                                      |                                                                                       | words:            | 1                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                   |  |
| Q1                                                                            | Q2                                                                           | Q3                                                                                                   | Q4                                                                                    |                   | 1                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                   |  |
| Decode                                                                        | Read<br>register 'f'                                                         | Process<br>Data                                                                                      | Write to<br>destination                                                               | Q Cycle Activity: | Q2                                                                                                                                                                                                         | Q3                                                                                                                                  | Q4                                                                                                                |  |
|                                                                               | i oglotor i                                                                  | 2 414                                                                                                | dootmation                                                                            | Decode            | Read                                                                                                                                                                                                       | Process                                                                                                                             | Write to                                                                                                          |  |
| Example:                                                                      | RLNCF                                                                        | REG, 1,                                                                                              | 0                                                                                     |                   | register 'f'                                                                                                                                                                                               | Data                                                                                                                                | destination                                                                                                       |  |
| Before Instruction<br>REG = 1010 1011<br>After Instruction<br>REG = 0101 0111 |                                                                              | Example:<br>Before Instruct<br>REG<br>C<br>After Instructi                                           | RRCF<br>ction<br>= 1110 (<br>= 0<br>on<br>= 1110 (                                    | REG, 0,           | 0                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                   |  |
|                                                                               |                                                                              |                                                                                                      |                                                                                       | W<br>C            | = 011100<br>= 0                                                                                                                                                                                            | )011                                                                                                                                |                                                                                                                   |  |

| SUBWFB Subtract W from f with Borrow |              |                           |                                    |                 |
|--------------------------------------|--------------|---------------------------|------------------------------------|-----------------|
| Syntax:                              | SL           | JBWFB                     | f {,d {,a}}                        |                 |
| Operands:                            | 0 ≤          | ≤ f ≤ 255                 |                                    |                 |
|                                      | d e          | ≡ [0,1]<br>- [0,1]        |                                    |                 |
| Operation:                           | a e<br>(f)   | = [0,1]<br>_ (\\/)        | $(\overline{C}) \rightarrow dest$  |                 |
| Status Affected:                     | (I)<br>N     |                           | $(C) \rightarrow uesi$             |                 |
| Encoding:                            | IN,          | 0101                      | 10do ff                            | f fff           |
| Description:                         |              | btract W                  | and the Carry                      | flag (borrow)   |
| Description.                         | fro          | m regist                  | er 'f' (2's comp                   | lement          |
|                                      | me           | ethod). If                | 'd' is '0', the re                 | sult is stored  |
|                                      | in \<br>in I | W. If 'd' i<br>register ' | s '1', the result<br>f' (default). | is stored back  |
|                                      | lf 'a        | a' is '0', f              | the Access Bar                     | nk is selected. |
|                                      | lf 'a<br>GF  | a' is '1', t<br>PR bank   | he BSR is use<br>(default).        | d to select the |
|                                      | lf 'a        | a' is '0' a               | ind the extende                    | ed instruction  |
|                                      | se<br>in     | t is enab<br>Indexed      | Literal Offset A                   | ddressing       |
|                                      | mc           | de wher                   | hever $f \le 95$ (5F               | Fh). See        |
|                                      | Se           | ction 26                  | .2.3 "Byte-Ori                     | ented and       |
|                                      | Bit          | eral Off                  | ed Instruction<br>set Mode" for    | s in Indexed    |
| Words:                               | 1            |                           |                                    | dotano.         |
| Cycles:                              | 1            |                           |                                    |                 |
| Q Cycle Activity:                    |              |                           |                                    |                 |
| Q1                                   |              | Q2                        | Q3                                 | Q4              |
| Decode                               | F            | Read                      | Process                            | Write to        |
|                                      | reg          | jister 'f'                | Data                               | destination     |
| Example 1:                           |              | UBWFB                     | REG, 1, 0                          |                 |
| Before Instruc<br>REG                | tion =       | 19h                       | (0001 10                           | 01)             |
| W                                    | =            | 0Dh                       | (0000 11                           | 01)             |
| After Instructio                     | =<br>on      | 1                         |                                    |                 |
| REG                                  | =            | 0Ch                       | (0000 10                           | 11)             |
| W<br>C                               | =            | 0Dh<br>1                  | (0000 11                           | 01)             |
| Z                                    | =            | 0                         | , requit is n                      |                 |
| IN<br>Example 2:                     | =            |                           |                                    | USILIVE         |
| Before Instruc                       | tion         | JODWID                    | NHO, 0, 0                          |                 |
| REG                                  | =            | 1Bh                       | (0001 10                           | 11)             |
| W<br>C                               | =            | 1Ah<br>0                  | (0001 10)                          | 10)             |
| After Instruction                    | on           | -                         |                                    |                 |
| REG                                  | =            | 1Bh<br>00b                | (0001 10                           | 11)             |
| Č                                    | =            | 1                         |                                    |                 |
| Z<br>N                               | =            | 1<br>0                    | ; result is ze                     | ero             |
| Example 3:                           | S            | UBWFB                     | REG, 1, 0                          |                 |
| Before Instruc                       | ction        |                           |                                    |                 |
| REG                                  | =            | 03h                       | (0000 00)                          | 11)             |
| C                                    | =            | 0En<br>1                  | (0000 11                           | UI)             |
| After Instruction                    | on           |                           |                                    |                 |
| REG                                  | =            | ⊦5h                       | (1111 01<br>; <b>[2's com</b> p    | υυ)<br>Ι        |
| W                                    | =            | 0Eh                       | (0000 11                           | 01)             |
| Z                                    | =            | 0                         |                                    |                 |
| N                                    | =            | 1                         | ; result is n                      | egative         |

| SWAPF                                                                                                                                                                                                                                                              | Swap f                                                                                                                                                                       |                         |                      |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|--|--|
| Syntax:                                                                                                                                                                                                                                                            | SWAPF f                                                                                                                                                                      | {,d {,a}}               |                      |  |  |
| Operands:                                                                                                                                                                                                                                                          | $0 \leq f \leq 255$                                                                                                                                                          |                         |                      |  |  |
|                                                                                                                                                                                                                                                                    | d ∈ [0,1]<br>a ∈ [0,1]                                                                                                                                                       |                         |                      |  |  |
| Operation:                                                                                                                                                                                                                                                         | (f<3:0>) →<br>(f<7:4>) →                                                                                                                                                     | dest<7:4>,<br>dest<3:0> |                      |  |  |
| Status Affected:                                                                                                                                                                                                                                                   | None                                                                                                                                                                         |                         |                      |  |  |
| Encoding:                                                                                                                                                                                                                                                          | 0011                                                                                                                                                                         | 10da ff:                | ff ffff              |  |  |
| Description:                                                                                                                                                                                                                                                       | The upper and lower nibbles of register<br>'f' are exchanged. If 'd' is '0', the result<br>is placed in W. If 'd' is '1', the result is<br>placed in register 'f' (default). |                         |                      |  |  |
| If 'a' is '0', the Access Bank is sele<br>If 'a' is '1', the BSR is used to sele<br>GPR bank (default).                                                                                                                                                            |                                                                                                                                                                              |                         |                      |  |  |
| If 'a' is '0' and the extended instru-<br>set is enabled, this instruction op-<br>in Indexed Literal Offset Addressi<br>mode whenever f ≤ 95 (5Fh). See<br>Section 26.2.3 "Byte-Oriented a<br>Bit-Oriented Instructions in Ind<br>Literal Offset Mode" for details |                                                                                                                                                                              |                         |                      |  |  |
| Words:                                                                                                                                                                                                                                                             | 1                                                                                                                                                                            |                         |                      |  |  |
| Cycles:                                                                                                                                                                                                                                                            | 1                                                                                                                                                                            |                         |                      |  |  |
| Q Cycle Activity:                                                                                                                                                                                                                                                  |                                                                                                                                                                              |                         |                      |  |  |
| Q1                                                                                                                                                                                                                                                                 | Q2                                                                                                                                                                           | Q3                      | Q4                   |  |  |
| Decode                                                                                                                                                                                                                                                             | Read<br>register 'f'                                                                                                                                                         | Process<br>Data         | Write to destination |  |  |
| Example: SWAPF REG, 1, 0<br>Before Instruction<br>REG = 53h<br>After Instruction                                                                                                                                                                                   |                                                                                                                                                                              |                         |                      |  |  |
| REG                                                                                                                                                                                                                                                                | = 3011                                                                                                                                                                       |                         |                      |  |  |



#### TABLE 28-18: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)

| Param<br>No. | Symbol                | Characteristic                                                            |                   | Min           | Max | Units | Conditions |
|--------------|-----------------------|---------------------------------------------------------------------------|-------------------|---------------|-----|-------|------------|
| 70           | TssL2scH,<br>TssL2scL | $\overline{SSx} \downarrow$ to SCKx $\downarrow$ or SCKx $\uparrow$ Input |                   | 3 Тсү         |     | ns    |            |
| 71           | TscH                  | SCKx Input High Time                                                      | Continuous        | 1.25 Tcy + 30 | —   | ns    |            |
| 71A          |                       | (Slave mode)                                                              | Single Byte       | 40            |     | ns    | (Note 1)   |
| 72           | TscL                  | SCKx Input Low Time                                                       | Continuous        | 1.25 Tcy + 30 | —   | ns    |            |
| 72A          |                       | (Slave mode)                                                              | Single Byte       | 40            | —   | ns    | (Note 1)   |
| 73           | TDIV2scH,<br>TDIV2scL | Setup Time of SDIx Data Input to SCKx                                     | Edge              | 20            |     | ns    |            |
| 73A          | Тв2в                  | Last Clock Edge of Byte 1 to the First Cloc                               | ck Edge of Byte 2 | 1.5 Tcy + 40  | —   | ns    | (Note 2)   |
| 74           | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx E                                    | Edge              | 40            |     | ns    |            |
| 75           | TDOR                  | SDOx Data Output Rise Time                                                | PIC18FXXXX        | —             | 25  | ns    |            |
|              |                       |                                                                           | PIC18LFXXXX       | —             | 45  | ns    | VDD = 2.0V |
| 76           | TDOF                  | SDOx Data Output Fall Time                                                |                   | _             | 25  | ns    |            |
| 77           | TssH2doZ              | SSx ↑ to SDOx Output High-Impedance                                       | <del>)</del>      | 10            | 50  | ns    |            |
| 78           | TscR                  | SCKx Output Rise Time (Master mode)                                       | PIC18FXXXX        | —             | 25  | ns    |            |
|              |                       |                                                                           | PIC18LFXXXX       | —             | 45  | ns    | VDD = 2.0V |
| 79           | TscF                  | SCKx Output Fall Time (Master mode)                                       |                   | —             | 25  | ns    |            |
| 80           | TscH2doV,             | SDOx Data Output Valid after SCKx                                         | PIC18FXXXX        | —             | 50  | ns    |            |
|              | TscL2doV              | Edge                                                                      | PIC18LFXXXX       | —             | 100 | ns    | VDD = 2.0V |
| 83           | TscH2ssH,<br>TscL2ssH | SSx ↑ after SCKx Edge                                                     |                   | 1.5 TCY + 40  |     | ns    |            |

**Note 1:** Requires the use of Parameter #73A.

**2:** Only if Parameter #71A and #72A are used.

## APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

#### Not Applicable

## APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

| 0 | - | -  |   |
|---|---|----|---|
| _ | 0 | 0  | r |
|   | • | ۰. | L |

| Sleep                                            |
|--------------------------------------------------|
| OSC1 and OSC2 Pin States 40                      |
| Sleep Mode45                                     |
| Software Simulator (MPLAB SIM)                   |
| Special Event Trigger, See Compare (CCP Mode).   |
| Special Event Trigger, See Compare (ECCP Module) |
| Special Features of the CPU 297                  |
| Special Function Registers 75                    |
| Mon 75                                           |
| Map                                              |
|                                                  |
| Associated Registers                             |
| Bus Mode Compatibility                           |
| Clock Speed, Interactions                        |
| Effects of a Reset                               |
| Enabling SPI I/O209                              |
| Master Mode210                                   |
| Master/Slave Connection209                       |
| Operation208                                     |
| Operation in Power-Managed Modes213              |
| Serial Clock                                     |
| Serial Data In205                                |
| Serial Data Out                                  |
| Slave Mode211                                    |
| Slave Select                                     |
| Slave Select Synchronization                     |
| SPI Clock 210                                    |
| SSPxBLIE Register 210                            |
| SSPxSR Register 210                              |
| Typical Connection 200                           |
|                                                  |
| SSEOV Status Elag 226                            |
| SSFOV Status Flag                                |
|                                                  |
| R/W Bit                                          |
| SSX                                              |
| Stack Full/Underflow Resets                      |
| SUBFSR                                           |
| SUBFWB                                           |
| SUBLW                                            |
| SUBULNK                                          |
| SUBWF                                            |
| SUBWFB                                           |
| SWAPF                                            |
| т                                                |
| 1<br>                                            |
| I able Pointer Operations (table)         90     |
| Table Reads/Table Writes                         |

| Table Reads/Table Writes               | 69  |
|----------------------------------------|-----|
| TBLRD                                  | 359 |
| TBLWT                                  |     |
| Time-out in Various Situations (table) |     |
| Timer0                                 |     |
| Associated Registers                   |     |
| Operation                              |     |
| Overflow Interrupt                     |     |
| Prescaler                              |     |
| Prescaler Assignment (PSA Bit)         |     |
| Prescaler Select (T0PS2:T0PS0 Bits)    | 163 |
| Prescaler, See Prescaler, Timer0.      |     |
| Reads and Writes in 16-Bit Mode        | 162 |
| Source Edge Select (TOSE Bit)          | 162 |
| Source Select (TOCS Bit)               | 162 |
| Switching Prescaler Assignment         |     |
| Switching i rescaler Assignment        |     |

| Time    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                                                                                    |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------|
|         | er1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 165                                                                                                                                |
|         | 16-Bit Read/Write Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 167                                                                                                                                |
|         | Associated Desisters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 107                                                                                                                                |
|         | Associated Registers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ••••• | 169                                                                                                                                |
|         | Interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 168                                                                                                                                |
|         | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 166                                                                                                                                |
|         | Oppillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 165   | 167                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 165,  | 107                                                                                                                                |
|         | Layout Considerations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 168                                                                                                                                |
|         | Overflow Interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 165                                                                                                                                |
|         | Boostting Using the CCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                                                                    |
|         | Resetting, Using the CCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                                                                                    |
|         | Special Event Trigger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 168                                                                                                                                |
|         | Special Event Trigger (ECCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 192                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 165                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 105                                                                                                                                |
|         | IMR1L Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 165                                                                                                                                |
|         | Use as a Real-Time Clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 168                                                                                                                                |
| Tim     | er2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 171                                                                                                                                |
|         | Approximate Degisters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 470                                                                                                                                |
|         | Associated Registers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ••••• | 172                                                                                                                                |
|         | Interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 172                                                                                                                                |
|         | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 171                                                                                                                                |
|         | Outout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 172                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 172                                                                                                                                |
|         | PR2 Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 184,  | 192                                                                                                                                |
|         | TMR2 to PR2 Match Interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 184.  | 192                                                                                                                                |
| Tim     | er3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - ,   | 173                                                                                                                                |
| 1 11 11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                                                                                    |
|         | 16-Bit Read/Write Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 175                                                                                                                                |
|         | Associated Registers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 175                                                                                                                                |
|         | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 174                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 470   | 475                                                                                                                                |
|         | Oscillator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 173,  | 175                                                                                                                                |
|         | Overflow Interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 173,  | 175                                                                                                                                |
|         | Special Event Trigger (CCP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 175                                                                                                                                |
|         | TMP24 Pogistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 172                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ••••• | 173                                                                                                                                |
|         | TMR3L Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 173                                                                                                                                |
| Time    | er4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 177                                                                                                                                |
|         | Accorded Pogistors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 170                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ••••• | 170                                                                                                                                |
|         | MSSP Clock Shift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 178                                                                                                                                |
|         | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 177                                                                                                                                |
|         | Postscalar See Postscalar Timer/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                                                    |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                                                                                    |
|         | PR4 Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                                                                                    |
|         | Prescaler See Prescaler Timer4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 177                                                                                                                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 177                                                                                                                                |
|         | TMR4 Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 177                                                                                                                                |
|         | TMR4 Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 177                                                                                                                                |
|         | TMR4 Register<br>TMR4 to PR4 Match Interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 177<br>177<br>178                                                                                                                  |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 177,  | 177<br>177<br>178                                                                                                                  |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 177<br>177<br>178<br>416                                                                                                           |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177,  | 177<br>177<br>178<br>416                                                                                                           |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 177,  | 177<br>177<br>178<br>416<br>261                                                                                                    |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 177,  | 177<br>177<br>178<br>416<br>261<br>258                                                                                             |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258                                                                                      |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Poto Colculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 177,  | 177<br>178<br>178<br>416<br>261<br>258<br>258                                                                                      |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>256                                                                               |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>Ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>258                                                                               |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>258<br>256<br>262                                                                 |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>256<br>262                                                                        |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Aynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>258<br>256<br>262<br>262                                                          |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Baud Rate Generator with Clock Arbitration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>258<br>256<br>262<br>262<br>262<br>233                                            |
| Timi    | TMR4 Register<br>TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Normal Operation<br>Baud Rate Generator with Clock Arbitration .<br>BRG Overflow Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>256<br>262<br>262<br>233<br>256                                                   |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Baud Rate Generator with Clock Arbitration<br>BRG Overflow Sequence<br>BRG Overflow Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 177,  | 177<br>177<br>178<br>261<br>258<br>258<br>258<br>256<br>262<br>262<br>233<br>256                                                   |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Baud Rate Generator with Clock Arbitration<br>BRG Overflow Sequence<br>BRG Reset Due to SDAx Arbitration                                                                                                                                                                                                                                                                                                                                                                                                                                   | 177,  | 177<br>177<br>178<br>261<br>258<br>258<br>256<br>262<br>262<br>233<br>256                                                          |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Baud Rate Generator with Clock Arbitration<br>BRG Overflow Sequence<br>BRG Reset Due to SDAx Arbitration<br>During Start Condition                                                                                                                                                                                                                                                                                                                                                                                                         | 177,  | 1777<br>1778<br>416<br>261<br>258<br>258<br>256<br>262<br>262<br>233<br>256<br>242<br>242                                          |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Normal Operation<br>Baud Rate Generator with Clock Arbitration<br>BRG Overflow Sequence<br>BRG Reset Due to SDAx Arbitration<br>During Start Condition<br>Brown-out Reset (BOR)                                                                                                                                                                                                                                                                                                                                                                                             |       | 1777<br>1778<br>416<br>261<br>258<br>258<br>256<br>262<br>262<br>233<br>256<br>242<br>403                                          |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Baud Rate Generator with Clock Arbitration<br>BRG Overflow Sequence<br>BRG Reset Due to SDAx Arbitration<br>During Start Condition<br>Brown-out Reset (BOR)<br>Bus Collision During a Repeated Start                                                                                                                                                                                                                                                                                                                                       | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>258<br>258<br>262<br>262<br>233<br>256<br>242<br>403                              |
| Timi    | TMR4 Register<br>TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ing Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission<br>Asynchronous Transmission (Back to Back)<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Baud Rate Generator with Clock Arbitration<br>BRG Overflow Sequence<br>BRG Reset Due to SDAx Arbitration<br>During Start Condition<br>Brown-out Reset (BOR)<br>Bus Collision During a Repeated Start<br>Condition (Case 1)                                                                                                                                                                                                                                                                                                                   | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>258<br>258<br>258<br>258<br>258<br>258<br>258<br>258                              |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>ng Diagrams<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission (Back to Back) .<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Baud Rate Generator with Clock Arbitration<br>BRG Overflow Sequence<br>BRG Reset Due to SDAx Arbitration<br>During Start Condition<br>Bus Collision During a Repeated Start<br>Condition (Case 1)                                                                                                                                                                                                                                                                                                                                           |       | 177<br>177<br>416<br>261<br>258<br>258<br>256<br>262<br>233<br>256<br>242<br>403<br>242                                            |
| Timi    | TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission<br>Asynchronous Transmission (Back to Back) .<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Baud Rate Generator with Clock Arbitration<br>BRG Overflow Sequence<br>BRG Reset Due to SDAx Arbitration<br>During Start Condition<br>Brown-out Reset (BOR)<br>Bus Collision During a Repeated Start<br>Condition (Case 1)<br>Bus Collision During a Repeated Start                                                                                                                                                                                                |       | 177<br>177<br>178<br>261<br>258<br>258<br>256<br>262<br>233<br>256<br>242<br>403<br>242                                            |
| Timi    | TMR4 Register<br>TMR4 Register<br>TMR4 to PR4 Match Interrupt<br>A/D Conversion<br>Asynchronous Reception<br>Asynchronous Transmission<br>Asynchronous Transmission (Back to Back) .<br>Automatic Baud Rate Calculation<br>Auto-Wake-up Bit (WUE) During<br>Normal Operation<br>Auto-Wake-up Bit (WUE) During Sleep<br>Baud Rate Generator with Clock Arbitration .<br>BRG Overflow Sequence<br>BRG Reset Due to SDAx Arbitration<br>During Start Condition<br>Brown-out Reset (BOR)<br>Bus Collision During a Repeated Start<br>Condition (Case 1)<br>Bus Collision During a Repeated Start<br>Condition (Case 2)                                                                                                                                                                                                                                                                | 177,  | 1777<br>1778<br>4166<br>261<br>2588<br>2568<br>262<br>262<br>233<br>2566<br>2422<br>403<br>2423<br>2433<br>243                     |
| Timi    | <ul> <li>TMR4 Register</li> <li>TMR4 to PR4 Match Interrupt</li> <li>Ing Diagrams</li> <li>A/D Conversion</li> <li>Asynchronous Reception</li> <li>Asynchronous Transmission (Back to Back)</li> <li>Asynchronous Transmission (Back to Back)</li> <li>Automatic Baud Rate Calculation</li> <li>Auto-Wake-up Bit (WUE) During</li> <li>Normal Operation</li> <li>Auto-Wake-up Bit (WUE) During Sleep</li> <li>Baud Rate Generator with Clock Arbitration</li> <li>BRG Overflow Sequence</li> <li>BRG Reset Due to SDAx Arbitration</li> <li>During Start Condition</li> <li>Brown-out Reset (BOR)</li> <li>Bus Collision During a Repeated Start</li> <li>Condition (Case 1)</li> <li>Bus Collision During a Repeated Start</li> <li>Condition (Case 2)</li> </ul>                                                                                                                | 177,  | 177<br>177<br>178<br>261<br>258<br>258<br>256<br>262<br>233<br>256<br>262<br>233<br>256<br>242<br>403<br>243                       |
| Timi    | <ul> <li>TMR4 Register</li> <li>TMR4 to PR4 Match Interrupt</li> <li>mg Diagrams</li> <li>A/D Conversion</li> <li>Asynchronous Reception</li> <li>Asynchronous Transmission</li> <li>Asynchronous Transmission (Back to Back)</li> <li>Automatic Baud Rate Calculation</li> <li>Auto-Wake-up Bit (WUE) During</li> <li>Normal Operation</li> <li>Auto-Wake-up Bit (WUE) During Sleep</li> <li>Baud Rate Generator with Clock Arbitration</li> <li>BRG Overflow Sequence</li> <li>BRG Reset Due to SDAx Arbitration</li> <li>During Start Condition</li> <li>Brown-out Reset (BOR)</li> <li>Bus Collision During a Repeated Start</li> <li>Condition (Case 2)</li> <li>Bus Collision During a Start</li> <li>Ocondition Column (Column 20)</li> </ul>                                                                                                                              |       | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>258<br>258<br>262<br>262<br>233<br>256<br>242<br>403<br>243<br>243                |
| Timi    | <ul> <li>TMR4 Register</li> <li>TMR4 to PR4 Match Interrupt</li> <li>mg Diagrams</li> <li>A/D Conversion</li> <li>Asynchronous Reception</li> <li>Asynchronous Transmission</li> <li>Asynchronous Transmission (Back to Back)</li> <li>Automatic Baud Rate Calculation</li> <li>Auto-Wake-up Bit (WUE) During</li> <li>Normal Operation</li> <li>Auto-Wake-up Bit (WUE) During Sleep</li> <li>Baud Rate Generator with Clock Arbitration</li> <li>BRG Overflow Sequence</li> <li>BRG Reset Due to SDAx Arbitration</li> <li>During Start Condition</li> <li>Brown-out Reset (BOR)</li> <li>Bus Collision During a Repeated Start</li> <li>Condition (Case 1)</li> <li>Bus Collision During a Start</li> <li>Condition During a Start</li> <li>Condition (SCLx = 0)</li> </ul>                                                                                                     |       | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>258<br>262<br>262<br>233<br>256<br>242<br>403<br>243<br>243<br>243                |
| Timi    | TMR4 Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 177,  | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>256<br>262<br>233<br>256<br>242<br>403<br>243<br>243<br>243<br>243                |
| Timi    | <ul> <li>TMR4 Register</li> <li>TMR4 Register</li> <li>TMR4 to PR4 Match Interrupt</li> <li>Ing Diagrams</li> <li>A/D Conversion</li> <li>Asynchronous Reception</li> <li>Asynchronous Transmission (Back to Back)</li> <li>Automatic Baud Rate Calculation</li> <li>Auto-Wake-up Bit (WUE) During</li> <li>Normal Operation</li> <li>Auto-Wake-up Bit (WUE) During Sleep</li> <li>Baud Rate Generator with Clock Arbitration</li> <li>BRG Overflow Sequence</li> <li>BRG Reset Due to SDAx Arbitration</li> <li>During Start Condition</li> <li>Brown-out Reset (BOR)</li> <li>Bus Collision During a Repeated Start</li> <li>Condition (Case 1)</li> <li>Bus Collision During a Start</li> <li>Condition (SCLx = 0)</li> <li>Bus Collision During a Stop</li> <li>Condition (Case 1)</li> </ul>                                                                                 |       | 177<br>177<br>178<br>416<br>261<br>258<br>258<br>256<br>262<br>233<br>256<br>242<br>403<br>243<br>243<br>243<br>243<br>242<br>242  |
| Timi    | <ul> <li>TMR4 Register</li> <li>TMR4 to PR4 Match Interrupt</li> <li>mg Diagrams</li> <li>A/D Conversion</li> <li>Asynchronous Reception</li> <li>Asynchronous Transmission</li> <li>Asynchronous Transmission (Back to Back)</li> <li>Automatic Baud Rate Calculation</li> <li>Auto-Wake-up Bit (WUE) During</li> <li>Normal Operation</li> <li>Auto-Wake-up Bit (WUE) During Sleep</li> <li>Baud Rate Generator with Clock Arbitration</li> <li>BRG Overflow Sequence</li> <li>BRG Reset Due to SDAx Arbitration</li> <li>During Start Condition</li> <li>Brown-out Reset (BOR)</li> <li>Bus Collision During a Repeated Start</li> <li>Condition (Case 1)</li> <li>Bus Collision During a Start</li> <li>Condition (SCLx = 0)</li> <li>Bus Collision During a Stop</li> <li>Condition (Case 1)</li> </ul>                                                                      |       | 177<br>177<br>416<br>261<br>258<br>258<br>256<br>262<br>233<br>256<br>242<br>403<br>243<br>243<br>243<br>243<br>243                |
| Timi    | <ul> <li>TMR4 Register</li> <li>TMR4 to PR4 Match Interrupt</li> <li>mg Diagrams</li> <li>A/D Conversion</li> <li>Asynchronous Reception</li> <li>Asynchronous Transmission</li> <li>Asynchronous Transmission (Back to Back)</li> <li>Automatic Baud Rate Calculation</li> <li>Auto-Wake-up Bit (WUE) During</li> <li>Normal Operation</li> <li>Auto-Wake-up Bit (WUE) During Sleep</li> <li>Baud Rate Generator with Clock Arbitration</li> <li>BRG Overflow Sequence</li> <li>BRG Reset Due to SDAx Arbitration</li> <li>During Start Condition</li> <li>Brown-out Reset (BOR)</li> <li>Bus Collision During a Repeated Start</li> <li>Condition (Case 1)</li> <li>Bus Collision During a Start</li> <li>Condition (SCLx = 0)</li> <li>Bus Collision During a Stop</li> <li>Condition (Case 1)</li> <li>Bus Collision During a Stop</li> <li>Condition Uring a Stop</li> </ul> |       | 1777<br>1778<br>4166<br>261<br>2588<br>2588<br>2566<br>2622<br>2333<br>2566<br>2422<br>403<br>2432<br>2433<br>2433<br>2432<br>2433 |