

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8627-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pin Number	Pin	Buffer	Description	
Pin Name	TQFP	Туре Туре		Description	
				PORTA is a bidirectional I/O port.	
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog input 0.	
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog input 1.	
RA2/AN2/VREF- RA2 AN2 VREF-	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input.	
RA3/AN3/VREF+ RA3 AN3 VREF+	21	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.	
RA4/T0CKI RA4 T0CKI	28	I/O I	ST ST	Digital I/O. Timer0 external clock input.	
RA5/AN4/HLVDIN RA5 AN4 HLVDIN	27	I/O I I	TTL Analog Analog	Digital I/O. Analog input 4. High/Low-Voltage Detect input.	
RA6				See the OSC2/CLKO/RA6 pin.	
RA7				See the OSC1/CLKI/RA7 pin.	
Legend: TTL = TTL co	ompatible input		S OS lovela	= CMOS compatible input or output	
ST = Schmitt Trigger input with CMOS levels Analog= Analog input I = Input O = Output P = Power I^2C^{TM} = $I^2C/SMBus$ input buffer					

TABLE 1-3: PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

FIGURE 5-2: MEMORY MAPS FOR PIC18F8722 FAMILY PROGRAM MEMORY MODES

	М	icroproces Mode	ssor	Mic: with	Microprocessor with Boot Block Mode		Microcontroller Mode ⁽⁵⁾		Extended Microcontroller Mode	
E	000000h		On-Chip Program Memory (No access)	000000h 0007FFh ⁽⁶⁾ or 000FFFh ⁽⁶⁾ or 001FFFh ⁽⁶⁾		On-Chip Program Memory	000000h 0BFFFh ⁽¹⁾ 0FFFFh ⁽²⁾	On-Chip Program Memory	000000h 0BFFFh ⁽¹⁾ 0FFFFh ⁽²⁾	On-Chip Program Memory
Program Space Execution		External Program Memory		000800h ⁽⁶⁾ or 001000h ⁽⁶⁾ or 002000h ⁽⁶⁾	External Program Memory		017FFFh ⁽³⁾ 01FFFFh ⁽⁴⁾ 0C000h ⁽¹⁾ 010000h ⁽²⁾ 018000h ⁽³⁾ 020000h ⁽⁴⁾	Reads '0's	017FFFh ⁽³⁾ 01FFFh ⁽⁴⁾ 0C000h ⁽¹⁾ 010000h ⁽²⁾ 018000h ⁽³⁾ 020000h ⁽⁴⁾ Program Memory	
	1FFFFFh			1FFFFFh			1FFFFFh		1FFFFFh	
		External Memory	On-Chip Flash		External Memory	On-Chip Flash		On-Chip Flash	External Memory	On-Chip Flash
No	ote 1: 2: 3: 4: 5: 6:	PIC18F65 PIC18F66 PIC18F66 PIC18F67 This is the Boot block	27 and PIC18 22 and PIC18 27 and PIC18 22 and PIC18 22 and PIC18 a only mode a c size is deter	3F8527. 3F8622. 3F8627. 3F8722. available on PIC mined by the BE	18F6527/6 3SIZ<1:0>	622/6627/67 bits in CONF	22 devices. TIG4L.			

10.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Priority registers (IPR1, IPR2, IPR3). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 10-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 7	PSPIP: Parall	lel Slave Port F	Read/Write Int	errupt Priority	bit			
	1 = High prio 0 = Low prior	rity ⁻ ity						
bit 6	ADIP: A/D Co	onverter Interru	pt Priority bit					
	1 = High prio	rity						
	0 = Low prior	ity						
bit 5	RC1IP: EUSA	ART1 Receive	Interrupt Prior	ity bit				
	1 = High prio	rity 						
bit 4		RT1 Transmit	Interrunt Prior	ity bit				
bit 4			interrupt i noi	ity bit				
	1 = High pho 0 = Low prior	ity						
bit 3	SSP1IP: MSS	SP1 Interrupt P	riority bit					
	1 = High prio	rity						
	0 = Low prior	ity						
bit 2	CCP1IP: ECC	CP1 Interrupt P	riority bit					
	1 = High prio	rity						
	0 = Low priority							
bit 1	INKZIP: INKZ to PRZ Match Interrupt Priority bit							
	1 = High prio	rity						
hit 0		R1 Overflow In		/ bit				
Sit U	1 = High prio	ritv	ion upt i nonty					
	0 = Low prior	ity						

11.0 I/O PORTS

Depending on the device selected and features enabled, there are up to nine ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- Port register (reads the levels on the pins of the device)
- LAT register (output latch)

The Data Latch (LAT register) is useful for read-modify-write operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

FIGURE 11-1: GENERIC I/O PORT OPERATION

11.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 25.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with the analog VREF+ and VREF- inputs. The operation of pins RA5:RA0 as A/D converter inputs is selected by clearing or setting the PCFG<3:0> control bits in the ADCON1 register.

Note:	On a Power-on Reset, RA5 and RA<3:0>
	are configured as analog inputs and read
	as '0'. RA4 is configured as a digital input.

The RA4/T0CKI pin is a Schmitt Trigger input and an open-drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 11-1:	INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by
		; clearing output
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	0Fh	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<5:4> as outputs

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description		
RA0/AN0	RA0	0	0	DIG	LATA<0> data output; not affected by analog input.		
		1	I	TTL	PORTA<0> data input; disabled when analog input enabled.		
	AN0	1	I	ANA	A/D input channel 0. Default input configuration on POR; does not affect digital output.		
RA1/AN1	RA1	0	0	DIG	LATA<1> data output; not affected by analog input.		
		1	Ι	TTL	PORTA<1> data input; disabled when analog input enabled.		
	AN1	1	I	ANA	A/D input channel 1. Default input configuration on POR; does not affect digital output.		
RA2/AN2/VREF-	RA2	0	0	DIG	LATA<2> data output; not affected by analog input.		
		1	Ι	TTL	PORTA<2> data input. Disabled when analog functions enabled.		
	AN2	1	Ι	ANA	A/D input channel 2. Default input configuration on POR.		
	VREF-	1	I	ANA	Comparator voltage reference low input and A/D voltage reference low input.		
RA3/AN3/VREF+	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.		
		1	Ι	TTL	PORTA<3> data input; disabled when analog input enabled.		
	AN3	1	I	ANA	A/D input channel 3. Default input configuration on POR.		
	Vref+	1	I	ANA	Comparator voltage reference high input and A/D voltage reference high input.		
RA4/T0CKI	RA4	0	0	DIG	LATA<4> data output.		
		1	Ι	ST	PORTA<4> data input; default configuration on POR.		
	T0CKI	x	Ι	ST	Timer0 clock input.		
RA5/AN4/HLVDIN	RA5	0	0	DIG	LATA<5> data output; not affected by analog input.		
		1	Ι	TTL	PORTA<5> data input; disabled when analog input enabled.		
	AN4	1	Ι	ANA	A/D input channel 4. Default configuration on POR.		
	HLVDIN	1	Ι	ANA	High/Low-Voltage Detect external trip point input.		
OSC2/CLKO/RA6	OSC2	x	0	ANA	Main oscillator feedback output connection (XT, HS, HSPLL and LP modes).		
	CLKO	х	0	DIG	System cycle clock output (Fosc/4) in all oscillator modes except RC, INTIO7 and EC.		
	RA6	0	0	DIG	LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.		
		1	Ι	TTL	PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only.		
OSC1/CLKI/RA7	OSC1	x	Ι	ANA	Main oscillator input connection.		
	CLKI	x	Ι	ANA	Main clock input connection.		
	RA7	0	0	DIG	LATA<7> data output. Disabled in external oscillator modes.		
		1	Ι	TTL	PORTA<7> data input. Disabled in external oscillator modes.		

TABLE 11-1: PORTA FUNCTIONS

Legend: PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST= Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	61
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	60
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	60
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	59

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA<7:6> and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	60
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	60
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	60
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	57
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	57

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: Shaded cells are not used by PORTB.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description			
RE5/AD13/P1C	RE5	0	0	DIG	LATE<5> data output.			
		1	I	ST	PORTE<5> data input.			
	AD13 ⁽²⁾	х	0	DIG	External memory interface, address/data bit 13 output. Takes priority over ECCP and port data.			
		x	Ι	TTL	External memory interface, data bit 13 input.			
	P1C	0	0	DIG	ECCP1 Enhanced PWM output, channel C. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.			
RE6/AD14/P1B	RE6	0	0	DIG	LATE<6> data output.			
		1	I	ST	PORTE<6> data input.			
	AD14 ⁽²⁾	х	0	DIG	External memory interface, address/data bit 14 output. Takes priority over ECCP and port data.			
		x	I	TTL	External memory interface, data bit 14 input.			
	P1B	0	0	DIG	ECCP1 Enhanced PWM output, channel B. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority o port data.			
RE7/AD15/	RE7	0	0	DIG	LATE<7> data output.			
ECCP2/P2A		1	I	ST	PORTE<7> data input.			
	AD15 ⁽²⁾	x	0	DIG	External memory interface, address/data bit 15 output. Takes priority over ECCP and port data.			
		x	I	TTL	External memory interface, data bit 15 input.			
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output. Takes priority over port data.			
		1	I	ST	ECCP2 capture input.			
	P2A ⁽¹⁾	0	0	DIG	ECCP2 Enhanced PWM output, channel A. Takes priority over port and data. May be configured for tri-state during Enhanced PWM shutdown events.			

TABLE 11-9: PORTE FUNCTIONS (CONTINUED)

Legend: PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when CCP2MX Configuration bit is cleared (all devices in Microcontroller mode).
2: Implemented on 80-pin devices only.

TABLE 11-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	60
LATE	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	60
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	60

EXAMPLE 1	3-1:	IMPLEMENTING	i A	REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE
RTCinit				
	MOVLW	80h	;	Preload TMR1 register pair
	MOVWF	TMR1H	;	for 1 second overflow
	CLRF	TMR1L		
	MOVLW	b'00001111'	;	Configure for external clock,
	MOVWF	T1CON	;	Asynchronous operation, external oscillator
	CLRF	secs	;	Initialize timekeeping registers
	CLRF	mins	;	
	MOVLW	.12		
	MOVWF	hours		
	BSF	PIE1, TMR1IE	;	Enable Timerl interrupt
	RETURN	ſ		
RTCisr				
	BSF	TMR1H, 7	;	Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	;	Clear interrupt flag
	INCF	secs, F	;	Increment seconds
	MOVLW	.59	;	60 seconds elapsed?
	CPFSGT	secs		
	RETURN	ſ	;	No, done
	CLRF	secs	;	Clear seconds
	INCF	mins, F	;	Increment minutes
	MOVLW	.59	;	60 minutes elapsed?
	CPFSGT	' mins		
	RETURN	[;	No, done
	CLRF	mins	;	clear minutes
	INCF	hours, F	;	Increment hours
	MOVLW	.23	;	24 hours elapsed?
	CPFSGT	hours		_
	RETURN	,	;	No, done
	CLRF	hours	;	Reset hours
	RETURN	ſ	;	Done

TABLE 13-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	60
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	60
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	60
TMR1L	Timer1 Register Low Byte							58	
TMR1H	Timer1 Register High Byte						58		
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	58

Legend: Shaded cells are not used by the Timer1 module.

NOTES:

17.0 CAPTURE/COMPARE/PWM (CCP) MODULES

The PIC18F8722 family of devices all have a total of five CCP (Capture/Compare/PWM) modules. Two of these (CCP4 and CCP5) implement standard Capture, Compare and Pulse-Width Modulation (PWM) modes and are discussed in this section. The other three modules (ECCP1, ECCP2, ECCP3) implement standard Capture and Compare modes, as well as Enhanced PWM modes. These are discussed in Section 18.0 "Enhanced Capture/Compare/PWM (ECCP) Module".

Each CCP/ECCP module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP module operations in the following sections are described with respect to CCP4, but are equally applicable to CCP5. Capture and Compare operations described in this chapter apply to all standard and Enhanced CCP modules. The operations of PWM mode described in **Section 17.4** "**PWM Mode**" apply to CCP4 and CCP5 only.

Note: Throughout this section and Section 18.0 "Enhanced Capture/Compare/PWM (ECCP) Module", references to register and bit names that may be associated with a specific CCP module are referred to generically by the use of 'x' or 'y' in place of the specific module number. Thus, "CCPxCON" might refer to the control register for CCP4 or CCP5, or ECCP1, ECCP2 or ECCP3. "CCPxCON" is used throughout these sections to refer to the module control register, regardless of whether the CCP module is a standard or enhanced implementation.

REGISTER 17-1: CCPxCON: CCPx CONTROL REGISTER (CCP4 AND CCP5 MODULES)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-4	DCxB<1:0> : PWM Duty Cycle bit 1 and bit 0 for CCP Module x
	Capture mode:
	Unused.
	Compare mode:
	Unused.
	PWM mode:
	These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight Most Significant bits (DCx<9:2>) of the duty cycle are found in CCPRxL.
bit 3-0	CCPxM<3:0>: CCP Module x Mode Select bits
	0000 = Capture/Compare/PWM disabled; resets CCPx module
	0001 = Reserved
	0010 = Compare mode, toggle output on match; CCPxIF bit is set
	0011 = Reserved
	0100 = Capture mode, every falling edge
	0101 = Capture mode, every rising edge
	0110 = Capture mode, every 4th rising edge
	0111 = Capture mode, every 16th rising edge
	1000 = Compare mode, initialize CCPx pin low; on compare match, force CCPx pin high; CCPxIF bit is set
	1001 = Compare mode, initialize CCPx pin high; on compare match, force CCPx pin low; CCPxIF bit is set
	1010 = Compare mode, generate software interrupt on compare match; CCPxIF bit is set; CCPx pin reflects I/O state
	1011 = Compare mode, trigger special event; CCPxIF bit is set, CCPx pin is unaffected (For the effects of the trigger, see Section 17.3.4 "Special Event Trigger".)
	11xx = PWM mode

18.4.4 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 18-4). This mode can be used for half-bridge applications, as shown in Figure 18-5, or for full-bridge applications, where four power switches are being modulated with two PWM signals.

In Half-Bridge Output mode, the programmable dead-band delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits, P1DC<6:0> sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 18.4.6** "**Programmable Dead-Band Delay**" for more details on dead-band delay operations.

The P1A and P1B outputs are multiplexed with the PORTC<2> and PORTE<6> data latches. Alternatively, P1B can be assigned to PORTH<7> by programming the ECCPMX Configuration bit to '0'. See Table 18-1, Table 18-2 and Table 18-3 for more information. The associated TRIS bit must be cleared to configure P1A and P1B as outputs.

FIGURE 18-4: HALF-BRIDGE PWM OUTPUT

FIGURE 18-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS

19.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

19.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
 - Slave mode (with general address call)

The I²C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode

All members of the PIC18F8722 family have two MSSP modules, designated as MSSP1 and MSSP2. Each module operates independently of the other.

Note:	Throughout this section, generic refer-
	ences to an MSSP module in any of its
	operating modes may be interpreted as
	being equally applicable to MSSP1 or
	MSSP2. Register names and module I/O
	signals use the generic designator 'x' to
	indicate the use of a numeral to distinguish
	a particular module when required. Control
	bit names are not individuated.

19.2 Control Registers

Each MSSP module has three associated control registers. These include a status register (SSPxSTAT) and two control registers (SSPxCON1 and SSPxCON2). The use of these registers and their individual Configuration bits differ significantly depending on whether the MSSP module is operated in SPI or I²C mode.

Additional details are provided under the individual sections.

Note: In devices with more than one MSSP module, it is very important to pay close attention to SSPCON register names. SSP1CON1 and SSP1CON2 control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.

19.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDOx) RC5/SDO1 or RD4/SDO2
- Serial Data In (SDIx) RC4/SDI1/SDA1 or RD5/SDI2/SDA2
- Serial Clock (SCKx) RC3/SCK1/SCL1 or RD6/SCK2/SCL2

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SSx) – RF7/SS1 or RD7/SS2

Figure 19-1 shows the block diagram of the MSSP module when operating in SPI mode.

FIGURE 19-1:

19.4.4.5 Clock Synchronization and the CKP bit

When the CKP bit is cleared, the SCLx output is forced to '0'. However, clearing the CKP bit will not assert the SCLx output low until the SCLx output is already sampled low. Therefore, the CKP bit will not assert the SCLx line until an external I^2C master device has

already asserted the SCLx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I^2 C bus have deasserted SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 19-12).

19.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDAx when SCLx goes from low level to high level.
- b) SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD<6:0> and counts down to '0'. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled.

If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 19-29). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.

If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 19-30).

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 19-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 19-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

20.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line, while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCONx<1>). Once set, the typical receive sequence on RXx/DTx is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN protocol.)

Following a wake-up event, the module generates an RCxIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 20-8) and asynchronously, if the device is in Sleep mode (Figure 20-9). The interrupt condition is cleared by reading the RCREGx register.

The WUE bit is automatically cleared once a low-tohigh transition is observed on the RXx line following the wake-up event. At this point, the EUSART module is inactive and returns to normal operation. This signals to the user that the Sync Break event is over.

20.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RXx/DTx, information with any state changes before the Stop bit may signal a false end-ofcharacter and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bytes) for standard RS-232 devices or 000h (12 bits) for LIN bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

20.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCxIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an inactive state. The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared after this when a rising edge is seen on RXx/DTx. The interrupt condition is then cleared by reading the RCREGx register. Ordinarily, the data in RCREGx will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RCxIF flag is set should not be used as an indicator of the integrity of the data in RCREGx. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 20-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION a1 a2 a3 a4 OSC1 Bit set by user -Auto-Cleared WUE bit⁽¹⁾ RXx/DTx Line ÷. RCxIF Cleared due to user read of RCREGx Note 1: The EUSART remains inactive while the WUE bit is set.

FIGURE 20-9:

AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

RET	FIE	Return from Interrupt		RET	LW	Return Lite	Return Literal to W			
Synt	ax:	RETFIE {s}		Synt	ax:	RETLW k	RETLW k			
Ope	Deperands: $s \in [0,1]$			Oper	rands:	$0 \le k \le 255$				
Operation:		$(TOS) \rightarrow P$ 1 \rightarrow GIE/G if s = 1	C, IEH or PEIE/G	GIEL,	Oper	ration:	$k \rightarrow W$, (TOS) → PC, PCLATU, PCLATH are unchanged			
		$(WS) \rightarrow W,$			Statu	is Affected:	None			
		$(BSRS) \rightarrow$	BSR,		Enco	oding:	0000	1100 kk	kk kkkk	
		PCLATU, P	CLATH are u	nchanged	Desc	cription:	W is loaded	with the eigh	nt-bit literal 'k'.	
Statu	is Affected:	GIE/GIEH,	PEIE/GIEL.				The program	m counter is lo	baded from the	
Enco	oding:	0000	0000 00	01 000s			top of the stack (the return address). The high address latch (PCLATH)			
Desc	cription:	Return from	n interrupt. Sta	ick is popped			remains unchanged.			
		the PC. Inte	errupts are en	s loaded into abled by	Word	ds:	1			
		setting eith	er the high or	low-priority	Cycl	es:	2			
		global inter	rupt enable bi	t. If 's' = 1, the equations WS	QC	ycle Activity:				
		STATUSS a	and BSRS are	loaded into		Q1	Q2	Q3	Q4	
		their corres	ponding regis	ters W,		Decode	Read	Process	POP PC	
		STATUS ar	nd BSR. If 's' =	= 0, no update			illerai k	Dala	write to W	
Mar	do.		Jisters occurs	(delault).		No	No	No	No	
Curel	JS.	1				operation	operation	operation	operation	
	es.	2			-					
QC		02	03	Q4	Exar	<u>npie:</u>				
	Decode	No	No	POP PC		CALL TABLE	; W contai	ins table		
		operation	operation	from stack			; offset v	value		
				Set GIEH or			; w now ha	as alue		
				GIEL		:				
	No	No	No	No	TABI	LE				
operation operation operation operation				ADDWF PCL	; W = offs ; Bogin to	set				
Example: RETFIE 1			RETLW k1	adie						
	After Interrupt					:				
	PC W BSR		= TOS = WS = BSRS			: RETLW kn	; End of t	able		
	STATUS GIE/GIEI	H. PEIE/GIEL	= STATI = 1	188		Before Instruc	ction			
		, · _ · _ · · · · · · · · ·	•			W After Instruction	= 07h			
						W	= value of	kn		

28.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 28-5 apply to all timing specifications unless otherwise noted. Figure 28-5 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F6X27/6X22/8X27/8X22 and PIC18LF6X27/6X22/8X27/8X22 families of devices specifically and only those devices.

TABLE 28-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)					
	Operating temperature	$-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
		$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
AC CHARACTERISTICS	Operating voltage VDD range as described in the DC specifications in Section 28.1					
	and Section 28.3.					
	LF parts operate for indus	strial temperatures only.				

FIGURE 28-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

NOTES: