

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8627t-e-pt

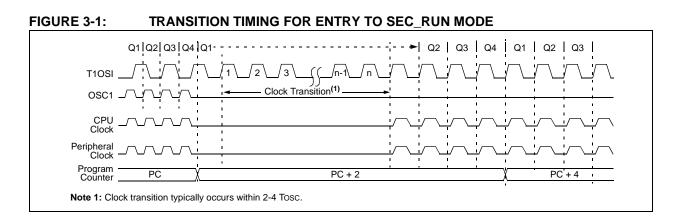
Email: info@E-XFL.COM

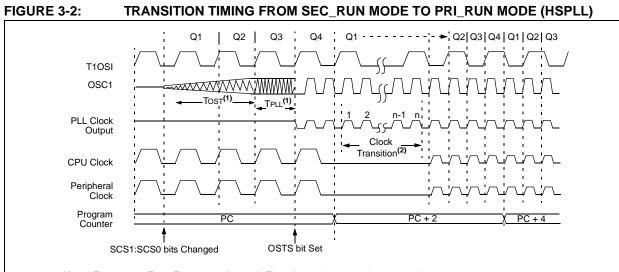
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pin Number	Pin Buffer				
Pin Name	TQFP	Туре	Туре	Description		
				PORTH is a bidirectional I/O port.		
RH0/A16 RH0 A16	79	I/O I/O	ST TTL	Digital I/O. External memory address/data 16.		
RH1/A17 RH1 A17	80	I/O I/O	ST TTL	Digital I/O. External memory address/data 17.		
RH2/A18 RH2 A18	1	I/O I/O	ST TTL	Digital I/O. External memory address/data 18.		
RH3/A19 RH3 A19	2	I/O I/O	ST TTL	Digital I/O. External memory address/data 19.		
RH4/AN12/P3C RH4 AN12 P3C ⁽⁵⁾	22	I/O I O	ST Analog —	Digital I/O. Analog input 12. ECCP3 PWM output C.		
RH5/AN13/P3B RH5 AN13 P3B ⁽⁵⁾	21	I/O I O	ST Analog —	Digital I/O. Analog input 13. ECCP3 PWM output B.		
RH6/AN14/P1C RH6 AN14 P1C ⁽⁵⁾	20	I/O I O	ST Analog —	Digital I/O. Analog input 14. ECCP1 PWM output C.		
RH7/AN15/P1B RH7 AN15 P1B ⁽⁵⁾	19	I/O I O	ST Analog —	Digital I/O. Analog input 15. ECCP1 PWM output B.		
	compatible input			= CMOS compatible input or output Analog= Analog input		
I = Input		0		= Output		

TABLE 1-4:	PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)

P = Power $I^2C^{TM}/SMB = I^2C/SMBus input buffer$


Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).


2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

Note1:TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale. 2: Clock transition typically occurs within 2-4 TOSC.

3.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator block using the INTOSC multiplexer. In this mode, the primary clock is shut down. When using the INTRC source, this mode provides the best power conservation of all the Run modes, while still executing code. It works well for user applications which are not highly timing-sensitive or do not require high-speed clocks at all times.

If the primary clock source is the internal oscillator block (either INTRC or INTOSC), there are no distinguishable differences between PRI_RUN and RC_RUN modes during execution. However, a clock switch delay will occur during entry to and exit from RC_RUN mode. Therefore, if the primary clock source is the internal oscillator block, the use of RC_RUN mode is not recommended. This mode is entered by setting the SCS1 bit to '1'. Although it is ignored, it is recommended that the SCS0 bit also be cleared; this is to maintain software compatibility with future devices. When the clock source is switched to the INTOSC multiplexer (see Figure 3-3), the primary oscillator is shut down and the OSTS bit is cleared. The IRCF bits may be modified at any time to immediately change the clock speed.

Note: Caution should be used when modifying a single IRCF bit. If VDD is less than 3V, it is possible to select a higher clock speed than is supported by the low VDD. Improper device operation may result if the VDD/FOSC specifications are violated.

7.2 Address and Data Width

PIC18F8527/8622/8627/8722 devices can be independently configured for different address and data widths on the same memory bus. Both address and data width are set by Configuration bits in the CONFIG3L register. As Configuration bits, this means that these options can only be configured by programming the device and are not controllable in software.

The BW bit selects an 8-bit or 16-bit data bus width. Setting this bit (default) selects a data width of 16 bits.

The ADW<1:0> bits determine the address bus width. The available options are 20-bit (default), 16-bit, 12-bit and 8-bit. Selecting any of the options other than 20-bit width makes a corresponding number of high-order lines available for I/O functions; these pins are no longer affected by the setting of the EBDIS bit. For example, selecting a 16-bit Address mode (ADW<1:0> = 10) disables A<19:16> and allows PORTH<3:0> to function without interruptions from the bus. Using smaller address widths allows users to tailor the memory bus to the size of the external memory space for a particular design while freeing up pins for dedicated I/O operation.

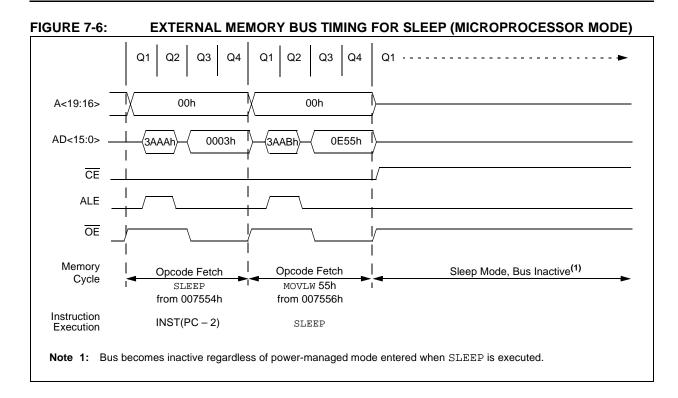
Because the ADW bits have the effect of disabling pins for memory bus operations, it is important to always select an address width at least equal to the data width. If 8-bit or 12-bit address widths are used with a 16-bit data width, the upper bits of data will not be available on the bus.

All combinations of address and data widths require multiplexing of address and data information on the same lines. The address and data multiplexing, as well as I/O ports made available by the use of smaller address widths, are summarized in Table 7-2.

7.2.1 21-BIT ADDRESSING

As an extension of 20-bit address width operation, the External Memory Bus can also fully address a 2 Mbyte memory space. This is done by using the Bus Address bit 0 (BA0) control line as the Least Significant bit of the address. The UB and LB control signals may also be used with certain memory devices to select the upper and lower bytes within a 16-bit wide data word.

This addressing mode is available in both 8-bit and certain 16-bit Data Width modes. Additional details are provided in Section 7.5.3 "16-bit Byte Select Mode" and Section 7.6 "8-Bit Data Width Modes".


7.3 Wait States

While it may be assumed that external memory devices will operate at the microcontroller clock rate, this is often not the case. In fact, many devices require longer times to write or retrieve data than the time allowed by the execution of table read or table write operations.

To compensate for this, the External Memory Bus can be configured to add a fixed delay to each table operation using the bus. Wait states are enabled by setting the WAITx bit. When enabled, the amount of delay is set by the WAIT<1:0> bits (MEMCON<5:4>). The delay is based on multiples of microcontroller instruction cycle time and are added following the instruction cycle when the table operation is executed. The range is from no delay to 3 Tcy (default value).

Data Width	Address Width	Multiplexed Data and Address Lines (and Corresponding Ports)	Address-Only Lines (and Corresponding Ports)	Ports Available for I/O
	8-bit		_	All of PORTE and PORTH
	12-bit	AD<7:0>	AD<11:8> (PORTE<3:0>)	PORTE<7:4>, All of PORTH
8-bit	16-bit	(PORTD<7:0>)	AD<15:8> (PORTE<7:0>)	All of PORTH
	20-bit		A<19:16>, AD<15:8> (PORTH<3:0>, PORTE<7:0>)	_
	16-bit	AD<15:0>	—	All of PORTH
16-bit	20-bit	(PORTD<7:0>, PORTE<7:0>)	A<19:16> (PORTH<3:0>)	_

TABLE 7-2: ADDRESS AND DATA LINES FOR DIFFERENT ADDRESS AND DATA WIDTHS

10.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Priority registers (IPR1, IPR2, IPR3). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 10-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP		
bit 7							bit 0		
Legend:									
R = Readab	le hit	W = Writable	hit	II = Unimplei	mented bit, rea	d as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown		
	·						-		
bit 7	PSPIP: Para	allel Slave Port F	Read/Write Int	terrupt Priority	bit				
	1 = High pr 0 = Low pri								
bit 6	ADIP: A/D (Converter Interru	pt Priority bit						
	1 = High pr 0 = Low pri								
bit 5	RC1IP: EUS	SART1 Receive	Interrupt Prior	rity bit					
	0 1	1 = High priority							
	0 = Low pri	•							
bit 4		SART1 Transmit	Interrupt Prio	rity bit					
	1 = High pr 0 = Low pri								
bit 3	SSP1IP: MS	SSP1 Interrupt P	riority bit						
	1 = High pr	•							
	0 = Low pri	•							
bit 2		CCP1 Interrupt F	riority bit						
	1 = High pr 0 = Low pri								
bit 1	-	TMR2IP: TMR2 to PR2 Match Interrupt Priority bit							
	1 = High pr								
	0 = Low pri	ority							
bit 0		/R1 Overflow In	terrupt Priority	y bit					
	1 = High pr	•							
	0 = Low pri	onty							

REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
OSCFIP	CMIP		EEIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP			
bit 7							bit C			
Legend:										
R = Readable		W = Writable			nented bit, rea					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7	OSCFIP: Osc	cillator Fail Inte	rrupt Priority b	pit						
	1 = High prio	•								
bit 6	0 = Low prior	5	Driority bit							
		CMIP: Comparator Interrupt Priority bit 1 = High priority								
	1 = High pho 0 = Low prior	•								
bit 5	Unimplemen	ted: Read as '	0'							
bit 4	EEIP: Interrup	EEIP: Interrupt Priority bit								
	1 = High prio									
	0 = Low prior	rity								
bit 3	BCL1IP: MSSP1 Bus Collision Interrupt Priority bit									
	1 = High priority									
L : 0	0 = Low prior	•	Data at lista www.	nt Duinuitur hit						
bit 2	HLVDIP: High/Low-Voltage Detect Interrupt Priority bit									
	1 = High priority 0 = Low priority									
bit 1	•	-	terrupt Priority	/ bit						
		TMR3IP: TMR3 Overflow Interrupt Priority bit 1 = High priority								
	0 = Low prior	•								
bit 0	CCP2IP: ECO	CP2 Interrupt F	riority bit							
	1 = High prio	•								
	0 = Low prior	ritv								

18.1 ECCP Outputs and Configuration

Each of the Enhanced CCP modules may have up to four PWM outputs, depending on the selected operating mode. These outputs, designated PxA through PxD, are multiplexed with various I/O pins. Some ECCPx pin assignments are constant, while others change based on device configuration. For those pins that do change, the controlling bits are:

- CCP2MX Configuration bit (CONFIG3H<0>)
- ECCPMX Configuration bit (CONFIG3H<1>)
- Program Memory mode (set by Configuration bits, CONFIG3L<1:0>)

The pin assignments for the Enhanced CCP modules are summarized in Table 18-1, Table 18-2 and Table 18-3. To configure the I/O pins as PWM outputs, the proper PWM mode must be selected by setting the PxMx and CCPxMx bits (CCPxCON<7:6> and <3:0>, respectively). The appropriate TRIS direction bits for the corresponding port pins must also be set as outputs.

18.1.1 USE OF CCP4 AND CCP5 WITH ECCP1 AND ECCP3

Only the ECCP2 module has four dedicated output pins available for use. Assuming that the I/O ports or other multiplexed functions on those pins are not needed, they may be used whenever needed without interfering with any other CCP module.

ECCP1 and ECCP3, on the other hand, only have three dedicated output pins: ECCPx/P3A, PxB and PxC. Whenever these modules are configured for Quad PWM mode, the pin used for CCP4 or CCP5 takes priority over the D output pins for ECCP3 and ECCP1, respectively.

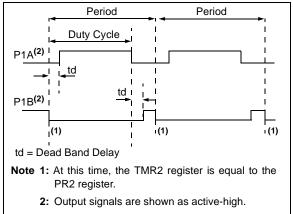
18.1.2 ECCP MODULE OUTPUTS, PROGRAM MEMORY MODES AND EMB ADDRESS BUS WIDTH

For PIC18F8527/8622/8627/8722 devices, the program memory mode of the device (Section 7.2 "Address and Data Width" and Section 7.4 "Program Memory Modes and the External Memory Bus") impacts both pin multiplexing and the operation of the module.

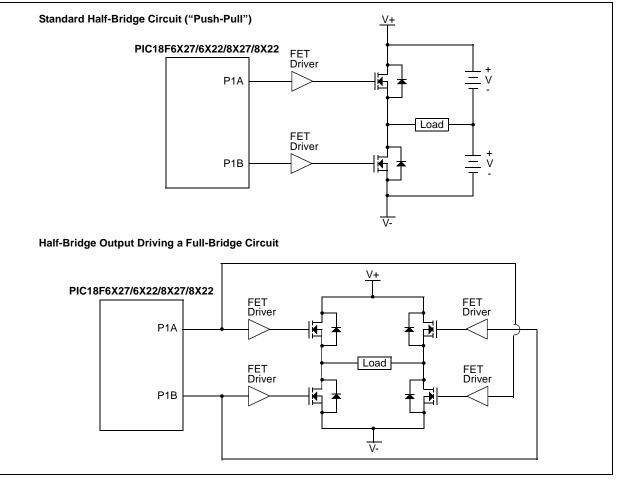
The ECCP2 input/output (ECCP2/P2A) can be multiplexed to one of three pins. By default, this is RC1 for all devices; in this case, the default is in effect when CCP2MX is set and the device is operating in Microcontroller mode. With PIC18F8527/8622/8627/8722 devices, three other options exist. When CCP2MX is not set (= 0) and the device is in Microcontroller mode, ECCP2/P2A is multiplexed to RE7; in all other program memory modes, it is multiplexed to RB3.

Another option is for ECCPMX to be set while the device is operating in one of the three other program memory modes. In this case, ECCP1 and ECCP3 operate as compatible (i.e., single output) CCP modules. The pins used by their other outputs (PxB through PxD) are available for other multiplexed functions. ECCP2 continues to operate as an Enhanced CCP module regardless of the program memory mode.

The final option is that the ABW<1:0> Configuration bits can be used to select 8, 12, 16 or 20-bit EMB addressing. Pins not assigned to EMB address pins are available for peripheral or port functions.


18.4.4 HALF-BRIDGE MODE

In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 18-4). This mode can be used for half-bridge applications, as shown in Figure 18-5, or for full-bridge applications, where four power switches are being modulated with two PWM signals.


In Half-Bridge Output mode, the programmable dead-band delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits, P1DC<6:0> sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 18.4.6** "**Programmable Dead-Band Delay**" for more details on dead-band delay operations.

The P1A and P1B outputs are multiplexed with the PORTC<2> and PORTE<6> data latches. Alternatively, P1B can be assigned to PORTH<7> by programming the ECCPMX Configuration bit to '0'. See Table 18-1, Table 18-2 and Table 18-3 for more information. The associated TRIS bit must be cleared to configure P1A and P1B as outputs.

FIGURE 18-4: HALF-BRIDGE PWM OUTPUT

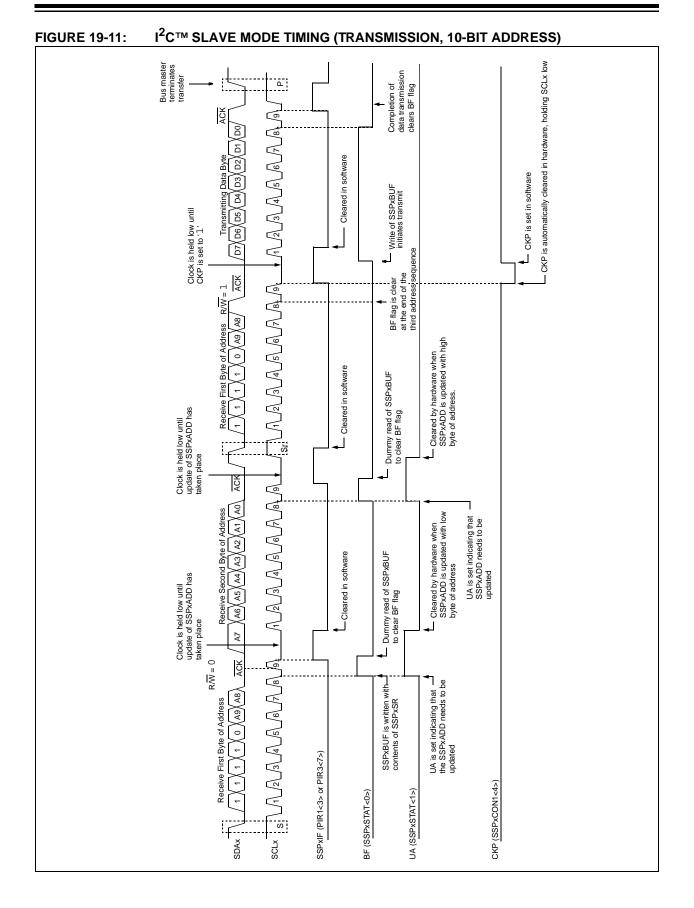
FIGURE 18-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS

19.3.1 REGISTERS

Each MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPxCON1)
- MSSP Status Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSP Shift Register (SSPxSR) Not directly accessible

SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.


SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPxSR and SSPxBUF together create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

REGISTER 19-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

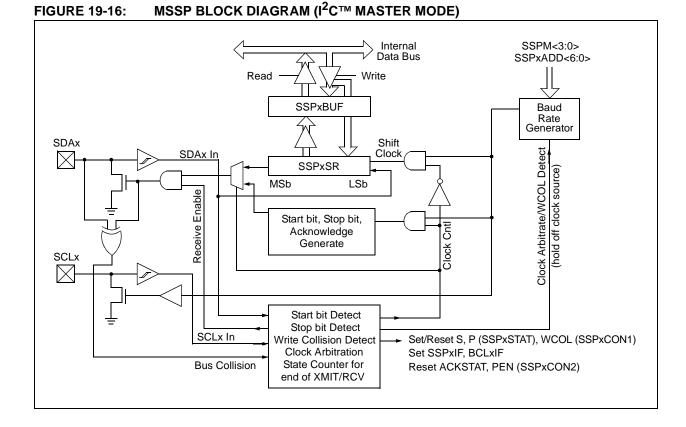
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
SMP	CKE	D/A	Р	S	R/W	UA	BF			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	SMP: Sampl									
	SPI Master r			in the second						
		ta sampled at er ta sampled at m								
	<u>SPI Slave m</u>	-		output time						
		e cleared when	SPI is used i	n Slave mode.						
bit 6	CKE: SPI CI	ock Select bit								
		1 = Transmit occurs on transition from active to Idle clock state								
	0 = Transmit	occurs on trans	sition from Idl	e to active cloc	k state					
		Polarity of clock	state is set by	y the CKP bit (S	SSPxCON1<4>	·).				
bit 5	D/A: Data/A	ddress bit								
	Used in I ² C	mode only.								
bit 4	P: Stop bit									
	Used in I ² C	mode only. This	bit is cleared	when the MSS	SP module is di	sabled, SSPEN	is cleared.			
bit 3	S: Start bit									
	Used in I ² C	-								
bit 2		Write Information	n bit							
	Used in I ² C	mode only.								
bit 1	UA: Update									
	Used in I ² C	,								
bit 0		ull Status bit (Re		only)						
		complete, SSP>								
	0 = Receive	not complete, S	SPXBUF is e	mpty						

19.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPxCON1 and by setting the SSPEN bit. In Master mode, the SCLx and SDAx lines are manipulated by the MSSP hardware if the TRIS bits are set.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all ${\rm I}^2{\rm C}$ bus operations based on Start and Stop bit conditions.

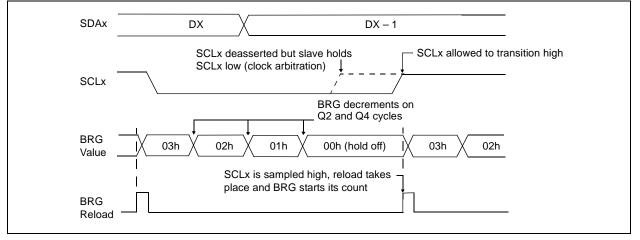

Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Assert a Repeated Start condition on SDAx and SCLx.
- 3. Write to the SSPxBUF register initiating transmission of data/address.
- 4. Configure the I^2C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDAx and SCLx.

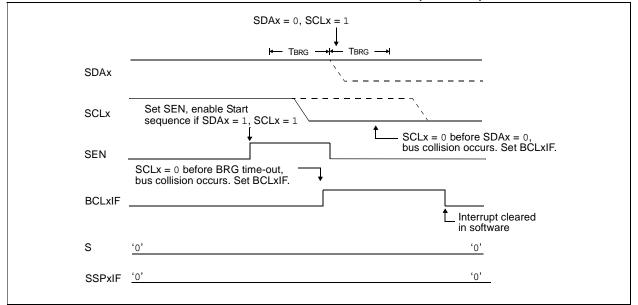
Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (and SSP interrupt, if enabled):

- Start condition
- · Stop condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start



19.4.7.2 Clock Arbitration


Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCLx pin (SCLx allowed to float high). When the SCLx pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCLx pin is actually sampled high. When the

SCLx pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<6:0> and begins counting. This ensures that the SCLx high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 19-18).

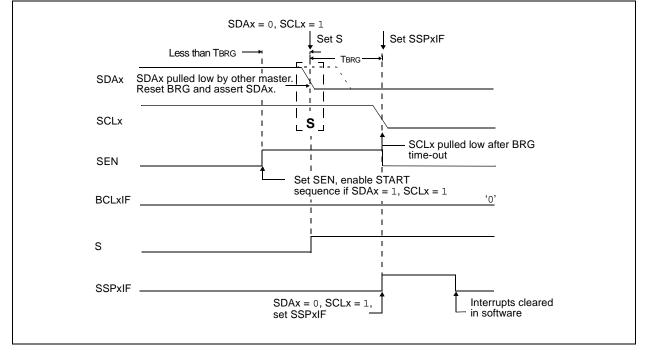


FIGURE 19-27: BUS COLLISION DURING START CONDITION (SCLx = 0)

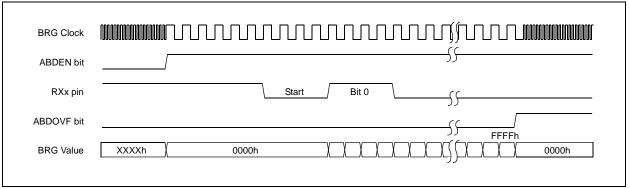


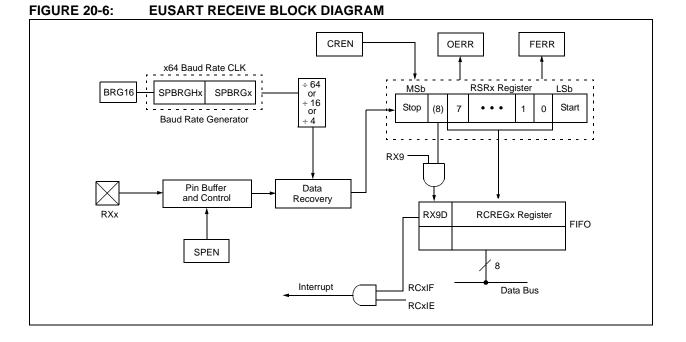
FIGURE 19-28: BRG RESET DUE TO SDAX ARBITRATION DURING START CONDITION

BRG Value	XXXXh	0000h	XXXXXXXXXXXXXXX001Ch
RXx pin		Edge #1 Edge #2 Start Bit 0 Bit 1 Bit 2 Bit 3	Edge #3 Edge #4 Edge #5 Bit 4 Bit 5 Bit 6 Bit 7 Stop Bit
BRG Clock	ົມທານທານສາມທານສາມທານກໍ່າ	www.iwwwwwwww	
ABDEN bit	Set by User —		Auto-Cleared
RCxIF bit (Interrupt)			
Read RCREGx			
SPBRGx		XXXXh	X 1Ch
SPBRGHx		XXXXh	∑ 00h

FIGURE 20-2: BRG OVERFLOW SEQUENCE

20.2.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 20-6. The data is received on the RXx pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.


To set up an Asynchronous Reception:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCxIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- Flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCxIE, was set.
- Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREGx register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

20.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- If interrupts are required, set the RCEN bit and select the desired priority level with the RCxIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- The RCxIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCxIE and GIE bits are set.
- 8. Read the RCSTAx register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREGx to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

R/P-1	R/P-0	R/P-0	R/P-0	U-0	R/P-1	U-0	R/P-1	
DEBUG	XINST	BBSIZ1	BBSIZ0	—	LVP	—	STVREN	
bit 7			·		•		bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	1 = Backgrou	00	isabled, RB6 a	and RB7 config	gured as genera edicated to In-C		pins	
bit 6	1 = Instruction		and Indexed	Addressing mo		egacy mode)		
bit 5-4	11 = 4K word 10 = 4K word 01 = 2K word	 0 = Instruction set extension and Indexed Addressing mode disabled (Legacy mode) BBSIZ<1:0>: Boot Block Size Select bits 11 = 4K words (8 Kbytes) boot block size 10 = 4K words (8 Kbytes) boot block size 01 = 2K words (4 Kbytes) boot block size 00 = 1K word (2 Kbytes) boot block size 						
bit 3	Unimplemen	ted: Read as '	0'					
bit 2	LVP: Single-Supply ICSP™ Enable bit 1 = Single-Supply ICSP enabled 0 = Single-Supply ICSP disabled							
bit 1	Unimplemen	ted: Read as '	0'					
bit 0	1 = Stack full/	ck Full/Underfl underflow will underflow will	cause Reset					

REGISTER 25-6: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

DAW	Decimal A	djust W Regis	ster	DECF	Decremen	t f	
Syntax:	DAW			Syntax:	DECF f{,	d {,a}}	
Operands:	None			Operands:	$0 \leq f \leq 255$		
Operation:	If [W<3:0> > 9] or [DC = 1] then				d ∈ [0,1]		
	$(W<3:0>)+6\rightarrowW<3:0>;$			On another	a ∈ [0,1]		
	else (W<3:0>) –	→ W<3:0>		Operation:	$(f) - 1 \rightarrow de$		
	(11 10107)			Status Affected:	C, DC, N, (
		> 9] or [C = 1]		Encoding:	0000		ff fff
	(VV<7:4>) + C = 1;	$6 \rightarrow W < 7:4>;$		Description:		register 'f'. If red in W. If 'd	
	else					red back in re	,
	(W<7:4>) –	→ W<7:4>			(default).		0
Status Affected:	С					he Access Ba	
Encoding:	0000	0000 000	00 0111			he BSR is use	ed to select th
Description:	•	ts the eight-bit			GPR bank		lad in atruatio
	•	om the earlier a each in packed				nd the extend led, this instru	
		es a correct pa			in Indexed	Literal Offset	Addressing
	result.					hever $f \le 95$ (5	,
Words:	1					.2.3 "Byte-Or d Instruction	
Cycles:	1				Literal Off	set Mode" for	details.
Q Cycle Activity:				Words:	1		
Q1	Q2	Q3	Q4	Cycles:	1		
Decode	Read register W	Process Data	Write W	Q Cycle Activity:			
	legister w	Dala	~~~	Q1	Q2	Q3	Q4
Example 1:	DAW			Decode	Read	Process	Write to
Before Instruc	tion				register 'f'	Data	destination
W C	= A5h = 0			Example:	DECF	CNT, 1, 0	h
DC	= 0			Before Instru		CN1, 1, C)
After Instruction				CNT	= 01h		
W C	= 05h = 1			Z	= 0		
DC	= 0			After Instruct CNT	= 00h		
Example 2:				Z	= 1		
Before Instruc							
W C	= CEh = 0						
DC	= 0						
After Instructio W	on = 34h						
••	= 1						
C DC	= 0						

RLNCF	Rotate Left f (no carry)	RRCF	Rotate Right f through Carry		
Syntax:	RLNCF f {,d {,a}}	Syntax:	RRCF f {,d {,a}}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$		
Operation:	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$	Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$		
Status Affected:	N, Z	Status Affected:			
Encoding:	0100 01da ffff ffff		C, N, Z		
Description:	The contents of register 'f' are rotated	Encoding:	0011 00da ffff ffff		
	one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in		
	If 'a' is '1', the BSR is used to select the		register 'f' (default).		
	GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates		If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.		
	in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:	1		C→ register f		
Cycles:	1				
Q Cycle Activity:		Words:	1		
Q Cycle Activity.	Q2 Q3 Q4	Cycles:	1		
Decode	Read Process Write to	Q Cycle Activity:			
Dooddo	register 'f' Data destination	Q1	Q2 Q3 Q4		
		Decode	Read Process Write to		
Example:	RLNCF REG, 1, 0		register 'f' Data destination		
Before Instru	ction				
REG	= 1010 1011	Example:	RRCF REG, 0, 0		
After Instruct	ion	Before Instruc	ction		
REG	= 0101 0111	REG C	= 1110 0110 = 0		
		After Instruction	on		
		REG W C	= 1110 0110 = 0111 0011 = 0		

TSTR	SZ	Test f, Skip	if O				
Synta	ax:	TSTFSZ f{	[,a}				
Oper	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Oper	ation:	skip if f = 0					
Statu	s Affected:	None					
Enco	ding:	0110	011a fff	f ffff			
Desc	ription:	during the c is discarded	If $f' = 0$, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction.				
			ne Access Bar ne BSR is used (default).				
		If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Word	ls:	1					
Cycle	es:	•	rcles if skip and a 2-word instru				
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	No			
lf als		register 'f'	Data	operation			
lf sk	ip: Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
lf sk	ip and followed	d by 2-word in	struction:				
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	No operation	No operation	No operation	No operation			
<u>Exan</u>	nple:	NZERO	NZERO :				
	Before Instruc PC After Instructic	= Ad	dress (HERE))			
	If CNT PC If CNT PC	≠ 00	dress (ZERO)				

XORLW	Exclusive	Exclusive OR Literal with W				
Syntax:	XORLW	XORLW k				
Operands:	$0 \le k \le 25$	5				
Operation:	(W) .XOR	(W) .XOR. $k \rightarrow W$				
Status Affected:	N, Z	N, Z				
Encoding:	0000	1010	kkkk	kkkk		
Description:		The contents of W are XORed with the 8-bit literal 'k'. The result is placed in W.				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read literal 'k'	Proce: Data		Vrite to W		
Example:	XORLW	0AFh				
Before Instru W After Instruct	= B5h					

1Ah

=

W

© 2008 Microchip Technology Inc.

ADDWF	ADD W to I (Indexed Li	ndexed iteral Offset n	node)	
Syntax:	ADDWF	[k] {,d}		
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$			
Operation:	(W) + ((FSR2) + k) \rightarrow dest			
Status Affected:	N, OV, C, DC, Z			
Encoding:	0010 01d0 kkkk kkkk		k kkkk	
Description:	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'.			
	,	ne result is sto sult is stored b default).		
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	Q4	
Decode	Read 'k'	Process Data	Write to destination	
Example:	ADDWF [[OFST],0		
Before Instruction W OFST FSR2 Contents of 0A2Ch After Instruction W Contents of 0A2Ch	= = =	17h 2Ch 0A00h 20h 37h 20h		

BSF	Bit Set Ind (Indexed L	exed iteral Offset	t mode)		
Syntax:	BSF [k], b				
Operands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$				
Operation:	$1 \rightarrow ((FSR))$	2) + k) 			
Status Affected:	None	None			
Encoding:	1000	bbb0 k	kkk kkkk		
Description:		Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.			
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write to destination		
Example:		FLAG_OFSI], 7		
Before Instruct FLAG_OI FSR2		0Ah 0A00h			
Contents of 0A0Ah After Instructio		55h			
Contents of 0A0Ah	=	D5h			
SETF	Set Indexe (Indexed L	d iteral Offset	t mode)		
SETF Syntax:			t mode)		
-	(Indexed L		t mode)		
Syntax:	(Indexed L SETF [k]	iteral Offset	t mode)		
Syntax: Operands:	(Indexed L SETF [k] $0 \le k \le 95$	iteral Offset	t mode)		
Syntax: Operands: Operation:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS	iteral Offset SR2) + k)	t mode) kkk kkkk		
Syntax: Operands: Operation: Status Affected:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten	iteral Offset SR2) + k) 1000 k	kkk kkkk ster indicated by		
Syntax: Operands: Operation: Status Affected: Encoding:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten	SR2) + k)	kkk kkkk ster indicated by		
Syntax: Operands: Operation: Status Affected: Encoding: Description:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset	SR2) + k)	kkk kkkk ster indicated by		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1 1	BR2) + k) 1000 k ts of the regis et by 'k', are	kkk kkkk ster indicated by set to FFh.		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1	iteral Offset SR2) + k) 1000 k ts of the regise et by 'k', are Q3 Process	kkk kkkk ster indicated by set to FFh. Q4 Write		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1 1 Q2 Read 'k'	iteral Offset SR2) + k) 1000 k ts of the regise et by 'k', are Q3	kkk kkkk ster indicated by set to FFh. Q4		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [BR2) + k) 1000 k ts of the regise to y 'k', are Q3 Process Data OFST]	kkk kkkk ster indicated by set to FFh. Q4 Write		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2 Contents	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [setF [con = 0A	iteral Offset SR2) + k) 1000 k ts of the regise et by 'k', are Q3 Process Data OFST] ch 00h	kkk kkkk ster indicated by set to FFh. Q4 Write		
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [SETF [= 0A = 00	iteral Offset SR2) + k) 1000 k ts of the regise et by 'k', are Q3 Process Data OFST] ch 00h	kkk kkkk ster indicated by set to FFh. Q4 Write		