

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8722t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Register	A	Applicable Devices			Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt	
FSR1H 6X27 6X22 8X27 8X22		8X22	0000	0000	uuuu			
FSR1L	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
BSR	6X27	6X22	8X27	8X22	0000	0000	uuuu	
INDF2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
POSTINC2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
POSTDEC2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
PREINC2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
PLUSW2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
FSR2H	6X27	6X22	8X27	8X22	0000	0000	uuuu	
FSR2L	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
STATUS	6X27	6X22	8X27	8X22	x xxxx	u uuuu	u uuuu	
TMR0H	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
TMR0L	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TOCON	6X27	6X22	8X27	8X22	1111 1111	1111 1111	uuuu uuuu	
OSCCON	6X27	6X22	8X27	8X22	0100 q000	0100 q000	uuuu uuqu	
HLVDCON	6X27	6X22	8X27	8X22	0-00 0101	0-00 0101	u-uu uuuu	
WDTCON	6X27	6X22	8X27	8X22	0	0	u	
RCON ⁽⁴⁾	6X27	6X22	8X27	8X22	0q-1 11q0	0q-q qquu	uq-u qquu	
TMR1H	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TMR1L	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
T1CON	6X27	6X22	8X27	8X22	0000 0000	u0uu uuuu	uuuu uuuu	
TMR2	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
PR2	6X27	6X22	8X27	8X22	1111 1111	uuuu uuuu	uuuu uuuu	
T2CON	6X27	6X22	8X27	8X22	-000 0000	-000 0000	-uuu uuuu	
SSP1BUF	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
SSP1ADD	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
SSP1STAT	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
SSP1CON1	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
SSP1CON2	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend:u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

7.1 External Memory Bus Control

The operation of the interface is controlled by the MEMCON register (Register 7-1). This register is available in all program memory operating modes except Microcontroller mode. In this mode, the register is disabled and cannot be written to.

The EBDIS bit (MEMCON<7>) controls the operation of the bus and related port functions. Clearing EBDIS enables the interface and disables the I/O functions of the ports, as well as any other functions multiplexed to those pins. Setting the bit enables the I/O ports and other functions but allows the interface to override everything else on the pins when an external memory operation is required. By default, the external bus is always enabled and disables all other I/O. The operation of the EBDIS bit is also influenced by the program memory mode being used. This is discussed in more detail in Section 7.4 "Program Memory Modes and the External Memory Bus".

The WAIT bits allow for the addition of wait states to external memory operations. The use of these bits is discussed in **Section 7.3 "Wait States**".

The WM bits select the particular operating mode used when the bus is operating in 16-bit Data Width mode. These are discussed in more detail in **Section 7.5 "16-Bit Data Width Modes"**. These bits have no effect when an 8-bit Data Width mode is selected.

WM<1:0>: TBLWT Operation with 16-Bit Data Bus Width Select bits

- 1x = Word Write mode: TABLAT0 and TABLAT1 word output, WRH active when TABLAT1 written
- 01 = Byte Select mode: TABLAT data copied on both MSB and LSB; WRH and (UB or LB) will activate

REGISTER 7-1: MEMCON: EXTERNAL MEMORY BUS CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EBDIS	—	WAIT1	WAIT0	—	-	WM1	WM0
bit 7							bit 0
Legend:							

U			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EBDIS: External Bus Disable bit
	 1 = External bus enabled when microcontroller accesses external memory; otherwise, all external bus drivers are mapped as I/O ports 0 = External bus always enabled, I/O ports are disabled
bit 6	Unimplemented: Read as '0'
bit 5-4	WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits
	11 = Table reads and writes will wait 0 TCY
	10 = Table reads and writes will wait 1 TCY
	01 = Table reads and writes will wait 2 TCY 00 = Table reads and writes will wait 3 TCY
bit 3-2	Unimplemented: Read as '0'
	•
bit 1-0	WM<1:0>: TBLWT Operation with 16-Bit Data Bus Width Select bits
	1 = Result was negative
	0 = Result was positive

7.7 Operation in Power-Managed Modes

In alternate power-managed Run modes, the external bus continues to operate normally. If a clock source with a lower speed is selected, bus operations will run at that speed. In these cases, excessive access times for the external memory may result if wait states have been enabled and added to external memory operations. If operations in a lower power Run mode are anticipated, users should provide in their applications for adjusting memory access times at the lower clock speeds. In Sleep and Idle modes, the microcontroller core does not need to access data; bus operations are suspended. The state of the external bus is frozen with the address/data pins and most of the control pins holding at the same state they were in when the mode was invoked. The only potential changes are the \overline{CE} , \overline{LB} and \overline{UB} pins which are held at logic high.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
MEMCON ⁽¹⁾	EBDIS	_	WAIT1	WAIT0		—	WM1	WM0	60
CONFIG3L ⁽²⁾	WAIT	BW	ABW1	ABW0	_	—	PM1	PM0	302
CONFIG3H	MCLRE			—	_	LPT1OSC	ECCPMX ⁽²⁾	CCP2MX	303

TABLE 7-3: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-MANAGED MODES

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the External Memory Bus.

Note 1: This register is not implemented on 64-pin devices.

2: Unimplemented in PIC18F6527/6622/6627/6722 devices.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	60
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	60
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	60
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	57
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	57

TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: Shaded cells are not used by PORTB.

11.4 PORTD, TRISD and LATD Registers

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins are	Э						
	configured as digital inputs.							

In 80-pin devices, PORTD is multiplexed with the system bus as part of the external memory interface. I/O port and other functions are only available when the interface is disabled by setting the EBDIS bit (MEMCON<7>). When the interface is enabled, PORTD is the low-order byte of the multiplexed address/data bus (AD<7:0>). The TRISD bits are also overridden.

PORTD can also be configured to function as an 8-bit wide parallel microprocessor port by setting the PSPMODE control bit (PSPCON<4>). In this mode, parallel port data takes priority over other digital I/O (but not the external memory interface). When the parallel port is active, the input buffers are TTL. For more information, refer to **Section 11.10** "**Parallel Slave Port**".

EXAMPLE 11-4: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by ; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

TABLE 11-7: PORTD FUNCTIONS

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description
RD0/AD0/PSP0	RD0	0	0	DIG	LATD<0> data output.
		1	I	ST	PORTD<0> data input.
	AD0 ⁽¹⁾	х	0	DIG	External memory interface, address/data bit 0 output. Takes priority over PSP and port data.
		х	I	TTL	External memory interface, data bit 0 input.
	PSP0	х	0	DIG	PSP read data output (LATD<0>). Takes priority over port data.
		х	I	TTL	PSP write data input.
RD1/AD1/PSP1	RD1	0	0	DIG	LATD<1> data output.
		1	I	ST	PORTD<1> data input.
	AD1 ⁽¹⁾	х	0	DIG	External memory interface, address/data bit 1 output. Takes priority over PSP and port data.
		х	I	TTL	External memory interface, data bit 1 input.
	PSP1	х	0	DIG	PSP read data output (LATD<1>). Takes priority over port data.
		х	Ι	TTL	PSP write data input.
RD2/AD2/PSP2	RD2	0	0	DIG	LATD<2> data output.
		1	I	ST	PORTD<2> data input.
	AD2 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 2 output. Takes priority over PSP and port data.
		х	Ι	TTL	External memory interface, data bit 2 input.
	PSP2	х	0	DIG	PSP read data output (LATD<2>). Takes priority over port data.
		х	Ι	TTL	PSP write data input.
RD3/AD3/PSP3	RD3	0	0	DIG	LATD<3> data output.
		1	Ι	ST	PORTD<3> data input.
	AD3 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 3 output. Takes priority over PSP and port data.
		х	I	TTL	External memory interface, data bit 3 input.
	PSP3	х	0	DIG	PSP read data output (LATD<3>). Takes priority over port data.
		х	Ι	TTL	PSP write data input.
RD4/AD4/	RD4	0	0	DIG	LATD<4> data output.
PSP4/SDO2		1	Ι	ST	PORTD<4> data input.
	AD4 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 4 output. Takes priority over PSP, MSSP and port data.
		х	Ι	TTL	External memory interface, data bit 4 input.
	PSP4	х	0	DIG	PSP read data output (LATD<4>). Takes priority over port and PSP data.
		х	Ι	TTL	PSP write data input.
	SDO2	0	0	DIG	SPI data output (MSSP2 module). Takes priority over PSP and port data.

Legend:PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,
TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Implemented on 80-pin devices only.

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description
RJ0/ALE	RJ0	0	0	DIG	LATJ<0> data output.
		1	Ι	ST	PORTJ<0> data input.
	ALE	х	0	DIG	External memory interface address latch enable control output. Takes priority over digital I/O.
RJ1/OE	RJ1	0	0	DIG	LATJ<1> data output.
		1	Ι	ST	PORTJ<1> data input.
	OE	х	0	DIG	External memory interface output enable control output. Takes priority over digital I/O.
RJ2/WRL	RJ2	0	0	DIG	LATJ<2> data output.
		1	I	ST	PORTJ<2> data input.
	WRL	х	0	DIG	External Memory Bus write low byte control. Takes priority over digital I/O.
RJ3/WRH	RJ3	0	0	DIG	LATJ<3> data output.
		1	I	ST	PORTJ<3> data input.
	WRH	х	0	DIG	External memory interface write high byte control output. Takes priority over digital I/O.
RJ4/BA0	RJ4	0	0	DIG	LATJ<4> data output.
		1	I	ST	PORTJ<4> data input.
	BA0	x	0	DIG	External memory interface byte address 0 control output. Takes priority over digital I/O.
RJ5/CE	RJ5	0	0	DIG	LATJ<5> data output.
		1	I	ST	PORTJ<5> data input.
	CE	x	0	DIG	External memory interface chip enable control output. Takes priority over digital I/O.
RJ6/LB	RJ6	0	0	DIG	LATJ<6> data output.
		1	I	ST	PORTJ<6> data input.
	LB	х	0	DIG	External memory interface lower byte enable control output. Takes priority over digital I/O.
RJ7/UB	RJ7	0	0	DIG	LATJ<7> data output.
		1	I	ST	PORTJ<7> data input.
	UB	х	0	DIG	External memory interface upper byte enable control output. Takes priority over digital I/O.

TABLE 11-17: PORTJ FUNCTIONS

Legend: PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 11-18: S	UMMARY OF REGISTERS ASSOCIATED WITH PORTJ
----------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTJ	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	60
LATJ	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	60
TRISJ	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	60

13.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 13-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 13-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 13-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

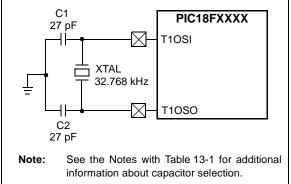
REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

Legend:							
R = Readable b	oit	W = Writable bit	U = Unimplemented bit,	, read as '0'			
-n = Value at P0	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7		6-Bit Read/Write Mode Enab					
		oles register read/write of Tir oles register read/write of Tir					
bit 6	T1RUN:	Timer1 System Clock Status	bit				
		ce clock is derived from Tim ce clock is derived from ano					
bit 5-4		<1:0>: Timer1 Input Clock P					
		Prescale value					
	10 = 1:4	= 1:4 Prescale value					
		Prescale value					
	00 = 1:1 Prescale value						
bit 3		N: Timer1 Oscillator Enable	bit				
		r1 oscillator is enabled					
		er1 oscillator is shut off oscillator inverter and feedba	ack resistor are turned off to e	liminate power drain			
bit 2		: Timer1 External Clock Inpu					
	When TMR1CS = 1:						
	1 = Do not synchronize external clock input						
	0 = Synchronize external clock input						
		$\frac{\text{When TMR1CS} = 0}{\text{TMR1CS}}$					
		•	ternal clock when TMR1CS =	= 0.			
bit 1	TMR1CS: Timer1 Clock Source Select bit						
		rnal clock from pin RC0/T1C nal clock (Fosc/4)	SO/T13CKI (on the rising edg	ge)			
bit 0	TMR10N	I: Timer1 On bit					
	1 = Enal	oles Timer1					
	0 = Stop	s Timer1					

13.2 Timer1 16-bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 13-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 high byte buffer. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.


The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

13.3 Timer1 Oscillator

An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (T1CON<3>). The oscillator is a lowpower circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 13-3. Table 13-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

TABLE 13-1: CAPACITOR SELECTION FOR THETIMEROSCILLATOR^(2,3,4)

Osc Type	Freq	C1	C2		
LP	32 kHz	27 pF ⁽¹⁾	27 pF ⁽¹⁾		
	Microchip suggests these values as a starting point in validating the oscillato circuit.				
	Higher capacitance increases the stability of the oscillator but also increases the start-up time.				
	Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.				
	Capacitor valuo only.	es are for des	ign guidance		

13.3.1 USING TIMER1 AS A CLOCK SOURCE

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS<1:0> (OSCCON<1:0>), to '01', the device switches to SEC_RUN mode; both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC_IDLE mode. Additional details are available in **Section 3.0 "Power-Managed Modes"**.

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN (T1CON<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source being currently used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

13.3.2 LOW-POWER TIMER1 OPTION

The Timer1 oscillator can operate at two distinct levels of power consumption based on device configuration. When the LPT1OSC Configuration bit is set, the Timer1 oscillator operates in a low-power mode. When LPT1OSC is not set, Timer1 operates at a higher power level. Power consumption for a particular mode is relatively constant, regardless of the device's operating mode. The default Timer1 configuration is the higher power mode.

As the low-power Timer1 mode tends to be more sensitive to interference, high noise environments may cause some oscillator instability. The low-power option is, therefore, best suited for low noise applications where power conservation is an important design consideration.

16.0 TIMER4 MODULE

The Timer4 timer module has the following features:

- 8-bit Timer register (TMR4)
- 8-bit Period register (PR4)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR4 match of PR4

Timer4 has a control register shown in Register 16-1. Timer4 can be shut off by clearing control bit, TMR4ON (T4CON<2>), to minimize power consumption. The prescaler and postscaler selection of Timer4 are also controlled by this register. Figure 16-1 is a simplified block diagram of the Timer4 module.

16.1 Timer4 Operation

Timer4 can be used as the PWM time base for the PWM mode of the CCP modules. The TMR4 register is readable and writable and is cleared on any device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T4CKPS<1:0> (T4CON<1:0>). The match output of TMR4 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR4 interrupt, latched in flag bit, TMR4IF (PIR3<3>).

The prescaler and postscaler counters are cleared when any of the following occurs:

- · a write to the TMR4 register
- a write to the T4CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR4 is not cleared when T4CON is written.

REGISTER 16-1: T4CON: TIMER4 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6-3	T4OUTPS<3:0>: Timer4 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•

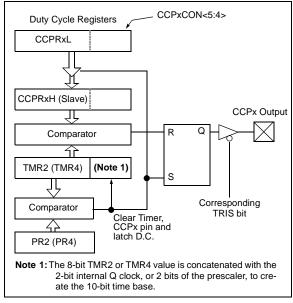
1111 = 1:16 Postscale

bit 2 **TMR4ON**: Timer4 On bit

1 = Timer4 is on 0 = Timer4 is off

- bit 1-0 **T4CKPS<1:0>**: Timer4 Clock Prescale Select bits
 - 00 =Prescaler is 1 01 =Prescaler is 4
 - 1x = Prescaler is 16

17.4 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP4 and CCP5 pins are multiplexed with a PORTG data latch, the appropriate TRISG bit must be cleared to make the CCP4 or CCP5 pin an output.

Note:	Clearing the CCP4CON or CCP5CON register will force the RG3 or RG4 output latch (depending on device configuration)
	to the default low level. This is not the PORTG I/O data latch.

Figure 17-4 shows a simplified block diagram of the CCP module in PWM mode.

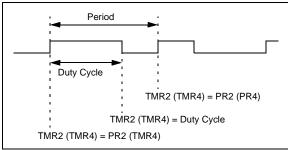

For a step-by-step procedure on how to set up a CCP module for PWM operation, see **Section 17.4.3** "Setup for PWM Operation".

FIGURE 17-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 17-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 17-5: PWM OUTPUT

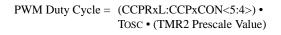
17.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 (PR4) register. The PWM period can be calculated using the following formula:

EQUATION 17-1:

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

PWM frequency is defined as 1/[PWM period].


When TMR2 (TMR4) is equal to PR2 (PR4), the following three events occur on the next increment cycle:

- TMR2 (TMR4) is cleared
- The CCPx pin is set (exception: if PWM duty cycle = 0%, the CCPx pin will not be set)
- The PWM duty cycle is latched from CCPRxL into CCPRxH
- Note: The Timer2 and Timer 4 postscalers (see Section 14.0 "Timer2 Module" and Section 16.0 "Timer4 Module") are not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

17.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPRxL register and to the CCPxCON<5:4> bits. Up to 10-bit resolution is available. The CCPRxL contains the eight MSbs and the CCPxCON<5:4> contains the two LSbs. This 10-bit value is represented by CCPRxL:CCPxCON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 17-2:

CCPRxL and CCPxCON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPRxH until after a match between PR2 (PR4) and TMR2 (TMR4) occurs (i.e., the period is complete). In PWM mode, CCPRxH is a read-only register.

19.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

19.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])
 - Full Master mode
 - Slave mode (with general address call)

The I²C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- · Slave mode

All members of the PIC18F8722 family have two MSSP modules, designated as MSSP1 and MSSP2. Each module operates independently of the other.

19.2 Control Registers

Each MSSP module has three associated control registers. These include a status register (SSPxSTAT) and two control registers (SSPxCON1 and SSPxCON2). The use of these registers and their individual Configuration bits differ significantly depending on whether the MSSP module is operated in SPI or I²C mode.

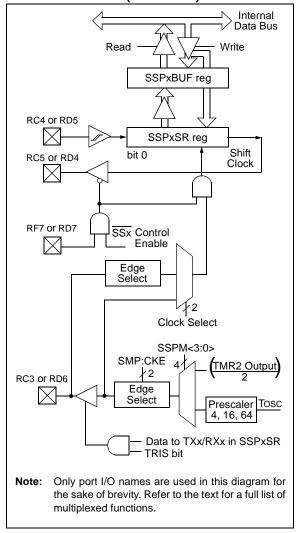
Additional details are provided under the individual sections.

Note: In devices with more than one MSSP module, it is very important to pay close attention to SSPCON register names. SSP1CON1 and SSP1CON2 control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.

19.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDOx) RC5/SDO1 or RD4/SDO2
- Serial Data In (SDIx) RC4/SDI1/SDA1 or RD5/SDI2/SDA2
- Serial Clock (SCKx) RC3/SCK1/SCL1 or RD6/SCK2/SCL2


Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SSx) – RF7/SS1 or RD7/SS2

Figure 19-1 shows the block diagram of the MSSP module when operating in SPI mode.

FIGURE 19-1:

21.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 12 inputs for the 64-pin devices and 16 for the 80-pin devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 21-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 21-2, configures the functions of the port pins. The ADCON2 register, shown in Register 21-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 21-1: ADCON0: A/D CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CHS3 ⁽¹⁾	CHS2 ⁽¹⁾	CHS1 ⁽¹⁾	CHS0 ⁽¹⁾	GO/DONE	ADON
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
= Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknow
it 7-6	Unimple	mented: Read as '0'		
bit 5-2 CHS<3:0> Analog Channel Select bits ⁽¹⁾		s ⁽¹⁾		

	0000 = Channel 0 (AN0)
	0001 = Channel 1 (AN1)
	0010 = Channel 2 (AN2)
	0011 = Channel 3 (AN3)
	0100 = Channel 4 (AN4)
	0101 = Channel 5 (AN5)
	0110 = Channel 6 (AN6)
	0111 = Channel 7 (AN7)
	1000 = Channel 8 (AN8)
	1001 = Channel 9 (AN9)
	1010 = Channel 10 (AN10)
	1011 = Channel 11 (AN11)
	1100 = Channel 12 (AN12) ⁽¹⁾
	1101 = Channel 13 (AN13) ⁽¹⁾
	1110 = Channel 14 (AN14) ⁽¹⁾
	1111 = Channel 15 (AN15) ⁽¹⁾
bit 1	GO/DONE: A/D Conversion Status bit
	When ADON = 1:
	1 = A/D conversion in progress
	0 = A/D Idle
bit 0	ADON: A/D On bit
	1 = A/D converter module is enabled
	0 = A/D converter module is disabled

Note 1: These channels are not implemented on 64-pin devices.

21.4 Operation in Power-Managed Modes

The selection of the automatic acquisition time and A/D conversion clock is determined in part by the clock source and frequency while in a power-managed mode.

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in the Sleep mode requires the A/D FRC clock to be selected. If bits ACQT<2:0> are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

21.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the Port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert as analog inputs. Analog levels on a digitally configured input will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

BTFS	с	Bit Test File	, Skip if Clear		BTFS	S	Bit Test File	, Skip if Set	
Synta	x:	BTFSC f, b	{,a}		Synta	IX:	BTFSS f, b	{,a}	
Opera	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			Opera	ands:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]		
Opera	ation:	skip if (f)	= 0		Opera	ation:	skip if (f)	= 1	
Status	Affected:	None			Status	s Affected:	None		
Encod	ding:	1011	bbba ff	ff ffff	Enco	ding:	1010	bbba ffi	ff ffff
Descr	iption:	instruction is the next instru- current instru- and a NOP is	gister 'f' is '0', t skipped. If bit uction fetched iction executio executed inst cle instruction.	'b' is '0', then I during the In is discarded ead, making	Desc	ription:	instruction is the next instru- current instru- and a NOP is	gister 'f' is '1', t skipped. If bit ruction fetched action executio executed instruction.	'b' is '1', then during the n is discarded
			BSR is used to	k is selected. If a select the				e Access Bank BSR is used to lefault).	
		is enabled, ti Indexed Lite whenever f ≤ Section 26.2 Bit-Oriented	d the extended nis instruction ral Offset Addr 95 (5Fh). See 3. "Byte-Orie I Instructions at Mode" for d	essing mode ented and in Indexed			set is enable Indexed Lite whenever f ≤ Section 26.2 Bit-Oriented	d the extended d, this instruction ral Offset Addre 395 (5Fh). See 2.3 "Byte-Orie I Instructions et Mode" for de	on operates in essing mode nted and in Indexed
Words	6:	1			Word	s:	1		
Cycle		•	cles if skip and 2-word instruc		Cycle	s:		cles if skip and 2-word instru	
Q Cy	cle Activity:				QC	cle Activity:			
_	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read	Process	No		Decode	Read	Process	No
lf oki	<u>.</u>	register 'f'	Data	operation	lf oki	n :	register 'f'	Data	operation
lf ski	p. Q1	Q2	Q3	Q4	lf ski	ρ. Q1	Q2	Q3	Q4
Γ	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
lf ski	p and followed	by 2-word inst	ruction:		lf ski	p and followed	by 2-word inst	truction:	
г	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	No operation	No	No	No		No	No	No	No
-	No	operation No	operation No	operation No		operation No	operation No	operation No	operation No
	operation	operation	operation	operation		operation	operation	operation	operation
<u>Exam</u>	<u>ple:</u>	HERE BI FALSE : TRUE :	FSC FLAG	;, l, O	<u>Exam</u>	iple:	HERE BI FALSE : TRUE :	TFSS FLAG	, 1, 0
	Before Instruct PC After Instruction If FLAG<1 PC If FLAG<1 PC	= add n > = 0; = add > = 1;	ress (HERE) ress (TRUE) ress (FALSE)		Before Instruct PC After Instructio If FLAG< PC If FLAG< PC	ion = add n = 0; = add 1> = 0;	ress (here) ress (false) ress (true)	1
			,2				_ 400		

LFSF	ર	Load FSR					
Synta	ax:	LFSR f, k	LFSR f, k				
Operands:		$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 408 \end{array}$	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 4095 \end{array}$				
Oper	ation:	$k\toFSRf$					
Statu	s Affected:	None					
Enco	ding:	1110 1111	1110 0000	00ff k7kkk	k11kkk kkkk		
Description:			The 12-bit literal 'k' is loaded into the file select register pointed to by 'f'.				
Words:		2					
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'k' MSB	Proce: Data	i li	Write teral 'k' MSB to FSRfH		
	Decode	Read literal 'k' LSB	Proce: Data		rite literal to FSRfL		
Example: LFSR 2, 3ABh After Instruction FSR2H = 03h							
	FSR2L	= A	Bh				

MOVF	Move f			
Syntax:	MOVF f	{,d {,a}}		
Operands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$			
Operation:	$f \to \text{dest}$			
Status Affected:	N, Z			
Encoding:	0101	00da	ffff	ffff
Description:	a destination status of 'd placed in V placed bac Location 'f'	The contents of register 'f' are moved to a destination dependent upon the status of 'd'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). Location 'f' can be anywhere in the 256-byte bank.		
	If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank (default).			
If 'a' is '0' and the extended instruction of set is enabled, this instruction of in Indexed Literal Offset Address			operates	

in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and **Bit-Oriented Instructions in Indexed** Literal Offset Mode" for details.

Q Cycle Activity:

Words:

Cycles:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	W

REG, 0, 0

Example: MOVF

Deferre	I
Betore	Instruction

REG	=	22h
W	=	FFh
After Instruction		
REG	=	22h
W	=	22h

1

1

моу	'LW	Move Lite	eral to W			
Synta	ax:	MOVLW	k			
Oper	ands:	$0 \le k \le 25$	5			
Oper	ation:	$k\toW$				
Status Affected:		None				
Enco	ding:	0000	1110	kkki	k	kkkk
Description:		The eight-	The eight-bit literal 'k' is loaded into W.			
Word	ls:	1				
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	3		Q4
	Decode	Read literal 'k'	Proce Data		W	rite to W
<u>Exan</u>	nple:	MOVLW	5Ah			

5Ah

=

After Instruction W

MOVWF	Move W to	f	
Syntax:	MOVWF	f {,a}	
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]		
Operation:	$(W) \to f$		
Status Affected:	None		
Encoding:	0110	111a ff:	ff ffff
Description:	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank.		
		he Access Bai he BSR is use (default).	
	set is enabl in Indexed mode wher Section 26 Bit-Oriente	and the extend led, this instruct Literal Offset A never f \leq 95 (5) .2.3 "Byte-Or ed Instruction set Mode" for	ction operates Addressing Fh). See iented and s in Indexed
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write register 'f'
Example:	MOVWF	REG, O	
Before Instruc			
W REG	= 4Fh = FFh		

After Instruction

W REG

4Fh 4Fh

=

TSTR	SZ	Test f, Skip	if O			
Synta	ax:	TSTFSZ f{	[,a}			
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]				
Oper	ation:	skip if f = 0				
Statu	s Affected:	None				
Enco	ding:	0110	011a fff	f ffff		
Description:		during the c is discarded	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction.			
			ne Access Bar ne BSR is used (default).			
If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.				tion operates ddressing h). See ented and s in Indexed		
Word	ls:	1				
Cycles:		•				
QC	ycle Activity:					
	Q1	Q2	Q3	Q4		
	Decode	Read	Process	No		
lf als		register 'f'	Data	operation		
lf sk	ip: Q1	Q2	Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
lf sk	ip and followed	d by 2-word in	struction:			
	Q1	Q2	Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
	No operation	No operation	No operation	No operation		
<u>Exan</u>	nple:	NZERO	NZERO :			
	Before Instruc PC After Instructic	= Ad	dress (HERE))		
	If CNT PC If CNT PC	≠ 00	dress (ZERO)			

XORLW Exclusive OR Literal with W				N	
Syntax:	XORLW	k			
Operands:	$0 \le k \le 25$	5			
Operation:	(W) .XOR. $k \rightarrow W$				
Status Affected:	N, Z				
Encoding:	0000	1010	kkkk	kkkk	
Description:	The conte the 8-bit li in W.				
Words:	1	1			
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read literal 'k'	Proce: Data		Vrite to W	
Example:	XORLW	0AFh			
Before Instruction W = B5h After Instruction					

1Ah

=

W

© 2008 Microchip Technology Inc.

MOVSS	Move Inde	exed to Ir	ndexed	
Syntax:	MOVSS	[z _s], [z _d]		
Operands:	$0 \le z_s \le 12$ $0 \le z_d \le 12$			
Operation:	((FSR2) +	$z_s) \rightarrow ((F$	SR2) + z _d)
Status Affected:	None			
Encoding: 1st word (source) 2nd word (dest.)	1110 1111	1011 xxxx	lzzz xzzz	zzzzs zzzzd
Description	The conter moved to the addresses registers a 7-bit literal respective registers of the 4096-b (000h to F	the destin of the so re determ offsets 'z ly, to the can be loc byte data FFh).	ation regis urce and d nined by ac s' or 'z _d ', value of FS ated anyw memory sp	ter. The estination dding the SR2. Both here in bace
	The MOVS PCL, TOS destinatior	U, TOSH	or TOSL a	
	If the resul an Indirect value retur resultant d an Indirect instruction	t Address rned will t lestinatior t Address	ing registe be 00h. If tl n address ing registe	r, the he points to r, the
Words:	2			
Cycles:	2			
Q Cycle Activity:				
01	00	01	`	04

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-		
QC	ycle Activity:			
	Q1	Q2	Q3	
	Decode	Determine	Determine	

	source addr	source addr	source reg
Decode	Determine	Determine	Write
	dest addr	dest addr	to dest reg

Q4 Read

Example:	MOVSS	[05h],	[06h]
Before Instruction FSR2 Contents	on =	80h	
of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	33h	

PUSHL	Store Litera	Store Literal at FSR2, Decrement FSR2			
Syntax:	PUSHL k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow$ (FSR2), FSR2 – 1 \rightarrow FSR2				
Status Affected:	None				
Encoding:	1111	1010	kkkk	kkkk	
Description:	The 8-bit literal 'k' is written to the data memory address specified by FSR2. FSR2 is decremented by 1 after the operation.				
		This instruction allows users to push values onto a software stack.			
Words:	1				
Cycles:	1				
Q Cycle Activity					
Q1	Q2	G	23	Q4	
Decode	Read 'k'	Proc da		Write to destination	
Example:	PUSHL	08h			
Before Instr	uction		01ECh		

FSR2H:FSR2L	=	01ECh
Memory (01ECh)	=	00h
After Instruction FSR2H:FSR2L Memory (01ECh)	= =	01EBh 08h

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available