

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3936 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6622-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5 Device Reset Timers

The PIC18F8722 family of devices incorporates three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

4.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of the PIC18F8722 family of devices is an 11-bit counter which uses the INTRC source as the clock input. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 in Table 28-12 for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

4.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33, Table 28-12). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset, or on exit from most power-managed modes.

4.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

4.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR pulse has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT or LP modes. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, all time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18F8722 family device operating in parallel.

Oscillator	Power-up ⁽²⁾ a	Exit from		
Configuration	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode	
HSPLL	TPWRT ⁽¹⁾ + 1024 TOSC + TPLL ⁽²⁾	1024 Tosc + Tpll ⁽²⁾	1024 Tosc + Tpll ⁽²⁾	
HS, XT, LP	Tpwrt ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc	
EC, ECIO	TPWRT ⁽¹⁾	_	—	
RC, RCIO	TPWRT ⁽¹⁾	_	—	
INTIO1, INTIO2	Tpwrt ⁽¹⁾	_	—	

TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS

Note 1: See parameter 33, Table 28-12.

2: 2 ms is the nominal time required for the PLL to lock.

	^	20:0>		_ 21 _					
CALL, RCALI RETFIE, RET									
KEIFIE, KE.	٦								
Stack Level 1									
	• Stack L	aval 31		-					
	Slack L								
	Reset	Vector		0000h					
	High-Priority I	nterrupt Vector		0008h					
	Low-Priority Ir	nterrupt Vector		0018h					
On Chin			On Chin						
On-Chip Program Memory	On-Chip Program Memory	On-Chip Program Memory	On-Chip Program Memory						
PIC18FX527	PIC18FX622	PIC18FX627	PIC18FX722						
0BFFFh									
0C000h									
				ace					
				S					
				User Memory Space					
-	0FFFh 10000h			em /					
	1000011			≥ ≥					
				Jse					
		017FFFh							
		018000h							
Read '0'	Read '0'	Read '0'							
				01FFFFh					
				1FFFFFh					

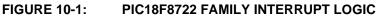
TABLE 5-1: MEMORY ACCESS FOR PIC18F8527/8622/8627/8722 PROGRAM MEMORY MODES

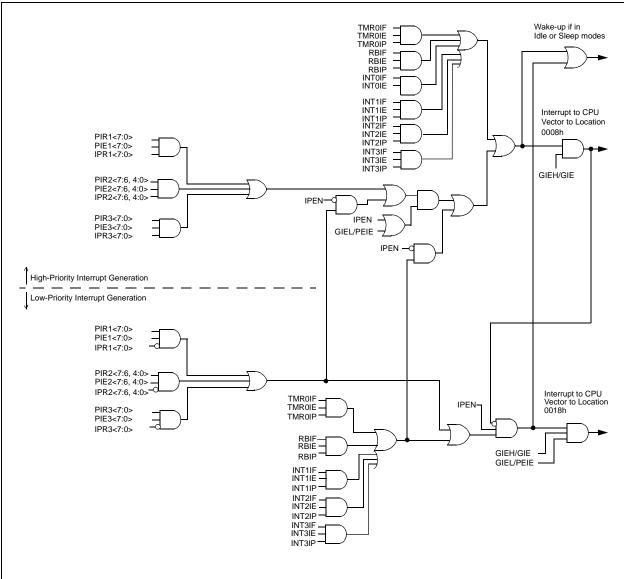
	Inte	rnal Program Men	nory	External Program Memory			
Operating Mode	Execution From	Table Read From	Table Write To	Execution From	Table Read From	Table Write To	
Microprocessor	No Access	No Access	No Access	Yes	Yes	Yes	
Microprocessor w/ Boot Block	Yes	Yes	Yes	Yes	Yes	Yes	
Microcontroller	Yes	Yes	Yes	No Access	No Access	No Access	
Extended Microcontroller	Yes	Yes	Yes	Yes	Yes	Yes	

5.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top half of Bank 15 (F60h to FFFh). A list of these registers is given in Table 5-2 and Table 5-3. The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.


Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1	F7Fh	SPBRGH1
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	CCPR1L	F9Eh	PIR1	F7Eh	BAUDCON1
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	CCP1CON	F9Dh	PIE1	F7Dh	SPBRGH2
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	MEMCON	F7Ch	BAUDCON2
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR2L	F9Bh	OSCTUNE	F7Bh	(2)
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	TRISJ ⁽³⁾	F7Ah	(2)
FF9h	PCL	FD9h	FSR2L	FB9h	CCPR3H	F99h	TRISH ⁽³⁾	F79h	ECCP1DEL
FF8h	TBLPTRU	FD8h	STATUS	FB8h	CCPR3L	F98h	TRISG	F78h	TMR4
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	CCP3CON	F97h	TRISF	F77h	PR4
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCP1AS	F96h	TRISE	F76h	T4CON
FF5h	TABLAT	FD5h	TOCON	FB5h	CVRCON	F95h	TRISD	F75h	CCPR4H
FF4h	PRODH	FD4h	(2)	FB4h	CMCON	F94h	TRISC	F74h	CCPR4L
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB	F73h	CCP4CON
FF2h	INTCON	FD2h	HLVDCON	FB2h	TMR3L	F92h	TRISA	F72h	CCPR5H
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	LATJ ⁽³⁾	F71h	CCPR5L
FF0h	INTCON3	FD0h	RCON	FB0h	PSPCON	F90h	LATH ⁽³⁾	F70h	CCP5CON
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG1	F8Fh	LATG	F6Fh	SPBRG2
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG1	F8Eh	LATF	F6Eh	RCREG2
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG1	F8Dh	LATE	F6Dh	TXREG2
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA1	F8Ch	LATD	F6Ch	TXSTA2
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA1	F8Bh	LATC	F6Bh	RCSTA2
FEAh	FSR0H	FCAh	T2CON	FAAh	EEADRH	F8Ah	LATB	F6Ah	ECCP3AS
FE9h	FSR0L	FC9h	SSP1BUF	FA9h	EEADR	F89h	LATA	F69h	ECCP3DEL
FE8h	WREG	FC8h	SSP1ADD	FA8h	EEDATA	F88h	PORTJ ⁽³⁾	F68h	ECCP2AS
FE7h	INDF1 ⁽¹⁾	FC7h	SSP1STAT	FA7h	EECON2 ⁽¹⁾	F87h	PORTH ⁽³⁾	F67h	ECCP2DEL
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSP1CON1	FA6h	EECON1	F86h	PORTG	F66h	SSP2BUF
FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSP1CON2	FA5h	IPR3	F85h	PORTF	F65h	SSP2ADD
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE	F64h	SSP2STAT
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD	F63h	SSP2CON1
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	SSP2CON2
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	(2)
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA	F60h	(2)


TABLE 5-2: SPECIAL FUNCTION REGISTER MAP FOR THE PIC18F8722 FAMILY OF DEVICES

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on 64-pin devices.

10.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF ⁽¹⁾ bit 7 bit 0 bit 0 bit 0 bit 0 bit 0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
bit 7 bit 0	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
	bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	GIE/GIEH: Global Interrupt Enable bit
	When $IPEN = 0$:
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts
	When IPEN = 1:
	1 = Enables all high-priority interrupts
	0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	When $IPEN = 0$:
	 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
	When IPEN = 1:
	1 = Enables all low-priority peripheral interrupts
	0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt
	0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	1 = Enables the INT0 external interrupt
	0 = Disables the INT0 external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	1 = Enables the RB port change interrupt
	0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = TMR0 register has overflowed (must be cleared in software)
1.1.4	0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit
	 1 = The INT0 external interrupt occurred (must be cleared in software) 0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾
	1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
	0 = None of the RB7:RB4 pins have changed state
Note 1:	A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and
1010 1.	A mismatic condition will condition will condition and

allow the bit to be cleared.

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description
RD5/AD5/	RD5	0	0	DIG	LATD<5> data output.
PSP5/SDI2		1	I	PORTD<5> data input.	
/SDA2	AD5 ⁽¹⁾	х	0	DIG	External memory interface, address/data bit 5 output. Takes priority over PSP, MSSP and port data.
		х	Ι	TTL	External memory interface, data bit 5 input.
	PSP5	х	0	DIG	PSP read data output (LATD<5>). Takes priority over port data.
		х	I	TTL	PSP write data input.
	SDI2	1	I	ST	SPI data input (MSSP2 module).
	SDA2	1	0	DIG	I ² C [™] data output (MSSP2 module). Takes priority over PSP and port data.
		1	I	I ² C/SMB	I ² C data input (MSSP2 module); input type depends on module setting.
RD6/AD6/	RD6	0	0	DIG	LATD<6> data output.
PSP6/SCK2/ SCL2		1	I	ST	PORTD<6> data input.
	AD6 ⁽¹⁾	х	0	DIG-3	External memory interface, address/data bit 6 output. Takes priority over PSP, MSSP and port data.
		х	I	TTL	External memory interface, data bit 6 input.
	PSP6	х	0	DIG	PSP read data output (LATD<6>). Takes priority over port data.
		х	Ι	TTL	PSP write data input.
	SCK2	0	0	DIG	SPI clock output (MSSP2 module). Takes priority over PSP and port data.
		1	I	ST	SPI clock input (MSSP2 module).
	SCL2	0	0	DIG	I ² C clock output (MSSP2 module). Takes priority over PSP and port data.
		1	I	I ² C/SMB	I ² C clock input (MSSP2 module); input type depends on module setting.
RD7/A <u>D7/</u>	RD7	0	0	DIG	LATD<7> data output.
PSP7/SS2		1	I	ST	PORTD<7> data input.
	AD7 ⁽¹⁾	х	0	DIG	External memory interface, address/data bit 7 output. Takes priority over PSP and port data.
		x	I	TTL	External memory interface, data bit 7 input.
	PSP7	x	0	DIG	PSP read data output (LATD<7>). Takes priority over port data.
		x	Ι	TTL	PSP write data input.
	SS2	1	1	TTL	Slave select input for SSP (MSSP2 module).

TABLE 11-7:	PORTD FUNCTIONS	(CONTINUED)

Legend: PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Implemented on 80-pin devices only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	60
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	60
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	60

11.6 PORTF, LATF and TRISF Registers

PORTF is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISF. Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATF) is also memory mapped. Read-modify-write operations on the LATF register read and write the latched output value for PORTF.

All pins on PORTF are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTF is multiplexed with several analog peripheral functions, including the A/D converter and comparator inputs, as well as the comparator outputs. Pins RF1 through RF2 may be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RF<6:0:> as digital inputs, it is necessary to turn off the A/D inputs.

- **Note 1:** On a Power-on Reset, the RF<6:0> pins are configured as analog inputs and read as '0'.
 - 2: To configure PORTF as digital I/O, set the ADCON1 register.

EXAMPLE 11-6: INITIALIZING PORTF

CLRF	PORTF		Initialize PORTF by clearing output
		;	data latches
CLRF	LATF	;	Alternate method
		;	to clear output
		;	data latches
MOVLW	0x0F	;	
MOVWF	ADCON1	;	Set PORTF as digital I/O
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISF	;	Set RF3:RF0 as inputs
		;	RF5:RF4 as outputs
		;	RF7:RF6 as inputs

12.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- Readable and writable registers
- Dedicated 8-bit, software programmable prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- Interrupt-on-overflow

The T0CON register (Register 12-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

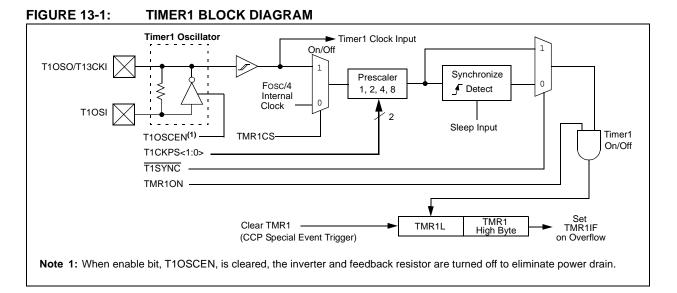
A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 12-1. Figure 12-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 12-1: T0CON: TIMER0 CONTROL REGISTER

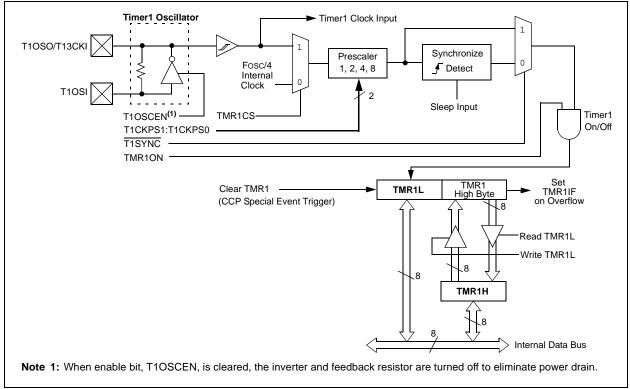
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

Legend:						
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'		
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		
bit 7		I: Timer0 On/Off Control bit les Timer0				
	0 = Stops	s Timer0				
bit 6	T08BIT:	Timer0 8-bit/16-bit Control bit	t			
		r0 is configured as an 8-bit ti r0 is configured as a 16-bit ti				
bit 5	TOCS : Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKO)					
bit 4	TOSE : Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin					
bit 3	 PSA: Timer0 Prescaler Assignment bit 1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler. 0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output. 					
bit 2-0	111 = 1: 110 = 1: 101 = 1: 100 = 1: 011 = 1: 010 = 1:	4 Prescale value	bits			

13.1 Timer1 Operation


Timer1 can operate in one of these modes:

- Timer
- Synchronous Counter
- Asynchronous Counter


The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>). When TMR1CS is cleared (= 0), Timer1 increments on every internal instruction

cycle (Fosc/4). When the bit is set, Timer1 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

When Timer1 is enabled, the RC1/T1OSI and RC0/T10SO/T13CKI pins become inputs. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 13-2: TIMER1 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

13.3.3 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 13-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than VSS or VDD.

If a high-speed circuit must be located near the Timer1 oscillator, a grounded guard ring around the oscillator circuit may be helpful when used on a single-sided PCB or in addition to a ground plane.

13.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

13.5 Resetting Timer1 Using the CCP Special Event Trigger

If any of the CCP modules are configured to use Timer1 and generate a Special Event Trigger in Compare mode (CCPxM<3:0>, this signal will reset Timer1. The trigger from the ECCP2 module will also start an A/D conversion if the A/D module is enabled (see **Section 17.3.4** "**Special Event Trigger**" for more information).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRH:CCPRL register pair effectively becomes a period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note: The Special Event Triggers from the CCPx module will not set the TMR1IF interrupt flag bit (PIR1<0>).

13.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 13.3 "Timer1 Oscillator"** above) gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 13-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one; additional counters for minutes and hours are incremented as the previous counter overflow.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it; the simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

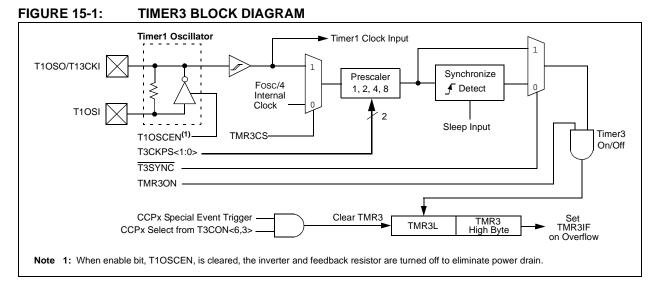
For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1), as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

EXAMPLE	13-1:	IMPLEMENTIN	G A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE
RTCinit			
	MOVLW	80h	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1CON	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN		
RTCisr			
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGT	secs	
	RETURN		; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGT	mins	
	RETURN		; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGT		
	RETURN		; No, done
	CLRF	hours	; Reset hours
	RETURN		; Done

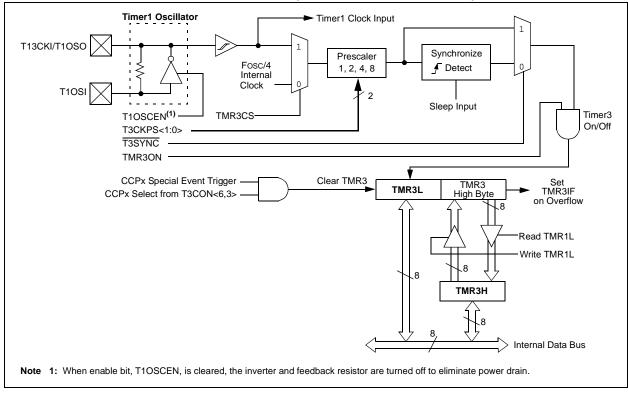
TABLE 13-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	60
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	60
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	60
TMR1L	Timer1 Register Low Byte							58	
TMR1H	Timer1 Register High Byte						58		
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	58

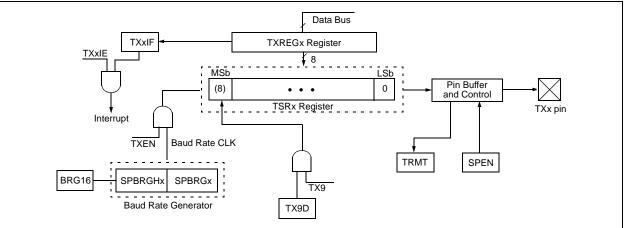
Legend: Shaded cells are not used by the Timer1 module.

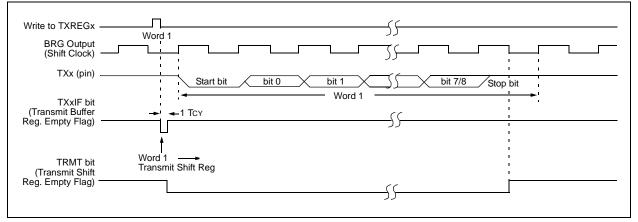

15.1 Timer3 Operation

Timer3 can operate in one of three modes:


- Timer
- Synchronous Counter
- Asynchronous Counter

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.


As with Timer1, the RC1/T1OSI and RC0/T1OSO/ T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.


FIGURE 15-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

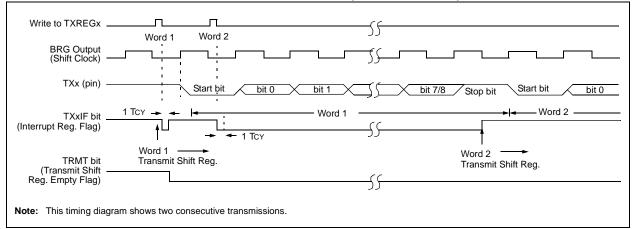

FIGURE 20-3: EUSART TRANSMIT BLOCK DIAGRAM

FIGURE 20-4: ASYNCHRONOUS TRANSMISSION

FIGURE 20-5: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

NOTES:

REGISTER 25-11: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)

R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1
EBTR7 ⁽¹⁾	EBTR6 ⁽¹⁾	EBTR5 ⁽²⁾	EBTR4 ⁽²⁾	EBTR3 ⁽³⁾	EBTR2	EBTR1	EBTR0
bit 7			1				bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 7	EBTR7: Table	e Read Protect	ion bit ⁽¹⁾				
		01C000-01FFF 01C000-01FFF				ed in other blocks o other blocks	3
bit 6	EBTR6: Table	e Read Protect	ion bit ⁽¹⁾				
		018000-01BFF 018000-01BFF				d in other blocks other blocks	5
bit 5		e Read Protect					
		014000-017FF 014000-017FF				d in other blocks other blocks	
bit 4	EBTR4: Table	e Read Protect	ion bit ⁽²⁾				
		010000-013FFF 010000-013FFF				d in other blocks other blocks	
bit 3	EBTR3: Table	e Read Protect	ion bit ⁽³⁾				
	•	0C000-00FFF 0C000-00FFF	· ·			ed in other blocks o other blocks	3
bit 2	EBTR2: Table	e Read Protect	ion bit				
	·	008000-00BFF 008000-00BFF	/			d in other blocks other blocks	5
bit 1	EBTR1: Table	e Read Protect	ion bit				
		04000-007FFI 04000-007FFI				d in other blocks other blocks	
bit 0		e Read Protect					
	blocks			,		n table reads exe	
	0 = Block 0 blocks	(000800, 0010)	00 or 002000 ⁽	⁴⁾ -003FFFh) թւ	rotected from	table reads exec	cuted in othe
	nimplemented in						
	nimplemented in					et.	
2. 11.	nimplemented in	PIC18E6527/9	527 davicas	maintain this hi	t set		

- 3: Unimplemented in PIC18F6527/8527 devices; maintain this bit set.
- 4: Unimplemented in PIC18F6527/8527 devices; maintain this bit set.

ADDWFC	ADD W an	ADD W and Carry bit to f				
Syntax:	ADDWFC	f {,d {,a	a}}			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]					
Operation:	(W) + (f) +	$(C) \rightarrow de$	st			
Status Affected:	N,OV, C, D	C, Z				
Encoding:	0010	00da	fff	Ēf	ffff	
Description:	Add W, the location 'f'. placed in V placed in d	If 'd' is '0 V. If 'd' is	, the '1', th	resi ie re	ult is sult is	
	lf 'a' is '0', t If 'a' is '1', t GPR bank	he BSR is				
	If 'a' is '0' a set is enab in Indexed mode when Section 26 Bit-Oriento Literal Off	led, this ir Literal Of never f ≤ \$ 5.2.3 "Byt ed Instrue	nstruc fset A 95 (51 :e-Or i ction	ction Addro Fh). iento s in	operates essing See ed and Indexed	
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		-	Q4	
Decode	Read register 'f'	Proces Data			/rite to stination	
Example:	ADDWFC	REG,	0, 3	1		
Before Instruc Carry bit REG W After Instructio	= 1 = 02h = 4Dh					
Carry bit REG W						

ANDLW	AND Litera	AND Literal with W					
Syntax:	ANDLW	k					
Operands:	$0 \le k \le 255$;					
Operation:	(W) .AND.	$k \rightarrow W$					
Status Affected:	N, Z						
Encoding:	0000	1011	kkk	k kkkk			
Description:				IDed with the s placed in V			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read literal 'k'	Proce Data		Write to W			
Example:	ANDLW	05Fh					
Before Instruc	ction						
W	= A3h						
After Instructio W	on = 03h						

LFSF	ર	Load FSR			
Synta	ax:	LFSR f, k	(
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 408 \end{array}$	95		
Oper	ation:	$k\toFSRf$			
Statu	s Affected:	None			
Enco	ding:	1110 1111	1110 0000	00ff k7kkk	k11kkk kkkk
Desc	ription:	The 12-bit file select			
Word	ls:	2			
Cycle	es:	2			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read literal 'k' MSB	Proce: Data	i li	Write teral 'k' MSB to FSRfH
	Decode	Read literal 'k' LSB	Proce: Data		rite literal to FSRfL
Example: LFSR 2, 3ABh After Instruction FSR2H = 03h					
	FSR2L	= A	Bh		

MOVF	Move f					
Syntax:	MOVF f	{,d {,a}}				
Operands:	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$					
Operation:	$f \to \text{dest}$					
Status Affected:	N, Z					
Encoding:	0101	00da	ffff	ffff		
Description:	The contents of register 'f' are moved to a destination dependent upon the status of 'd'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). Location 'f' can be anywhere in the 256-byte bank.					
	lf 'a' is '1',	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).				
	set is enab	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing				

in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and **Bit-Oriented Instructions in Indexed** Literal Offset Mode" for details.

Q Cycle Activity:

Words:

Cycles:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	W

REG, 0, 0

Example: MOVF

Deferre	I
Betore	Instruction

REG	=	22h
W	=	FFh
After Instruction		
REG	=	22h
W	=	22h

1

1

SUBLW	Su	Subtract W from literal				
Syntax:	SU	SUBLW k				
Operands:	0 ≤	$0 \leq k \leq 255$				
Operation:	k –	$k-(W)\toW$				
Status Affected:	Ν,	N, OV, C, DC, Z				
Encoding:	0	000	1000	kkk	k	kkkk
Description:		W is subtracted from the eight-bit literal 'k'. The result is placed in W.				
Words:	1	1				
Cycles:	1	1				
Q Cycle Activity:						
Q1	G	2	Q3			Q4
Decode	Re litera		Proces Data		N	/rite to W
Example 1:	SUI	BLW ()2h			
Before Instruc W C After Instructio W C Z N	= (= 7 0n = (= 7)1h ?)1h I ;)	result is p	ositiv	re	
Example 2:	SU	BLW ()2h			
Before Instruc W C After Instructio W C Z	= (= 2 on = ()2h ?)0h I ; I	result is z	ero		
N)				
Example 3:		BLW ()2h			
Before Instruc W C After Instructio W C Z N	= (= 7 on = 1 = ()3h ? FFh ;) ;)	(2's comp result is r	oleme negati	ent) ve	

SUBWF	Subtract W	from f	
Syntax:	SUBWF f	{,d {,a}}	
Operands:	$0 \leq f \leq 255$		
	d ∈ [0,1]		
	a ∈ [0,1]		
Operation:	$(f) - (W) \rightarrow 0$		
Status Affected:	N, OV, C, D		- F
Encoding:	0101	11da fff	
Description:	complement result is stor	from register 'f' t method). If 'd' ed in W. If 'd' is ck in register 'f'	is '0', the '1', the result
	,	ne Access Bank ne BSR is used default).	
	set is enable in Indexed L mode when Section 26. Bit-Oriente	nd the extended ed, this instructi iteral Offset Ad ever f ≤ 95 (5Fr 2.3 "Byte-Orie d Instructions et Mode" for de	on operates dressing I). See nted and in Indexed
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example 1:	SUBWF	REG, 1, 0	
Before Instruc	tion		
REG W	= 3		
	- 2		
С	= 2 = ?		
After Instruction	= ? on		
-	= ?		
After Instruction REG	= ? on = 1 = 2 = 1;	result is positiv	e
After Instruction REG W	= ? on = 1 = 2	result is positiv	e
After Instruction REG W	= ? on = 1 = 2 = 1 ; = 0	result is positiv	e
After Instruction REG W C Z N N <u>Example 2:</u> Before Instruct	= ? on = 1 = 2 = 1 ; = 0 = 0 SUBWF tion	·	e
After Instruction REG W C Z N Example 2:	= ? on = 1 = 2 = 1 ; = 0 = 0 SUBWF	·	Ð
After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction	= ? on = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = 2 = ?	·	e
After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG	= ? on = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = ? on = 2	·	e
After Instruction REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instruction REG W C	= ? on = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = 2 = ? on = 2 = 0 = 1 ;	·	e
After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W	= ? on = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = ? on = 2 = ? on = 2 = ? =	REG, 0, 0	Ð
After Instruction REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instruction REG W C	= ? on = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = ? on = 2 = ? on = 2 = ? on = 1 ; = 0 = 0 ; = 0 ; = 0 ; = 0 ; = 0 ; = 1 ; = 0 ; = 0 ; = 1 ; = 0 ; = 0 ; = 1 ; = 0 ; =	REG, 0, 0	e
After Instructio REG W C Z N Example 2: Before Instruc REG W C After Instructio REG W C Z N	= ? on = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = 2 = ? on = 2 = ? on = 0 SUBWF ; = 0 = 0 SUBWF	REG, 0, 0	Ð
After Instruction REG W C Z N Before Instruct REG W C After Instruction REG W C Z N Example 3: Before Instruct REG	= ? on = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = ? on = 2 = ? on = 1 ; SUBWF tion = 1 ; = 0 SUBWF = 1 ; = 0 SUBWF = 1 ; = 0 = 0 SUBWF = 2 = 1 ; = 0 = 0 SUBWF = 2 = 1 ; = 0 SUBWF = 2 = ? on = 0 SUBWF = 2 = ? on = 0 = 0 SUBWF = 2 = ? on = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	REG, 0, 0	9
After Instruction REG W C Z N Before Instruct REG W C After Instruction REG W C Z N N Example 3: Before Instruct	= ? n = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = 2 = ? n = 2 = ? n = 0 SUBWF tion = 0 SUBWF	REG, 0, 0	e
After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C Example 3: Before Instruct REG W C After Instruction REG W C After Instruction	= ? on = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = ? on = 2 = ? on = 1 ; SUBWF tion = 1 = ? on SUBWF	REG, 0, 0 result is zero REG, 1, 0	
After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C S N Example 3: Before Instruct REG W C After Instruction REG C After Instruction REG	= ? on = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = ? on = 2 = ? on = 1 ; SUBWF tion = 1 = ? on SUBWF	REG, 0, 0	
After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W Example 3: Before Instruct REG W C After Instruction REG W C After Instruction	= ? n = 1 = 2 = 1 ; = 0 SUBWF tion = 2 = 2 = ? n = 2 = 1 ; = 0 SUBWF tion = 1 = 2 = ? n = 1 = ? = ? = 1 = ? = ? = ? = ? = ? = ? = ? = ?	REG, 0, 0 result is zero REG, 1, 0	ıt)

Bus Collision During Start
Condition (SDAx Only)241
Bus Collision for Transmit and Acknowledge
Capture/Compare/PWM (All ECCP/CCP
Modules)
CLKO and I/O
Clock Synchronization
Clock/Instruction Cycle69
EUSART Synchronous Receive
(Master/Slave)
EUSART Synchronous Transmission
(Master/Slave)
Example SPI Master Mode (CKE = 0)
Example SPI Master Mode (CKE = 1)
Example SPI Slave Mode (CKE = 0)
Example SPI Slave Mode (CKE = 1)
External Clock (All Modes Except PLL)
External Memory Rus for Sleen
(Microprocessor Mode)
External Memory Bus for TBLRD (Extended
Microcontroller Mode)104, 107
External Memory Bus for TBLRD
(Microprocessor Mode)107
External Memory Bus for TBLRD with 1 TCY
Wait State (Microprocessor Mode)
Fail-Safe Clock Monitor (FSCM)
First Start Bit Timing
Full-Bridge PWM Output
Half-Bridge PWM Output
High/Low-Voltage Detect Characteristics
High-Voltage Detect Operation
(VDIRMAG = 1)
I ² C Acknowledge Sequence
I ² C Bus Data
I ² C Bus Start/Stop Bits
I ² C Master Mode (7 or 10-Bit Transmission)
I ² C Master Mode (7-Bit Reception)
$I^{2}C$ Slave Mode (10-Bit Reception, SEN = 0)
I^2C Slave Mode (10-Bit Reception, SEN = 1)
$I^{2}C$ Slave Mode (10-Bit Transmission)
I^2C Slave Mode (7-bit Reception, SEN = 0)
I^2C Slave Mode (7-Bit Reception, SEN = 1)
I ² C Slave Mode (7-Bit Transmission)
I ² C Slave Mode General Call Address
Sequence (7 or 10-Bit Address Mode)
I ² C Stop Condition Receive or Transmit Mode
Low-Voltage Detect Operation (VDIRMAG = 0) 293
Master SSP I ² C Bus Data
Master SSP I ² C Bus Start/Stop Bits
Parallel Slave Port
(PIC18F8527/8622/8627/8722)
Parallel Slave Port (PSP) Read
Parallel Slave Port (PSP) Write
Program Memory Read
Program Memory Write
PWM Auto-Shutdown (P1RSEN = 0,
Auto-Restart Disabled)
PWM Auto-Shutdown (P1RSEN = 1,
Auto-Restart Enabled)
PWM Direction Change
PWM Direction Change at Near
100% Duty Cycle
PWM Output
Repeated Start Condition
Repeated Start Condition

Timer (OST) and Power-up Timer (PWRT) 403
Send Break Character Sequence
Slave Synchronization
Slow Rise Time (MCLR Tied to VDD,
VDD Rise > TPWRT)
SPI Mode (Master Mode)
SPI Mode (Slave Mode, CKE = 0)
Synchronous Reception (Master Mode, SREN) 266
Synchronous Transmission
Synchronous Transmission (Through TXEN)
Time-out Sequence on POR w/PLL Enabled
(MCLR Tied to VDD)
Time-out Sequence on Power-up
(MCLR Not Tied to VDD, Case 1)
Time-out Sequence on Power-up
(MCLR Not Tied to VDD, Case 2)
Time-out Sequence on Power-up
(MCLR Tied to VDD, VDD Rise < TPWRT)
Timer0 and Timer1 External Clock
Transition for Entry to Idle Mode
Transition for Entry to SEC_RUN Mode
Transition for Entry to Sleep Mode
(INTOSC to HSPLL)
Transition for Wake from Idle to Run Mode
Transition for Wake from Sleep (HSPLL)
Transition from RC_RUN Mode to
PRI_RUN Mode 44
Transition from SEC_RUN Mode to
PRI_RUN Mode (HSPLL)
Transition to RC_RUN Mode 44
Typical Opcode Fetch, 8-Bit Mode 108
Timing Diagrams and Specifications
A/D Conversion Requirements 417
A/D Conversion Requirements
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Master Mode, CKE = 0) 408
A/D Conversion Requirements 417 AC Characteristics 399 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 408 Example SPI Mode Requirements 408
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Evample SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408
A/D Conversion Requirements 417 AC Characteristics 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 409
A/D Conversion Requirements 417 AC Characteristics 399 Capture/Compare/PWM Requirements 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 409 Example S
A/D Conversion Requirements 417 AC Characteristics 117 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Evample SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 400 CKE = 1) 410 External Clock Requirements 398
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 409 Example SPI Slave Mode Requirements 400 (CKE = 1) 410 External Clock Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 417 Requirements 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 408 Example SPI Slave Mode Requirements 409 Example SPI Slave Mode Requirements 410 External Clock Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 412
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Evample SPI Mode Requirements 417 (Master Mode, CKE = 0) 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 412 I ² C Bus Start/Stop Bits Requirements 411 Master SSP I ² C Bus Data Requirements 411
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 417 Requirements 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 408 Example SPI Slave Mode Requirements 409 Example SPI Slave Mode Requirements 410 External Clock Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 412
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Evample SPI Mode Requirements 417 (Master Mode, CKE = 0) 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 412 I ² C Bus Start/Stop Bits Requirements 411 Master SSP I ² C Bus Data Requirements 411
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 EUSART Synchronous Transmission 416 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Slave Mode, CKE = 0) 409 Example SPI Slave Mode Requirements 398 I ² C Bus Data Requirements 398 I ² C Bus Start/Stop Bits Requirements 411 Master SSP I ² C Bus Data Requirements 414 Master SSP I ² C Bus Start/Stop Bits 413 Parallel Slave Port Requir
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 400, 401 Requirements 415 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 417 (Master Mode, CKE = 0) 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 410 Example SPI Slave Mode Requirements 410 External Clock Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 414 Master SSP I ² C Bus Start/Stop Bits 413 Parallel Slave Port Requirements 413 Parallel Slave Port Requirements 413 Parallel Slave Port Requirements 414
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 400, 401 Requirements 415 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 398 I^2C Bus Data Requirements 398 I^2C Bus Data Requirements (Slave Mode) 411 Master SSP I^2C Bus Data Requirements 414 Master SSP I^2C Bus Start/Stop Bits 413 Parallel Slave Port Requirements 413 Parallel Slave Port Requirements 413 PLL Clock 399
A/D Conversion Requirements 417 AC Characteristics 11 Internal RC Accuracy 399 Capture/Compare/PWM Requirements 405 CLKO and I/O Requirements 400, 401 EUSART Synchronous Receive 400, 401 Requirements 415 EUSART Synchronous Receive 415 Requirements 415 EUSART Synchronous Transmission 415 Example SPI Mode Requirements 417 (Master Mode, CKE = 0) 407 Example SPI Mode Requirements 408 Example SPI Mode Requirements 409 Example SPI Mode Requirements 409 Example SPI Slave Mode Requirements 410 Example SPI Slave Mode Requirements 410 External Clock Requirements 398 I ² C Bus Data Requirements (Slave Mode) 412 I ² C Bus Start/Stop Bits Requirements 414 Master SSP I ² C Bus Start/Stop Bits 413 Parallel Slave Port Requirements 413 Parallel Slave Port Requirements 413 Parallel Slave Port Requirements 414

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com