

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3936 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6622t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Туре	Туре	Description			
				PORTE is a bidirectional I/O port.			
RE0/RD/P2D RE0 RD P2D	2	I/O I O	ST TTL	Digital I/O. Read control for Parallel Slave Port. ECCP2 PWM output D.			
RE1/WR/P2C RE1 WR P2C	1	I/O I O	ST TTL	Digital I/O. Write control for Parallel Slave Port. ECCP2 PWM output C.			
RE2/CS/P2B RE2 CS P2B	64	I/O I O	ST TTL	Digital I/O. Chip select control for Parallel Slave Port. ECCP2 PWM output B.			
RE3/P3C RE3 P3C	63	I/O O	ST —	Digital I/O. ECCP3 PWM output C.			
RE4/P3B RE4 P3B	62	I/O O	ST —	Digital I/O. ECCP3 PWM output B.			
RE5/P1C RE5 P1C	61	I/O O	ST —	Digital I/O. ECCP1 PWM output C.			
RE6/P1B RE6 P1B	60	I/O O	ST —	Digital I/O. ECCP1 PWM output B.			
RE7/ECCP2/P2A RE7 ECCP2 ⁽²⁾	59	I/O I/O	ST ST	Digital I/O. Enhanced Capture 2 input/Compare 2 output/ PWM 2 output.			
P2A ⁽²⁾		0		ECCP2 PWM output A.			
Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levels Analog=Analog inputI = InputO= OutputP = Power l^2C^{TM} = $l^2C/SMBus$ input buffer							

TABLE 1-3: PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

2.7.1 OSCILLATOR CONTROL REGISTER

The OSCCON register (Register 2-2) controls several aspects of the device clock's operation, both in full power operation and in power-managed modes.

The System Clock Select bits, SCS<1:0>, select the clock source. The available clock sources are the primary clock (defined by the FOSC<3:0> Configuration bits), the secondary clock (Timer1 oscillator) and the internal oscillator block. The clock source changes immediately after either of the SCS<1:0> bits are changed, following a brief clock transition interval. The SCS bits are reset on all forms of Reset.

The Internal Oscillator Frequency Select bits (IRCF<2:0>) select the frequency output of the internal oscillator block to drive the device clock. The choices are the INTRC source (31 kHz), the INTOSC source (8 MHz) or one of the frequencies derived from the INTOSC postscaler (31.25 kHz to 4 MHz). If the internal oscillator block is supplying the device clock, changing the states of these bits will have an immediate change on the internal oscillator's output. On device Resets, the default output frequency of the internal oscillator block is set at 1 MHz.

When a nominal output frequency of 31 kHz is selected (IRCF<2:0> = 000), users may choose which internal oscillator acts as the source. This is done with the INTSRC bit in the OSCTUNE register (OSCTUNE<7>). Setting this bit selects INTOSC as a 31.25 kHz clock source derived from the INTOSC postscaler. Clearing INTSRC selects INTRC (nominally 31 kHz) as the clock source and disables the INTOSC to reduce current consumption.

This option allows users to select the tunable and more precise INTOSC as a clock source, while maintaining power savings with a very low clock speed. Additionally, the INTOSC source will already be stable should a switch to a higher frequency be needed quickly. Regardless of the setting of INTSRC, INTRC always remains the clock source for features such as the Watchdog Timer and the Fail-Safe Clock Monitor.

The OSTS, IOFS and T1RUN bits indicate which clock source is currently providing the device clock. The OSTS bit indicates that the Oscillator Start-up Timer and PLL Start-up Timer (if enabled) have timed out and the primary clock is providing the device clock in primary clock modes. The IOFS bit indicates when the internal oscillator block has stabilized and is providing the device clock in RC Clock modes. The T1RUN bit (T1CON<6>) indicates when the Timer1 oscillator is providing the device clock in secondary clock modes. In power-managed modes, only one of these three bits will be set at any time. If none of these bits are set, the INTRC is providing the clock or the internal oscillator block has just started and is not yet stable.

The IDLEN bit controls whether the device goes into Sleep mode or one of the Idle modes when the SLEEP instruction is executed.

The use of the flag and control bits in the OSCCON register is discussed in more detail in **Section 3.0** "Power-Managed Modes".

Note 1:	The Timer1 oscillator must be enabled to select the secondary clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control regis-
	ter (T1CON<3>). If the Timer1 oscillator is not enabled, then any attempt to select a secondary clock source will be ignored.
2:	It is recommended that the Timer1 oscillator be operating and stable before

2: It is recommended that the filmer oscillator be operating and stable before selecting the secondary clock source or a very long delay may occur while the Timer1 oscillator starts.

2.7.2 OSCILLATOR TRANSITIONS

The PIC18F8722 family of devices contains circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 3.1.2 "Entering Power-Managed Modes**".

4.5 Device Reset Timers

The PIC18F8722 family of devices incorporates three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

4.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of the PIC18F8722 family of devices is an 11-bit counter which uses the INTRC source as the clock input. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 in Table 28-12 for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

4.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33, Table 28-12). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP, HS and HSPLL modes and only on Power-on Reset, or on exit from most power-managed modes.

4.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

4.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR pulse has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT or LP modes. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, all time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18F8722 family device operating in parallel.

Oscillator	Power-up ⁽²⁾ a	Exit from	
Configuration	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode
HSPLL	TPWRT ⁽¹⁾ + 1024 TOSC + TPLL ⁽²⁾	1024 Tosc + Tpll ⁽²⁾	1024 Tosc + Tpll ⁽²⁾
HS, XT, LP	Tpwrt ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc
EC, ECIO	TPWRT ⁽¹⁾	_	—
RC, RCIO	TPWRT ⁽¹⁾	_	—
INTIO1, INTIO2	Tpwrt ⁽¹⁾	_	—

TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS

Note 1: See parameter 33, Table 28-12.

2: 2 ms is the nominal time required for the PLL to lock.

Register	A	opplicabl	e Device	s	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt	
FSR1H	6X27	6X22	8X27	8X22	0000	0000	uuuu	
FSR1L	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
BSR	6X27	6X22	8X27	8X22	0000	0000	uuuu	
INDF2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
POSTINC2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
POSTDEC2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
PREINC2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
PLUSW2	6X27	6X22	8X27	8X22	N/A	N/A	N/A	
FSR2H	6X27	6X22	8X27	8X22	0000	0000	uuuu	
FSR2L	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
STATUS	6X27	6X22	8X27	8X22	x xxxx	u uuuu	u uuuu	
TMR0H	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
TMR0L	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TOCON	6X27	6X22	8X27	8X22	1111 1111	1111 1111	uuuu uuuu	
OSCCON	6X27	6X22	8X27	8X22	0100 q000	0100 q000	uuuu uuqu	
HLVDCON	6X27	6X22	8X27	8X22	0-00 0101	0-00 0101	u-uu uuuu	
WDTCON	6X27	6X22	8X27	8X22	0	0	u	
RCON ⁽⁴⁾	6X27	6X22	8X27	8X22	0q-1 11q0	0q-q qquu	uq-u qquu	
TMR1H	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TMR1L	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
T1CON	6X27	6X22	8X27	8X22	0000 0000	u0uu uuuu	uuuu uuuu	
TMR2	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
PR2	6X27	6X22	8X27	8X22	1111 1111	uuuu uuuu	uuuu uuuu	
T2CON	6X27	6X22	8X27	8X22	-000 0000	-000 0000	-uuu uuuu	
SSP1BUF	6X27	6X22	8X27	8X22	xxxx xxxx	uuuu uuuu	uuuu uuuu	
SSP1ADD	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
SSP1STAT	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
SSP1CON1	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	
SSP1CON2	6X27	6X22	8X27	8X22	0000 0000	0000 0000	uuuu uuuu	

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend:u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 4-3 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled, depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6.4 Erasing Flash Program Memory

The minimum erase block is 32 words or 64 bytes. Only through the use of an external programmer, or through ICSP control, can larger blocks of program memory be bulk erased. Word erase in the Flash array is not supported.

When initiating an erase sequence from the microcontroller itself, a block of 64 bytes of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. TBLPTR<5:0> are ignored.

The EECON1 register commands the erase operation. The EEPGD bit must be set to point to the Flash program memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

For protection, the write initiate sequence for EECON2 must be used.

A long write is necessary for erasing the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

6.4.1 FLASH PROGRAM MEMORY ERASE SEQUENCE

The sequence of events for erasing a block of internal program memory location is:

- 1. Load Table Pointer register with address of row being erased.
- 2. Set the EECON1 register for the erase operation:
 - set EEPGD bit to point to program memory;
 - clear the CFGS bit to access program memory;
 - set WREN bit to enable writes;
 - set FREE bit to enable the erase.
- 3. Disable interrupts.
- 4. Write 55h to EECON2.
- 5. Write 0AAh to EECON2.
- 6. Set the WR bit. This will begin the row erase cycle.
- The CPU will stall for duration of the erase for TIW (see parameter D133A).
- 8. Re-enable interrupts.

	MOVLW MOVWF MOVLW MOVWF MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	; load TBLPTR with the base ; address of the memory block
ERASE_ROW	110 V WI		
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
Required	MOVLW	55h	
Sequence	MOVWF	EECON2	; write 55h
	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts

EXAMPLE 6-2: ERASING A FLASH PROGRAM MEMORY ROW

10.0 INTERRUPTS

The PIC18F8722 family of devices have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a highpriority level or a low-priority level. The high-priority interrupt vector is at 0008h and the low-priority interrupt vector is at 0018h. High-priority interrupt events will interrupt any low-priority interrupts that may be in progress.

There are ten registers which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3
- PIE1, PIE2, PIE3
- IPR1, IPR2, IPR3

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

In general, interrupt sources have three bits to control their operation. They are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- Priority bit to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 0008h or 0018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit, which enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit, which enables/disables all interrupt sources. All interrupts branch to address 0008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High-priority interrupt sources can interrupt a lowpriority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INTx pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bit or the GIE bit.

Note: Do not use the MOVFF instruction to modify any of the interrupt control registers while any interrupt is enabled. Doing so may cause erratic microcontroller behavior.

R/W	-1 R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
RBP	U INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP				
bit 7							bit 0				
Legend:			L.14		newted bit week						
	dable bit Je at POR	W = Writable '1' = Bit is set		0 = 0 minimpler	nented bit, read	x = Bit is unkr	0.000				
					aleu	X = DILIS ULIKI	IOWIT				
bit 7	RBPU: PORT	B Pull-up Ena	ble bit								
	1 = All PORT	B pull-ups are	disabled								
				idual port latch	values						
bit 6		ternal Interrup	•	ct bit							
		on rising edge on falling edge									
bit 5	•	ternal Interrup		ct bit							
		on rising edge	•								
	0 = Interrupt	on falling edge)								
bit 4		ternal Interrup	•	ct bit							
		on rising edge on falling edge									
bit 3	•	ternal Interrup		rt hit							
bit 5		on rising edge	•								
		on falling edge									
bit 2	TMR0IP: TM	R0 Overflow In	terrupt Priority	' bit							
	1 = High prio	•									
bit 1	0 = Low prior	-	unt Driarity hit								
DILI	1 = High prio	External Inter	upt Phonty bit								
	0 = Low prior										
bit 0	RBIP: RB Po	RBIP: RB Port Change Interrupt Priority bit									
	1 = High prio	•									
	0 = Low prior	rity									
Note:	Interrupt flag bits a										
	enable bit or the g are clear prior to e						errupt flag bits				
	are clear prior to e	nability an Inte	mupt. This lea		soliware polili	y.					

REGISTER 10-2: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2I	P INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7	·				•		bit 0
Legend:	abla bit		L.14				
R = Read		W = Writable		•	mented bit, read		
-n = Value	atPOR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN
bit 7	INT2IP: INT2	2 External Interi	upt Priority bi	t			
	1 = High prid 0 = Low prid						
bit 6	INT1IP: INT1	External Intern	upt Priority bi	t			
	1 = High price	•					
bit 5	0 = Low price	rity 3 External Interi	unt Enchlo hi	+			
DILD		the INT3 exter	•	L			
		the INT3 exter	•				
bit 4	INT2IE: INT2	2 External Interi	upt Enable bi	t			
		the INT2 exter					
bit 3		the INT2 exter	•				
DIL 3		External Internation Internation International Internation	•	L			
		the INT1 exter					
bit 2	INT3IF: INT3	External Interr	upt Flag bit				
		3 external inter			ed in software)		
bit 1		3 external inter	•	ccur			
bit 1		2 External Interr 2 external inter		(must he clear	ed in software)		
		2 external inter			eu in sonware)		
bit 0	INT1IF: INT1	External Interr	upt Flag bit				
		1 external inter			ed in software)		
	0 = The INT	1 external inter	rupt did not oo	cur			
Note:	Interrupt flag bits						
	enable bit or the g	lobal interrupt	enable bit. Us	er software sho	ould ensure the	appropriate int	errupt flag bits

R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP					
bit 7	·	•	·				bit 0					
Legend:			F .14			-1 (0)						
R = Readabl		W = Writable			mented bit, read							
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 7	SSP2IP: MS	SP2 Interrupt F	Priority hit									
Sit 1	1 = High price	•	nonty bit									
	0 = Low prio											
bit 6	BCL2IP: MS	SP2 Bus Collis	ion Interrupt F	Priority bit								
	1 = High pric	•										
	0 = Low prio	•										
bit 5	RC2IP: EUSART2 Receive Interrupt Priority bit											
	1 = High priority 0 = Low priority											
bit 4	•	•	Interrunt Prio	rity bit								
		TX2IP: EUSART2 Transmit Interrupt Priority bit 1 = High priority										
	0 = Low priority											
bit 3	TMR4IP: TM	R4 to PR4 Mat	ch Interrupt P	riority bit								
	1 = High priority											
	0 = Low prio	•										
bit 2		P5 Interrupt Pr	iority bit									
	1 = High priority											
bit 1	0 = Low priority CCP4IP: CCP4 Interrupt Priority bit											
	1 = High price	•										
	0 = Low prio											
bit 0	CCP3IP: EC	CP3 Interrupt F	Priority bit									
	1 = High pric											
	0 = Low prio	rity										

REGISTER 10-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description
RA0/AN0	RA0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	I	TTL	PORTA<0> data input; disabled when analog input enabled.
	AN0	1	Ι	ANA	A/D input channel 0. Default input configuration on POR; does not affect digital output.
RA1/AN1	RA1	0	0	DIG	LATA<1> data output; not affected by analog input.
		1	Ι	TTL	PORTA<1> data input; disabled when analog input enabled.
	AN1	1	Ι	ANA	A/D input channel 1. Default input configuration on POR; does not affect digital output.
RA2/AN2/VREF-	RA2	0	0	DIG	LATA<2> data output; not affected by analog input.
		1	Ι	TTL	PORTA<2> data input. Disabled when analog functions enabled.
	AN2	1	Ι	ANA	A/D input channel 2. Default input configuration on POR.
	VREF-	1	Ι	ANA	Comparator voltage reference low input and A/D voltage reference low input
RA3/AN3/VREF+	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.
		1	Ι	TTL	PORTA<3> data input; disabled when analog input enabled.
	AN3	1	Ι	ANA	A/D input channel 3. Default input configuration on POR.
	Vref+	1	I	ANA	Comparator voltage reference high input and A/D voltage reference high input.
RA4/T0CKI	RA4	0	0	DIG	LATA<4> data output.
		1	Ι	ST	PORTA<4> data input; default configuration on POR.
	T0CKI	х	Ι	ST	Timer0 clock input.
RA5/AN4/HLVDIN	RA5	0	0	DIG	LATA<5> data output; not affected by analog input.
		1	Ι	TTL	PORTA<5> data input; disabled when analog input enabled.
	AN4	1	Ι	ANA	A/D input channel 4. Default configuration on POR.
	HLVDIN	1	I	ANA	High/Low-Voltage Detect external trip point input.
OSC2/CLKO/RA6	OSC2	х	0	ANA	Main oscillator feedback output connection (XT, HS, HSPLL and LP modes)
	CLKO	x	0	DIG	System cycle clock output (Fosc/4) in all oscillator modes except RC, INTIO7 and EC.
	RA6	0	0	DIG	LATA<6> data output. Enabled in RCIO, INTIO2 and ECIO modes only.
		1	Ι	TTL	PORTA<6> data input. Enabled in RCIO, INTIO2 and ECIO modes only.
OSC1/CLKI/RA7	OSC1	х	I	ANA	Main oscillator input connection.
	CLKI	x	Ι	ANA	Main clock input connection.
	RA7	0	0	DIG	LATA<7> data output. Disabled in external oscillator modes.
		1	I	TTL	PORTA<7> data input. Disabled in external oscillator modes.

TABLE 11-1:PORTA FUNCTIONS

Legend:PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST= Schmitt Buffer Input,
TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

TABLE 11-2:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
--------------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTA	RA7 ⁽¹⁾	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	61
LATA	LATA7 ⁽¹⁾	LATA6 ⁽¹⁾	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	60
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	60
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	59

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA<7:6> and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

11.4 PORTD, TRISD and LATD Registers

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins are	Э
	configured as digital inputs.	

In 80-pin devices, PORTD is multiplexed with the system bus as part of the external memory interface. I/O port and other functions are only available when the interface is disabled by setting the EBDIS bit (MEMCON<7>). When the interface is enabled, PORTD is the low-order byte of the multiplexed address/data bus (AD<7:0>). The TRISD bits are also overridden.

PORTD can also be configured to function as an 8-bit wide parallel microprocessor port by setting the PSPMODE control bit (PSPCON<4>). In this mode, parallel port data takes priority over other digital I/O (but not the external memory interface). When the parallel port is active, the input buffers are TTL. For more information, refer to **Section 11.10** "**Parallel Slave Port**".

EXAMPLE 11-4: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by ; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

13.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 13-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 13-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 13-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

Legend:							
R = Readable b	oit	W = Writable bit	U = Unimplemented bit,	, read as '0'			
-n = Value at P0	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7		6-Bit Read/Write Mode Enab					
		oles register read/write of Tir oles register read/write of Tir					
bit 6	T1RUN:	Timer1 System Clock Status	bit				
		ce clock is derived from Tim ce clock is derived from ano					
bit 5-4							
	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value						
	10 = 1:4 Prescale value						
	01 = 1:2 Prescale value						
	••••••	Prescale value					
bit 3	T1OSCEN: Timer1 Oscillator Enable bit						
	1 = Timer1 oscillator is enabled						
		er1 oscillator is shut off oscillator inverter and feedba	ack resistor are turned off to e	liminate power drain			
bit 2		: Timer1 External Clock Inpu					
		/R1CS = 1:					
	1 = Do not synchronize external clock input						
	0 = Synchronize external clock input						
	When TMR1CS = 0:						
		•	ternal clock when TMR1CS =	= 0.			
bit 1	TMR1CS: Timer1 Clock Source Select bit						
		rnal clock from pin RC0/T1C nal clock (Fosc/4)	SO/T13CKI (on the rising edg	ge)			
bit 0	TMR10N	I: Timer1 On bit					
	1 = Enal	oles Timer1					
	0 = Stop	s Timer1					

21.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 21-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the
	holding	g capa	acitor is disco	nne	ected from	n the
	input p	in.				

EQUATION 21-1: ACQUISITION TIME

TACO Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient = = TAMP + TC + TCOFF

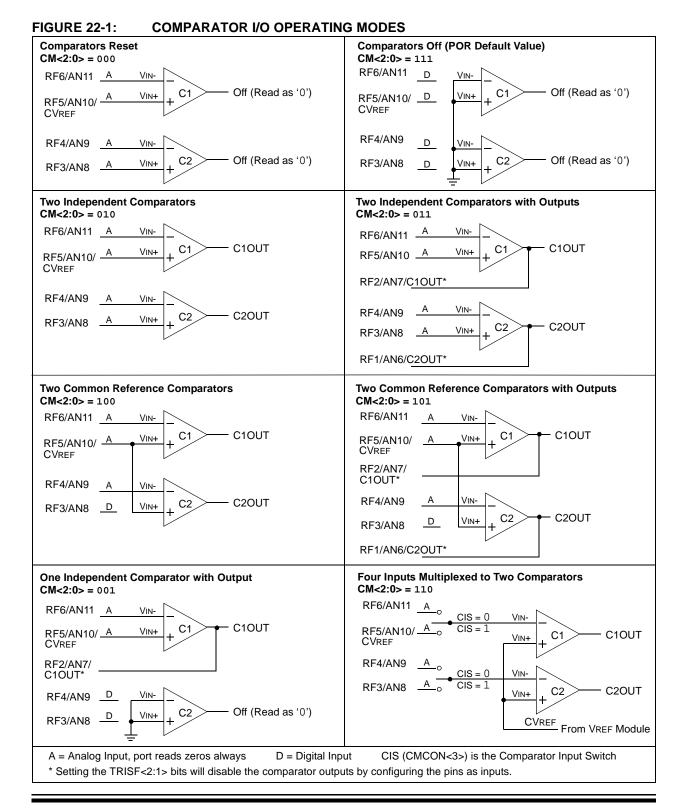
EQUATION 21-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{RSS} + \text{RS}))})$
or		
TC	=	-(Chold)(Ric + Rss + Rs) ln(1/2048)

EQUATION 21-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
Тс	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2047)$ µs -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) µs 1.05 µs
TACQ	=	0.2 μs + 1 μs + 1.2 μs 2.4 μs

То calculate the minimum acquisition time. Equation 21-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.


Example 21-3 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following application svstem assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

22.1 Comparator Configuration

There are eight modes of operation for the comparators, shown in Figure 22-1. Bits CM<2:0> of the CMCON register are used to select these modes. The TRISF register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in **Section 28.0 "Electrical Characteristics"**.

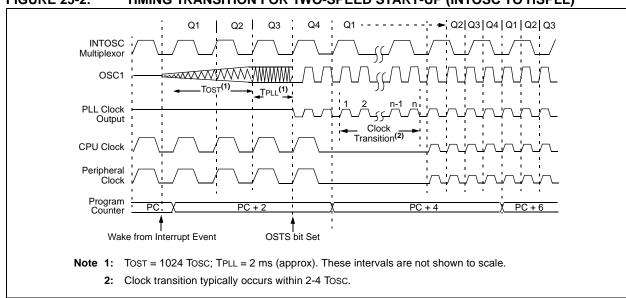
Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.

25.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period from oscillator start-up to code execution by allowing the microcontroller to use the INTOSC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is LP, XT, HS or HSPLL (crystal-based modes). Other sources do not require an OST start-up delay; for these, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.


To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits IRCF<2:0> immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF2:0> bits prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Startup is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

25.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTOSC oscillator in Two-Speed Startup, the device still obeys the normal command sequences for entering power-managed modes, including multiple SLEEP instructions (refer to **Section 3.1.4 "Multiple Sleep Commands**"). In practice, this means that user code can change the SCS<1:0> bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 25-2: TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)

25.5 Program Verification and Code Protection

The user program memory is divided into four blocks for PIC18F6527/8527 devices, five blocks for PIC18F6622/8622 devices, six blocks for PIC18F6627/ 8627 devices and eight blocks for PIC18F6722/8722 devices. One of these is a boot block of 2, 4 or 8 Kbytes. The remainder of the memory is divided into blocks on binary boundaries. Each of the blocks has three code protection bits associated with them. They are:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

Figure 25-5 shows the program memory organization for 48, 64, 96 and 128-Kbyte devices and the specific code protection bit associated with each block. The actual locations of the bits are summarized in Table 25-3.

FIGURE 25-5: CODE-PROTECTED PROGRAM MEMORY FOR THE PIC18F8722 FAMILY

000000h	Code Memory	•		MEM	ORY SIZE/DEVICE	E												
01FFFFh		Ī	128 Kbytes (PIC18FX722)	96 Kbytes (PIC18FX627)	64 Kbytes (PIC18FX622)	48 Kbytes (PIC18FX527)	Address Range											
							000000h											
	Unimplemented		Boot Block	Boot Block	Boot Block	Boot Block	0007FFh* or 000FFFh* or 001FFFh*											
	Read as '0'		Block 0	Block 0	Block 0	Block 0	000800h* or 001000h* or 002000h*											
							003FFFh											
							004000h											
			Block 1	Block 1	Block 1	Block 1												
0000001							007FFFh 008000h											
200000h			Block 2	Block 2	Block 2	Block 2	00000011											
			Block 2	Block 2	BIOCK 2	DIOCK 2												
							00BFFFh 00C000h											
	Configuration		Block 3	Block 3	Block 3													
	and ID Space	$\left\{ \right.$	BIOORO	DIOOR O	Diotico		00FFFFh											
	Opace						010000h											
			Block 4	Block 4														
							013FFFh											
																		014000h
			Block 5	Block 5		Unimplemented Read '0's												
3FFFFFh					Unimplemented	Neau 03	017FFFh											
					Read '0's		018000h											
			Block 6															
				Unimplemented			01BFFFh											
				Read '0's			01C000h											
			Block 7															
							01FFFFh											
Note: Siz	zes of memory area	as are not	to scale.				-											
* Bo	oot block size is det	ermined b	by the BBSIZ<1:0>	bits in CONFIG4L.														

MOVFF	Move f to f					
Syntax:	MOVFF f _s	MOVFF f _s ,f _d				
Operands:		$\begin{array}{l} 0 \leq f_s \leq 4095 \\ 0 \leq f_d \leq 4095 \end{array}$				
Operation:	$(f_{S}) \to f_{d}$					
Status Affected:	None					
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffffs ffffd		
Description:	moved to d Location of in the 4096 FFFh) and	The contents of source register ' f_s ' are moved to destination register ' f_d '. Location of source ' f_s ' can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination ' f_d ' can also be anywhere from 000h to FFFh				
		Either source or destination can be W (a useful special situation).				
	transferring peripheral r	MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port).				
	PCL, TOSI	The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register				
Words:	2	ç				
Cycles:	2 (3)					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f' (src)	Proce Data		No peration		
Decode	No operation No dummy read	No operat		Write egister 'f' (dest)		
Example:		REG1, F	EG2			
Before Instruc REG1 REG2	= 33 = 11					

33h 33h

=

MOVLB	Move Liter	Move Literal to Low Nibble in BSR				
Syntax:	MOVLW F	MOVLW k				
Operands:	$0 \le k \le 255$					
Operation:	$k \to BSR$					
Status Affected:	None					
Encoding:	0000	0001	kkk	k	kkkk	
Description:	Bank Select of BSR<7:4	The eight-bit literal 'k' is loaded into the Bank Select Register (BSR). The value of BSR<7:4> always remains '0' regardless of the value of k_7 : k_4 .				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3		Q4	
Decode	Read literal 'k'	Proce Data			te literal to BSR	
Example:	MOVLB	5				
Before Instruc BSR Reg		!h				

After Instruction BSR Register = 05h

After Instruction REG1 REG2

26.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling the PIC18 instruction set exten-						
	sion may cause legacy applications to						
	behave erratically or fail entirely.						

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing (Section 5.5.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank (a = 0) or in a GPR bank designated by the BSR (a = 1). When the extended instruction set is enabled and a = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bit-oriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward-compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 26.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

26.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument 'f' in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within the brackets, will generate an error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled), when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument 'd' functions as before.

In the latest versions of the MPASM Assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{Y}$, or the PE directive in the source listing.

26.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F8722 family, it is very important to consider the type of code. A large, re-entrant application that is written in C and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

RC	
RCIO	
XT	
Oscillator Selection	
Oscillator Start-up Timer (OST)	
Oscillator Switching	
Oscillator Transitions	
Oscillator, Timer1	
Oscillator, Timer3	

Ρ

Packaging	
Details	
Marking	
Parallel Slave Port (PSP)	
Associated Registers	160
RE0/RD Pin	158
RE1/WR Pin	158
RE2/CS Pin	158
Select (PSPMODE Bit)	
PICSTART Plus Development Programmer	
PIE Registers	
Pin Functions	
AVDD	20
AVDD	
AVSS	
	-
AVss	
OSC1/CLKI/RA7	
OSC2/CLKO/RA6	
RA0/AN0	
RA1/AN1	
RA2/AN2/VREF	
RA3/AN3/VREF+	
RA4/T0CKI	
RA5/AN4/HLVDIN	14, 22
RB0/INT0/FLT0	15, 23
RB1/INT1	15, 23
RB2/INT2	
RB3/INT3	-, -
RB3/INT3/ECCP2/P2A	
RB4/KBI0	
RB5/KBI1/PGM	
RB6/KBI2/PGC	
RB7/KBI3/PGD	,
RC0/T10S0/T13CKI	
RC1/T1OSI/ECCP2/P2A	
RC2/ECCP1/P1A	
RC3/SCK1/SCL1	,
RC4/SDI1/SDA1	,
RC5/SDO1	,
RC6/TX1/CK1	
RC7/RX1/DT1	
RD0/AD0/PSP0	25
RD0/PSP0	17
RD1/AD1/PSP1	25
RD1/PSP1	
RD2/AD2/PSP2	25
RD2/PSP2	
RD3/AD3/PSP3	
RD3/PSP3	-
RD4/AD4/PSP4/SDO2	
RD4/PSP4/SD02 RD4/PSP4/SD02	
RD5/AD5/PSP5/SDI2/SDA2	
RD5/PSP5/SDI2/SDA2	
RD6/AD6/PSP6/SCK2/SCL2	
RD6/PSP6/SCK2/SCL2	17

RD7/AD7/P <u>SP7/SS2</u>	. 25
RD7/PSP7/SS2	
RE0/ <u>AD</u> 8/RD/P2D	. 26
RE0/RD/P2D	
RE1/AD9/WR/P2C	. 26
RE1/WR/P2C	. 18
RE2/AD10/CS/P2B	
RE2/CS/P2D	
RE3/AD11/P3C	
RE3/P3C	
RE4/AD12/P3B	
RE4/P3B	-
RE5/AD13/P1C	
RE5/P1C	
RE6/AD14/P1B	26
RE6/P1B	
RE7/AD15/ECCP2/P2A	
RE7/ECCP2/P2A	
RF0/AN5	
RF1/AN6/C2OUT	
RF2/AN7/C1OUT	
RF3/AN8	·
RF4/AN9	'
RF5/AN10/CVREF	-
RF6/ <u>AN1</u> 119	·
RF7/SS1	
RG0/ECCP3/P3A	
RG1/TX2/CK2 20	
RG2/RX2/DT2	
RG3/CCP4/P3D 20	
RG4/CCP5/P1D 20	, 28
RG520	, 28
RG5 20 RG5/MCLR/VPP 13	, 28 , 21
RG520 RG5/MCLR/VPP13 RH0/A16	, 21
RG5/MCLR/Vpp13	, 21 . 29
RG5/MCLR/Vpp13 RH0/A16	, 21 29 29
RG5/MCLR/VPP13 RH0/A16 RH1/A17	, 21 29 29 29
RG5/MCLR/VPP13 RH0/A16 RH1/A17 RH2/A18	5, 21 29 29 29 29
RG5/MCLR/VPP	5, 21 29 29 29 29 29
RG5/MCLR/VPP	, 21 29 29 29 29 29 29
RG5/MCLR/VPP	5, 21 29 29 29 29 29 29 29
RG5/MCLR/VPP	, 21 29 29 29 29 29 29 29 29
RG5/MCLR/VPP	, 21 29 29 29 29 29 29 29 29 29 29 30
RG5/MCLR/VPP	5, 21 29 29 29 29 29 29 29 29 30 30
RG5/MCLR/VPP	5, 21 29 29 29 29 29 29 29 29 29 30 30 30
RG5/MCLR/VPP 13 RH0/A16	5, 21 29 29 29 29 29 29 29 29 29 30 30 30 30
RG5/MCLR/VPP 13 RH0/A16	5, 21 29 29 29 29 29 29 29 29 30 30 30 30 30
RG5/MCLR/VPP 13 RH0/A16	6, 21 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30
RG5/MCLR/VPP 13 RH0/A16	6, 21 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30
RG5/MCLR/VPP 13 RH0/A16	6, 21 29 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 30
RG5/MCLR/VPP 13 RH0/A16	a, 21 29 29 29 29 29 29 29 29 29 29 30 30 30 30 30 30 30 30 30 30 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 29 29 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 29 29 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 29 29 29 29 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 29 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 29 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 29 30
RG5/MCLR/VPP 13 RH0/A16	, 21 29 29 29 29 29 29 29 29 29 30

Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and Brown-out	
Reset Requirements403	
Timer0 and Timer1 External Clock	
Requirements404	
Top-of-Stack Access	
TRISE Register	
PSPMODE Bit158	
TSTFSZ	
Two-Speed Start-up	
IESO (CONFIG1H, Internal/External	
Oscillator Switchover Bit	
Two-Word Instructions	
Example Cases71	
TXSTAx Register	
BRGH Bit	

W

Watchdog Timer (WDT)	
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	
WCOL	234, 235, 236, 239
WCOL Status Flag	234, 235, 236, 239
WWW Address	
WWW, On-Line Support	5
Х	
XORLW	
XORWF	