

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6627t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6 Internal Oscillator Block

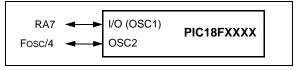
The PIC18F8722 family of devices includes an internal oscillator block which generates two different clock signals; either can be used as the microcontroller's clock source. This may eliminate the need for external oscillator circuits on the OSC1 and/or OSC2 pins.

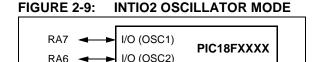
The main output (INTOSC) is an 8 MHz clock source, which can be used to directly drive the device clock. It also drives a postscaler, which can provide a range of clock frequencies from 31 kHz to 4 MHz. The INTOSC output is enabled when a clock frequency from 125 kHz to 8 MHz is selected. The INTOSC output can also be enabled when 31 kHz is selected, depending on the INTSRC bit (OSCTUNE<7>).

The other clock source is the internal RC oscillator (INTRC), which provides a nominal 31 kHz output. INTRC is enabled if it is selected as the device clock source; it is also enabled automatically when any of the following are enabled:

- Power-up Timer
- Fail-Safe Clock Monitor
- Watchdog Timer
- Two-Speed Start-up

These features are discussed in greater detail in **Section 25.0 "Special Features of the CPU"**.


The clock source frequency (INTOSC direct, INTRC direct or INTOSC postscaler) is selected by configuring the IRCF bits of the OSCCON register (page 39).


2.6.1 INTIO MODES

Using the internal oscillator as the clock source eliminates the need for up to two external oscillator pins, which can then be used for digital I/O. Two distinct configurations are available:

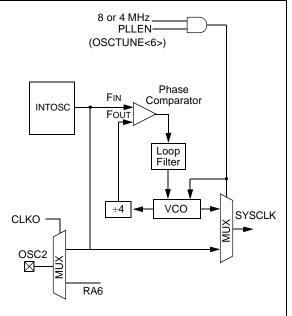
- In INTIO1 mode, the OSC2 pin outputs Fosc/4, while OSC1 functions as RA7 (see Figure 2-8) for digital input and output.
- In INTIO2 mode, OSC1 functions as RA7 and OSC2 functions as RA6 (see Figure 2-9), both for digital input and output.

2.6.2 INTOSC OUTPUT FREQUENCY

The internal oscillator block is calibrated at the factory to produce an INTOSC output frequency of 8 MHz.

The INTRC oscillator operates independently of the INTOSC source. Any changes in INTOSC across voltage and temperature are not necessarily reflected by changes in INTRC or vice versa.

2.6.3 OSCTUNE REGISTER

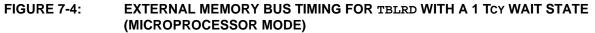

The INTOSC output has been calibrated at the factory but can be adjusted in the user's application. This is done by writing to TUN<4:0> (OSCTUNE<4:0>) in the OSCTUNE register (Register).

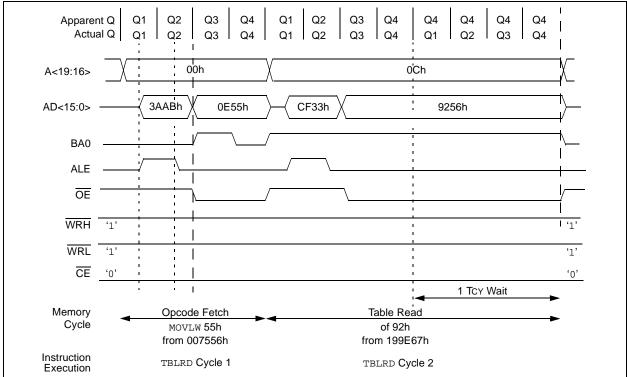
When the OSCTUNE register is modified, the INTOSC frequency will begin shifting to the new frequency. The INTOSC clock will stabilize within 1 ms. Code execution continues during this shift. There is no indication that the shift has occurred. The INTRC is not affected by OSCTUNE.

The OSCTUNE register also implements the INTSRC (OSCTUNE<7>) and PLLEN (OSCTUNE<6>) bits, which control certain features of the internal oscillator block. The INTSRC bit allows users to select which internal oscillator provides the clock source when the 31 kHz frequency option is selected. This is covered in greater detail in **Section 2.7.1** "Oscillator Control **Register**".

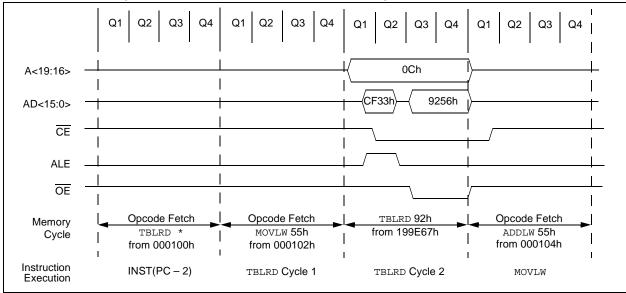
The PLLEN bit controls the operation of the Phase Locked Loop (PLL) in internal oscillator modes (see Figure 2-10).

FIGURE 2-10: INTOSC AND PLL BLOCK DIAGRAM




EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY

EXAIVIPLE 0-3:		TING TO FLASH PROU	
	MOVLW	D'64'	; number of bytes in erase block
	MOVWF	COUNTER	
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSR0H	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
READ_BLOCK			
	TBLRD*+		; read into TABLAT, and inc
	MOVF	TABLAT, W	; get data
	MOVWF		; store data
		COUNTER	; done?
MODIEN WODD	BRA	READ_BLOCK	; repeat
MODIFY_WORD		אייא אטטא מעעא	; point to buffer
	MOVLWD MOVWF	ATA_ADDR_HIGH FSR0H	; point to buffer
	MOVWF	DATA_ADDR_LOW	
	MOVLW	FSROL	
	MOVWP	NEW_DATA_LOW	; update buffer word
	MOVEW	POSTINC0	, aparte ballel word
	MOVLW	NEW_DATA_HIGH	
	MOVWF	INDF0	
ERASE_BLOCK	110 1 111	INDI 0	
	MOVLW	CODE ADDR UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	•
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW MOVWF	BUFFER_ADDR_LOW	
WRITE_BUFFER_F		FSROL	
WRITE_BOFFER_I	MOVLW	D'64'	; number of bytes in holding register
	MOVEW	COUNTER	, number of bytes in nording register
WRITE_BYTE_TO_			
	MOVFF	POSTINC0, WREG	; get low byte of buffer data
	MOVIF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until buffers are full
	BRA	WRITE_WORD_TO_HREGS	-


7.5.4 16-BIT MODE TIMING

The presentation of control signals on the External Memory Bus is different for the various operating modes. Typical signal timing diagrams are shown in Figure 7-4 through Figure 7-6. All examples assume either 20-bit or 21-bit address widths.

FIGURE 7-5: EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED MICROCONTROLLER MODE)

10.6 INTx Pin Interrupts

External interrupts on the RB0/INT0, RB1/INT1, RB2/ INT2 and RB3/INT3 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit, INTxIF, is set. This interrupt can be disabled by clearing the corresponding enable bit, INTxIE. Flag bit, INTxIF, must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt.

All external interrupts (INT0, INT1, INT2 and INT3) can wake-up the processor from the power-managed modes if bit INTxIE was set prior to going into powermanaged modes. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

Interrupt priority for INT1, INT2 and INT3 is determined by the value contained in the interrupt priority bits, INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and INT3IP (INTCON2<1>). There is no priority bit associated with INT0. It is always a high-priority interrupt source.

10.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit, TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFh \rightarrow 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 12.0 "Timer0 Module" for further details on the Timer0 module.

10.8 PORTB Interrupt-on-Change

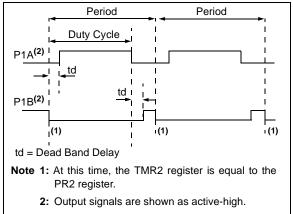
An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

10.9 Context Saving During Interrupts

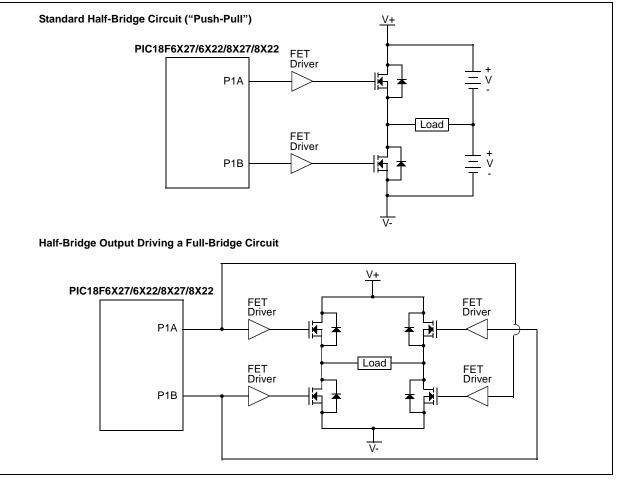
During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see **Section 5.3 "Data Memory Organization"**), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user's application, other registers may also need to be saved. Example 10-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

MOVWF	W_TEMP	; W_TEMP is in virtual bank
MOVFF	STATUS, STATUS_TEMP	; STATUS_TEMP located anywhere
MOVFF	BSR, BSR_TEMP	; BSR_TMEP located anywhere
;		
; USER	ISR CODE	
;		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

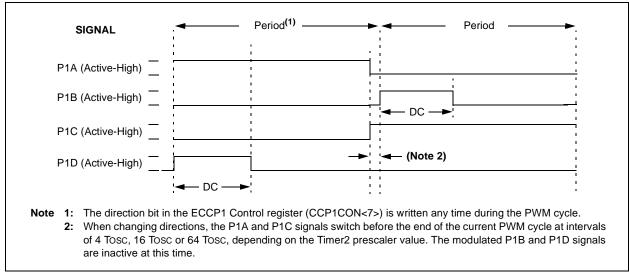
EXAMPLE 10-1:	SAVING STATUS, WREG AND BSR REGISTERS IN RAM
---------------	--

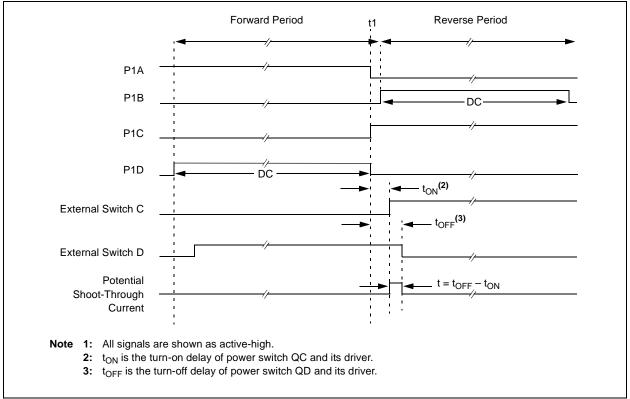

18.4.4 HALF-BRIDGE MODE

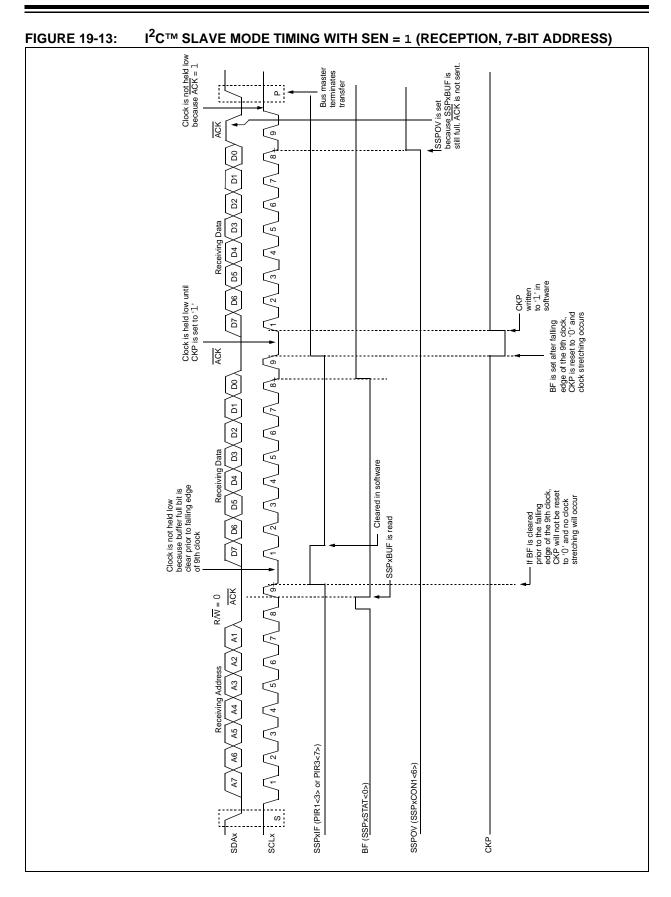
In the Half-Bridge Output mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the P1A pin, while the complementary PWM output signal is output on the P1B pin (Figure 18-4). This mode can be used for half-bridge applications, as shown in Figure 18-5, or for full-bridge applications, where four power switches are being modulated with two PWM signals.


In Half-Bridge Output mode, the programmable dead-band delay can be used to prevent shoot-through current in half-bridge power devices. The value of bits, P1DC<6:0> sets the number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output remains inactive during the entire cycle. See **Section 18.4.6** "**Programmable Dead-Band Delay**" for more details on dead-band delay operations.

The P1A and P1B outputs are multiplexed with the PORTC<2> and PORTE<6> data latches. Alternatively, P1B can be assigned to PORTH<7> by programming the ECCPMX Configuration bit to '0'. See Table 18-1, Table 18-2 and Table 18-3 for more information. The associated TRIS bit must be cleared to configure P1A and P1B as outputs.


FIGURE 18-4: HALF-BRIDGE PWM OUTPUT


FIGURE 18-5: EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS



19.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDAx, while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address, followed by a '1' to indicate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCLx clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 19.4.7 "Baud Rate"** for more detail.

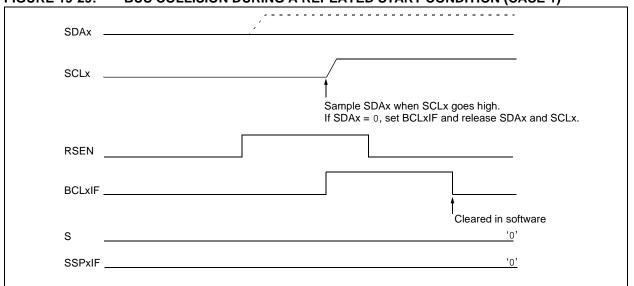
A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPxCON2<0>).
- SSPxIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPxBUF with the slave address to transmit.
- 4. Address is shifted out the SDAx pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 7. The user loads the SSPxBUF with eight bits of data.
- 8. Data is shifted out the SDAx pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPxCON2 register (SSPxCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPxCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

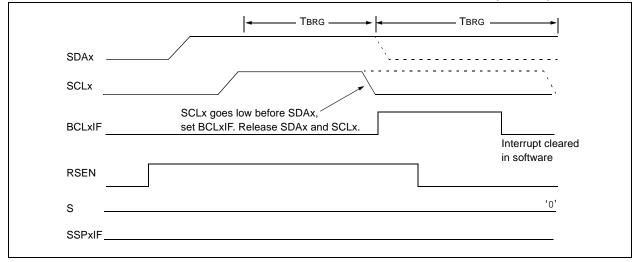
19.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDAx when SCLx goes from low level to high level.
- b) SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1'.


When the user deasserts SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD<6:0> and counts down to '0'. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled.

If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 19-29). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.


If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 19-30).

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 19-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 19-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

20.2.5 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The frame Break character is sent whenever the SENDB and TXEN bits (TXSTAx<3> and TXSTAx<5>) are set while the Transmit Shift register is loaded with data. Note that the value of data written to TXREGx will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREGx for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 20-10 for the timing of the Break character sequence.

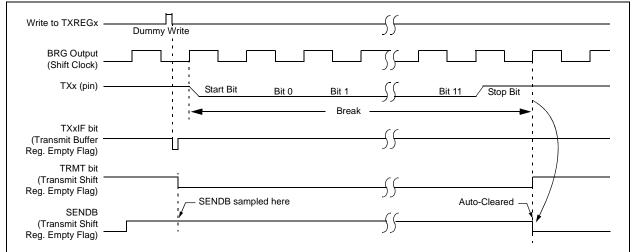
20.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREGx with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREGx to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREGx becomes empty, as indicated by the TXxIF, the next data byte can be written to TXREGx.

20.2.6 RECEIVING A BREAK CHARACTER


The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in **Section 20.2.4 "Auto-Wake-up on Sync Break Character"**. By enabling this feature, the EUSART will sample the next two transitions on RXx/DTx, cause an RCxIF interrupt and receive the next data byte followed by another interrupt.

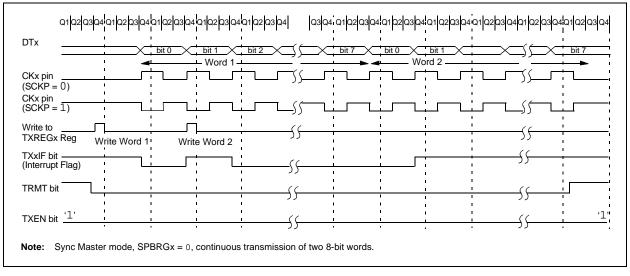
Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TXxIF interrupt is observed.

FIGURE 20-10: SEND BREAK CHARACTER SEQUENCE

20.3 EUSART Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTAx<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTAx<4>). In addition, enable bit SPEN (RCSTAx<7>) is set in order to configure the TXx and RXx pins to CKx (clock) and DTx (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CKx line. Clock polarity is selected with the SCKP bit (BAUDCONx<4>); setting SCKP sets the Idle state on CKx as high, while clearing the bit sets the Idle state as low. This option is provided to support Microwire devices with this module.


20.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION

The EUSART transmitter block diagram is shown in Figure 20-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSRx). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREGx. The TXREGx register is loaded with data in software. The TSRx register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSRx is loaded with new data from the TXREGx (if available). Once the TXREGx register transfers the data to the TSRx register (occurs in one TcY), the TXREGx is empty and the TXxIF flag bit is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXxIE. TXxIF is set regardless of the state of enable bit TXxIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREGx register.

While flag bit TXxIF indicates the status of the TXREGx register, another bit, TRMT (TXSTAx<1>), shows the status of the TSRx register. TRMT is a read-only bit which is set when the TSRx is empty. No interrupt logic is tied to this bit, so the user must poll this bit in order to determine if the TSRx register is empty. The TSRx is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXxIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 20-11: SYNCHRONOUS TRANSMISSION

REGISTER 25-1: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1		
IESO	FCMEN	—	—	FOSC3	FOSC2	FOSC1	FOSC0		
bit 7							bit C		
Legend:									
R = Readal	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown		
bit 7	IESO: Interna	al/External Osc	illator Switcho	ver bit					
		ed Start-up ena							
	0 = Two-Spe	ed Start-up disa	abled						
bit 6	FCMEN: Fail	FCMEN: Fail-Safe Clock Monitor Enable bit							
		Clock Monitor							
	0 = Fail-Safe	Clock Monitor	disabled						
bit 5-4	Unimplemer	Unimplemented: Read as '0'							
bit 3-0	FOSC<3:0>:	Oscillator Sele	ction bits						
	11xx = Exte	11xx = External RC oscillator, CLKO function on RA6							
		rnal RC oscillat							
		1001 = Internal oscillator block, CLKO function on RA6, port function on RA7							
	1000 = Internal oscillator block, port function on RA6 and RA7								
	0111 = External RC oscillator, port function on RA6 0110 = HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1)								
	0110 = HS oscillator, port function on RA6								
	0100 = EC oscillator, CLKO function on RA6								
		rnal RC oscillat							
	0010 = HS c								
	0001 = XT c								
	0000 = LP c	scillator							

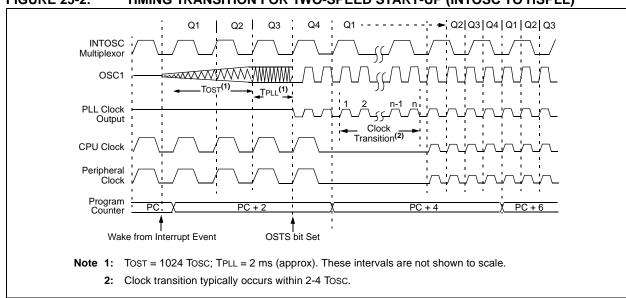
0000 = LP oscillator

25.3 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period from oscillator start-up to code execution by allowing the microcontroller to use the INTOSC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is LP, XT, HS or HSPLL (crystal-based modes). Other sources do not require an OST start-up delay; for these, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode.


To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits IRCF<2:0> immediately after Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting the IRCF2:0> bits prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Startup is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

25.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTOSC oscillator in Two-Speed Startup, the device still obeys the normal command sequences for entering power-managed modes, including multiple SLEEP instructions (refer to **Section 3.1.4 "Multiple Sleep Commands**"). In practice, this means that user code can change the SCS<1:0> bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 25-2: TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)

Mnem	onic,	Description	Cycles		16-Bit Instruction Word			Vord	Status	Neter
Operands		Description		cies	MSb			LSb	Affected	Notes
BIT-ORIEN	NTED OP	ERATIONS								
BCF	f, b, a	Bit Clear f	1		1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1		1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2	or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2	or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1		0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS								
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2		1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2		1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2		1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2		1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2		1110	110s	kkkk	kkkk	None	
		2nd word				kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1		0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1		0000	0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2		-	1111	kkkk		None	
		2nd word				kkkk	kkkk	kkkk		
NOP	—	No Operation	1		0000	0000	0000	0000	None	
NOP	—	No Operation	1		1111		XXXX	XXXX	None	4
POP	—	Pop Top of Return Stack (TOS)	1		0000	0000	0000	0110	None	
PUSH	—	Push Top of Return Stack (TOS)	1		0000	0000	0000	0101	None	
RCALL	n	Relative Call	2		1101	1nnn	nnnn		None	
RESET		Software Device Reset	1		0000	0000	1111		All	
RETFIE	S	Return from Interrupt Enable	2		0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2		0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2		0000	0000	0001		None	
SLEEP	—	Go into Standby mode	1		0000	0000	0000	0011	TO, PD	

TABLE 26-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

GOTO		Unconditi	Unconditional Branch					
Syntax:		GOTO k						
Operands:		$0 \le k \le 10^4$	48575					
Operation:		$k \rightarrow PC<2$	0:1>					
Status Affe	cted:	None						
Encoding: 1st word (k 2nd word(k	,	1110 1111	1111 k19kkk	k7kł kkk		kkkk0 kkkk8		
Description	1:	GOTO allow anywhere range. The PC<20:1> instruction	within enti 20-bit va . GOTO is a	re 2-M lue 'k'	lbyte is lo	e memory aded into		
Words:		2						
Cycles:		2						
Q Cycle A	ctivity:							
(Q1	Q2	Q3			Q4		
Dec	code	Read literal 'k'<7:0>,	No operat	ion	'k'•	ad literal <19:8>, te to PC		
	No ration	No operation	No operat	ion	ор	No eration		
	nstructic PC =	GOTO THE on Address (1						

INCF	Increment	f				
Syntax:	INCF f {,c	d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]				
Operation:	(f) + 1 \rightarrow de	est				
Status Affected:	C, DC, N,	OV, Z				
Encoding:	0010	10da	fff	f	ffff	
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).				esult is sult is	
	If 'a' is '0', the Access Bank is select If 'a' is '1', the BSR is used to select GPR bank (default).					
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3			Q4	
Decode	Read register 'f'	Proce: Data			Vrite to stination	
Example:	INCF	CNT,	L, 0			
Before Instruc CNT Z DC After Instructio CNT Z C DC	= FFh = 0 = ? = ?					

NEGF	Negate f					
Syntax:	NEGF f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]					
Operation:	$(\overline{f}) + 1 \rightarrow f$					
Status Affected:	N, OV, C, DC, Z					
Encoding:	0110 110a ffff ffff					
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'.					
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).					
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						

 Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:	NEGF	REG,	1

Before Instru	ction			
REG	=	0011	1010	[3Ah]
After Instructi	on			
REG	=	1100	0110	[C6h]

	No Operation						
ax:	NOP	NOP					
ands:	None						
ation:	No operation						
s Affected:	None	None					
ding:	0000 1111	0000 xxxx		-	0000 xxxx		
ription:	No operation.						
ls:	1	1					
es:	1	1					
ycle Activity:							
Q1	Q2 Q3		3	Q4			
Decode	No operation			No operation			
	ands: ation: s Affected: ding: ription: ls: es: ycle Activity: Q1	Ax: NOP ands: None ation: No operati s Affected: None ding: 0000 1111 ription: No operati ls: 1 es: 1 ycle Activity: Q1 Q1 Q2 Decode No	Ax: NOP ands: None ation: No operation s Affected: None ding: 0000 1111 xxxx ription: No operation. Is: 1 es: 1 ycle Activity: Q1 Q2 Q3 Decode No	Ax: NOP ands: None ation: No operation s Affected: None ding: 0000 0000 1111 xxxx xxx ription: No operation. ls: 1 es: 1 ycle Activity: Q1 Q2 Q3 Decode No No	NOP ands: None ation: No operation s Affected: None ding: 0000 0000 1111 xxxx xxxx ription: No operation. ls: 1 es: 1 ycle Activity: Q1 Q2 Q1 Q2 Q3		

Example:

None.

26.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, the PIC18F8722 family of devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment Indirect and Indexed Addressing operations and the implementation of Indexed Literal Offset Addressing for many of the standard PIC18 instructions.

The additional features of the extended instruction set are enabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for Indexed Addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software Stack Pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 26-3. Detailed descriptions are provided in **Section 26.2.2 "Extended Instruction Set"**. The opcode field descriptions in Table 26-1 (page 322) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

26.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of Indexed Addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

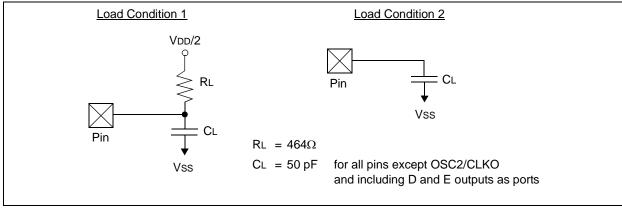
When the extended instruction set is enabled, brackets are also used to indicate index arguments in byte-oriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 26.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cuolos	16-Bit Instruction Word				Status	
		Description	Cycles	MSb			LSb	Affected	
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None	
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None	
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None	
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None	
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ		
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None	
		Decrement FSR2							
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None	
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None	
		Return							

TABLE 26-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

28.4.2 TIMING CONDITIONS


The temperature and voltages specified in Table 28-5 apply to all timing specifications unless otherwise noted. Figure 28-5 specifies the load conditions for the timing specifications.

Note: Because of space limitations, the generic terms "PIC18FXXXX" and "PIC18LFXXXX" are used throughout this section to refer to the PIC18F6X27/6X22/8X27/8X22 and PIC18LF6X27/6X22/8X27/8X22 families of devices specifically and only those devices.

TABLE 28-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)				
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
AC CHARACTERISTICS	Operating voltage VDD range as described in the DC specifications in Section 28.1				
	and Section 28.3.				
	LF parts operate for industrial temperatures only.				

FIGURE 28-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

FIGURE 28-7: CLKO AND I/O TIMING

TABLE 28-9: CLKO AND I/O TIMING REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
10	TosH2cĸL	OSC1 \uparrow to CLKO \downarrow		—	75	200	ns	(Note 1)
11	TosH2ckH	OSC1 ↑ to CLKO ↑		—	75	200	ns	(Note 1)
12	ТскR	CLKO Rise Time		—	35	100	ns	(Note 1)
13	ТскF	CLKO Fall Time		—	35	100	ns	(Note 1)
14	TckL2IoV	CLKO ↓ to Port Out Valid	1	—		0.5 Tcy + 20	ns	(Note 1)
15	ТюV2скН	Port In Valid before CLKO ↑		0.25 Tcy + 25		_	ns	(Note 1)
16	TckH2iol	Port In Hold after CLKO ↑		0	_	—	ns	(Note 1)
17	TosH2IoV	OSC1 ↑ (Q1 cycle) to Port Out Valid		—	50	150	ns	
18	TosH2iol	OSC1 ↑ (Q2 cycle) to	PIC18FXXXX	100		_	ns	
18A		Port Input Invalid (I/O in hold time)	PIC18LFXXXX	200	—	—	ns	VDD = 2.0V
19	TioV2osH	Port Input Valid to OSC1 1 (I/O in setup time)		0	—	—	ns	
20	TIOR	Port Output Rise Time	PIC18FXXXX	—	10	25	ns	
20A			PIC18LFXXXX	—	_	60	ns	VDD = 2.0V
21	TIOF	Port Output Fall Time	PIC18FXXXX	—	10	25	ns	
21A			PIC18LFXXXX	—		60	ns	VDD = 2.0V
22†	TINP	INTx pin High or Low Time		Тсү		—	ns	
23†	Trbp	RB<7:4> Change INTx High or Low Time		Тсү		—	ns	

† These parameters are asynchronous events not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKO output is 4 x Tosc.

Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and Brown-out	
Reset Requirements 403	
Timer0 and Timer1 External Clock	
Requirements404	
Top-of-Stack Access	
TRISE Register	
PSPMODE Bit158	
TSTFSZ	
Two-Speed Start-up	
IESO (CONFIG1H, Internal/External	
Oscillator Switchover Bit	
Two-Word Instructions	
Example Cases71	
TXSTAx Register	
BRGH Bit	

W

Watchdog Timer (WDT)	
Associated Registers	
Control Register	
During Oscillator Failure	
Programming Considerations	
WCOL	234, 235, 236, 239
WCOL Status Flag	234, 235, 236, 239
WWW Address	439
WWW, On-Line Support	5
X	
XORLW	
XORWF	