

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6722t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Dia Mara	Pin Number	Pin	Buffer	Description				
Pin Name	TQFP	Туре	Туре					
				PORTG is a bidirectional I/O port.				
RG0/ECCP3/P3A	3							
RG0 ECCP3		I/O I/O	ST ST	Digital I/O. Enhanced Capture 3 input/Compare 3 output/				
РЗА		0	_	ECCP3 PWM output A.				
RG1/TX2/CK2 RG1 TX2 CK2	4	I/O O I/O	ST — ST	Digital I/O. EUSART2 asynchronous transmit. EUSART2 synchronous clock (see related RX2/DT2).				
RG2/RX2/DT2 RG2 RX2 DT2	5	I/O I I/O	ST ST ST	Digital I/O. EUSART2 asynchronous receive. EUSART2 synchronous data (see related TX2/CK2).				
RG3/CCP4/P3D RG3 CCP4 P3D	6	I/O I/O O	ST ST	Digital I/O. Capture 4 input/Compare 4 output/PWM 4 output. ECCP3 PWM output D.				
RG4/CCP5/P1D RG4 CCP5 P1D	8	I/O I/O O	ST ST	Digital I/O. Capture 5 input/Compare 5 output/PWM 5 output. ECCP1 PWM output D.				
RG5				See RG5/MCLR/VPP pin.				
Vss	9, 25, 41, 56	Р	_	Ground reference for logic and I/O pins.				
Vdd	10, 26, 38, 57	Р	—	Positive supply for logic and I/O pins.				
AVss	20	Р		Ground reference for analog modules.				
AVdd	19	Р	_	Positive supply for analog modules.				
Legend: TTL = TTL co ST = Schmi	ompatible input tt Trigger input v	CMOS with CMO	S OS levels	 CMOS compatible input or output Analog = Analog input 				
	33- P	0		= Output				

TABLE 1-3: PIC18F6527/6622/6627/6722 PINOUT I/O DESCRIPTIONS (CONTINUED)

= $I^2C/SMBus$ input buffer = Power Note 1: Default assignment for ECCP2 when Configuration bit, CCP2MX, is set.

2: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared.

I²C™

Р

Din Nome	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Туре	Туре	Description			
				PORTH is a bidirectional I/O port.			
RH0/A16 RH0 A16	79	I/O I/O	ST TTL	Digital I/O. External memory address/data 16.			
RH1/A17 RH1 A17	80	I/O I/O	ST TTL	Digital I/O. External memory address/data 17.			
RH2/A18 RH2 A18	1	I/O I/O	ST TTL	Digital I/O. External memory address/data 18.			
RH3/A19 RH3 A19	2	I/O I/O	ST TTL	Digital I/O. External memory address/data 19.			
RH4/AN12/P3C RH4 AN12 P3C ⁽⁵⁾	22	I/O I O	ST Analog —	Digital I/O. Analog input 12. ECCP3 PWM output C.			
RH5/AN13/P3B RH5 AN13 P3B ⁽⁵⁾	21	I/O I O	ST Analog —	Digital I/O. Analog input 13. ECCP3 PWM output B.			
RH6/AN14/P1C RH6 AN14 P1C ⁽⁵⁾	20	I/O I O	ST Analog —	Digital I/O. Analog input 14. ECCP1 PWM output C.			
RH7/AN15/P1B RH7 AN15 P1B ⁽⁵⁾	19	I/O I O	ST Analog —	Digital I/O. Analog input 15. ECCP1 PWM output B.			
Legend: TTL = TTL c ST = Schmi	ompatible input	CMC with CM)S 10S levels	= CMOS compatible input or output			
I = Input	in myger input	0		= Output			

	BIGAGEGEGZ/0200/0207/0700 BINOUT VO DECODIDIONO (CONTINUED	•
IABLE 1-4:	PIC18F852//8622/862//8/22 PINOUT I/O DESCRIPTIONS (CONTINUED	•)

P = Power $I^2C^{TM}/SMB = I^2C/SMBus input buffer$

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

NOTES:

FIGURE 5-2: MEMORY MAPS FOR PIC18F8722 FAMILY PROGRAM MEMORY MODES

	М	icroproces Mode	ssor	Mic: with	Microprocessor with Boot Block Mode			ntroller 3 ⁽⁵⁾	Extended Microcontroller Mode	
E	000000h		On-Chip Program Memory (No access)	000000h 0007FFh ⁽⁶⁾ or 000FFFh ⁽⁶⁾ or 001FFFh ⁽⁶⁾		On-Chip Program Memory	000000h 0BFFFh ⁽¹⁾ 0FFFFh ⁽²⁾	On-Chip Program Memory	000000h 0BFFFh ⁽¹⁾ 0FFFFh ⁽²⁾	On-Chip Program Memory
Program Space Execution		External Program Memory		000800h ⁽⁶⁾ or 001000h ⁽⁶⁾ or 002000h ⁽⁶⁾	External Program Memory		017FFFh ⁽³⁾ 01FFFFh ⁽⁴⁾ 0C000h ⁽¹⁾ 010000h ⁽²⁾ 018000h ⁽³⁾ 020000h ⁽⁴⁾	Reads '0's	017FFFh ⁽³⁾ 01FFFh ⁽⁴⁾ 0C000h ⁽¹⁾ 010000h ⁽²⁾ 018000h ⁽³⁾ 020000h ⁽⁴⁾ Program Memory	
	1FFFFFh			1FFFFFh			1FFFFFh		1FFFFFh	
		External Memory	On-Chip Flash		External Memory	On-Chip Flash		On-Chip Flash	External Memory	On-Chip Flash
No	I: PIC18F6527 and PIC18F8527. 2: PIC18F6622 and PIC18F8622. 3: PIC18F6627 and PIC18F8627. 4: PIC18F672 and PIC18F8722. 5: This is the only mode available on PIC18F6527/6622/6627/6722 devices. 6: Boot block size is determined by the BBSIZ<1:0> bits in CONFIG4L.									

						/					
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:	
STATUS	_	_	_	N	OV	Z	DC	С	x xxxx	58, 80	
TMR0H	Timer0 Regis	limer0 Register High Byte									
TMR0L	Timer0 Regis	ter Low Byte							xxxx xxxx	58, 163	
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	1111 1111	58, 161	
OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	0100 q000	39, 58	
HLVDCON	VDIRMAG	—	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0-00 0101	58, 291	
WDTCON	—	—	—	-	—		-	SWDTEN	0	58, 313	
RCON	IPEN	SBOREN ⁽¹⁾	-	RI	TO	PD	POR	BOR	0q-1 11q0	50, 56, 58, 133	
TMR1H	Timer1 Regis	ter High Byte							xxxx xxxx	58, 169	
TMR1L	Timer1 Regis	ter Low Byte							xxxx xxxx	58, 169	
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	58, 165	
TMR2	Timer2 Regis	ter							0000 0000	58, 172	
PR2	Timer2 Perio	d Register							1111 1111	58, 172	
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	58, 171	
SSP1BUF	MSSP1 Receive Buffer/Transmit Register								XXXX XXXX	58, 169, 170	
SSP1ADD	MSSP1 Addr	ess Register ir	n I ² C™ Slave r	mode. MSSP1	Baud Rate Re	load Register	in I ² C Master	mode.	0000 0000	58, 170	
SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	58, 162, 171	
SSP1CON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	58, 163, 172	
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	58, 173	
ADRESH	A/D Result R	egister High B	yte						xxxx xxxx	59, 280	
ADRESL	A/D Result R	egister Low By	/te						xxxx xxxx	59, 280	
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	59, 271	
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	59, 272	
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	59, 273	
CCPR1H	Enhanced Ca	apture/Compar	e/PWM Regist	ter 1 High Byte	9				xxxx xxxx	59, 180	
CCPR1L	Enhanced Ca	pture/Compar	e/PWM Regist	ter 1 Low Byte					xxxx xxxx	59, 180	
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	59, 187	
CCPR2H	Enhanced Ca	apture/Compar	e/PWM Regist	ter 2 High Byte	Э				xxxx xxxx	59, 180	
CCPR2L	Enhanced Ca	apture/Compar	e/PWM Regist	ter 2 Low Byte	•				xxxx xxxx	59, 180	
CCP2CON	P2M1	P2M0	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	0000 0000	59, 179	
CCPR3H	Enhanced Ca	apture/Compar	e/PWM Regist	ter 3 High Byte	e				xxxx xxxx	59, 180	
CCPR3L	Enhanced Ca	apture/Compar	e/PWM Regist	ter 3 Low Byte	•		r		xxxx xxxx	59, 180	
CCP3CON	P3M1	P3M0	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000 0000	59, 179	
ECCP1AS	ECCP1ASE	ECCP1AS2	ECCP1AS1	ECCP1AS0	PSS1AC1	PSS1AC0	PSS1BD1	PSS1BD0	0000 0000	59, 201	
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	59, 287	
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	59, 289	
TMR3H	Timer3 Regis	ter High Byte							xxxx xxxx	59, 175	
TMR3L	Timer3 Regis	ter Low Byte							XXXX XXXX	59, 175	
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	59, 173	

TABLE 5-3: REGISTER FILE SUMMARY (CONTINUED

x = unknown, u = unchanged, - = unimplemented, q = value depends on condition Legend: Note

1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, this bit reads as '0'.

These registers and/or bits are not implemented on 64-pin devices and are read as '0'. Reset values are shown for 80-pin devices; 2: individual unimplemented bits should be interpreted as '-'.

3: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

4: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

RG5 and LATG5 are only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 and LATG5 read as '0'. 5:

Bit 7 and Bit 6 are cleared by user software or by a POR. 6:

7: Bit 21 of TBLPTRU allows access to the device Configuration bits.

						/			-	
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
PORTJ ⁽²⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	xxxx xxxx	60, 156
PORTH ⁽²⁾	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	0000 xxxx	60, 154
PORTG	_	—	RG5 ⁽⁵⁾	RG4	RG3	RG2	RG1	RG0	xx xxxx	60, 151
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	x000 0000	60, 149
PORTE	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx xxxx	60, 146
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	60, 143
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	60, 140
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	60, 137
PORTA	RA7 ⁽⁴⁾	RA6 ⁽⁴⁾	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000	61, 135
SPBRGH1	EUSART1 Ba	aud Rate Gene	erator Register	High Byte					0000 0000	61, 252
BAUDCON1	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	61, 250
SPBRGH2	EUSART2 Ba	aud Rate Gene	erator Register	High Byte					0000 0000	61, 252
BAUDCON2	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	61, 250
ECCP1DEL	P1RSEN	P1DC6	P1DC5	P1DC4	P1DC3	P1DC2	P1DC1	P1DC0	0000 0000	61, 200
TMR4	Timer4 Register								0000 0000	61, 178
PR4	Timer4 Period Register							1111 1111	61, 178	
T4CON	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	-000 0000	61, 178
CCPR4H	Capture/Compare/PWM Register 4 High Byte								xxxx xxxx	61, 180
CCPR4L	Capture/Com	pare/PWM Re	gister 4 Low B	syte					xxxx xxxx	61, 180
CCP4CON	_	_	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0	00 0000	61, 179
CCPR5H	Capture/Com	pare/PWM Re	gister 5 High E	Byte					xxxx xxxx	61, 180
CCPR5L	Capture/Com	pare/PWM Re	gister 5 Low B	syte					xxxx xxxx	61, 180
CCP5CON	—	—	DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0	00 0000	61, 179
SPBRG2	EUSART2 Ba	aud Rate Gene	erator Register	Low Byte					0000 0000	61, 252
RCREG2	EUSART2 Re	eceive Registe	r						0000 0000	61, 260
TXREG2	EUSART2 Tra	ansmit Registe	er						0000 0000	61, 257
TXSTA2	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	61, 248
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	61, 249
ECCP3AS	ECCP3ASE	ECCP3AS2	ECCP3AS1	ECCP3AS0	PSS3AC1	PSS3AC0	PSS3BD1	PSS3BD0	0000 0000	61, 201
ECCP3DEL	P3RSEN	P3DC6	P3DC5	P3DC4	P3DC3	P3DC2	P3DC1	P3DC0	0000 0000	61, 200
ECCP2AS	ECCP2ASE	ECCP2AS2	ECCP2AS1	ECCP2AS0	PSS2AC1	PSS2AC0	PSS2BD1	PSS2BD0	0000 0000	61, 201
ECCP2DEL	P2RSEN	P2DC6	P2DC5	P2DC4	P2DC3	P2DC2	P2DC1	P2DC0	0000 0000	61, 200
SSP2BUF	MSSP2 Rece	eive Buffer/Trai	nsmit Register						xxxx xxxx	61, 170
SSP2ADD	MSSP2 Addr	ess Register ir	n l ² C™ Slave r	mode. MSSP2	Baud Rate Re	load Register	in I ² C Master	mode.	0000 0000	61, 170
SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	61, 216
SSP2CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	61, 217
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	61, 218

Note 1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise, this bit reads as '0'.

2: These registers and/or bits are not implemented on 64-pin devices and are read as '0'. Reset values are shown for 80-pin devices; individual unimplemented bits should be interpreted as '-'.

3: The PLLEN bit is only available in specific oscillator configuration; otherwise, it is disabled and reads as '0'. See Section 2.6.4 "PLL in INTOSC Modes".

4: RA6/RA7 and their associated latch and direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

5: RG5 and LATG5 are only available when Master Clear is disabled (MCLRE Configuration bit = 0); otherwise, RG5 and LATG5 read as '0'.

6: Bit 7 and Bit 6 are cleared by user software or by a POR.

7: Bit 21 of TBLPTRU allows access to the device Configuration bits.

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
OSCFIE	CMIE	—	EEIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	OSCFIE: Osc	cillator Fail Inter	rupt Enable b	pit				
	1 = Enabled							
hit G		aratar Intarrunt	Enabla bit					
DILO	UNIE: Comparator Interrupt Enable bit							
	I = Enabled 0 = Disabled							
bit 5	Unimplemen	ted: Read as '	0'					
bit 4	EEIE: Interrup	ot Enable bit						
	1 = Enabled							
	0 = Disabled							
bit 3	BCL1IE: MSS	SP1 Bus Collisi	on Interrupt E	nable bit				
	1 = Enabled							
hit 0			Dataat Intarru	nt Enchla hit				
DIL Z	1 - Enabled	1/LOw-vollage		pt Enable bit				
	0 = Disabled							
bit 1	TMR3IE: TM	R3 Overflow Int	errupt Enable	e bit				
	1 = Enabled							
	0 = Disabled							
bit 0	CCP2IE: ECO	CP2 Interrupt E	nable bit					
	1 = Enabled							
	v = Disabled							

REGISTER 10-8: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

		11.0							
		0-0							
USCFIP	CIMIP	—	EEIP	BCL11P	HLVDIP	TMR3IP			
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	OSCFIP: Osc	cillator Fail Inter	rrupt Priority I	bit					
	1 = High prio	rity							
	0 = Low prior	rity							
bit 6	CMIP: Compa	arator Interrupt	Priority bit						
	1 = High priority								
	0 = Low prior	rity	- 1						
bit 5	Unimplemen	ted: Read as '	0'						
bit 4	EEIP: Interru	ot Priority bit							
	1 = High price	ority							
h # 0		niy 201 Due Celliei	on laters of F	Duiouitus bit					
DIT 3	BCLTIP: MS	SP1 BUS COIIISI	on interrupt F	monty bit					
	$1 = \Pi g n p n o$	rity							
bit 2	HI VDIP. High	n/l ow-Voltage I	Detect Interru	nt Priority bit					
	1 = High price	ritv		per nonty bit					
	0 = Low prior	rity							
bit 1	TMR3IP: TM	R3 Overflow Int	errupt Priorit	y bit					
	1 = High prio	ority							
	0 = Low prior	rity							
bit 0	CCP2IP: ECO	CP2 Interrupt P	riority bit						
	1 = High prio	ority							
	0 = Low prior	rity							

11.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

EXAMPLE 11-2: INITIALIZING PORTB

RTB;I	nitialize PORTB by clearing output
; ć	lata latches
.TB ; A	Alternate method
; t	o clear output
; ċ	lata latches
Fh ; V	alue used to
; i	nitialize data
; ć	lirection
ISB ; S	et RB<3:0> as inputs
; R	B<5:4> as outputs
; R	B<7:6> as inputs
	RTB ; I ; c TB ; <i>P</i> ; t ; c Fh ; V ; i ; c ISB ; S ; R ; R

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB<7:4>) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from power-managed modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVSF, MOVSS, MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit, RBIF, to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

For 80-pin devices, RB3 can be configured as the alternate peripheral pin for the ECCP2 module by clearing the CCP2MX Configuration bit. This applies only when the device is in one of the operating modes other than the default Microcontroller mode. If the device is in Microcontroller mode, the alternate assignment for ECCP2 is RE7. As with other ECCP2 configurations, the user must ensure that the TRISB<3> bit is set appropriately for the intended operation.

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description		
RB0/INT0/FLT0	RB0	0	0	DIG	LATB<0> data output.		
		1	I	TTL	PORTB<0> data input; weak pull-up when RBPU bit is cleared.		
	INT0	1	I	ST	External interrupt 0 input.		
	FLT0	1	I	ST	ECCPx PWM Fault input, enabled in software.		
RB1/INT1	RB1	0	0	DIG	LATB<1> data output.		
		1	Ι	TTL	PORTB<1> data input; weak pull-up when RBPU bit is cleared.		
	INT1	1	I	ST	External interrupt 1 input.		
RB2/INT2	RB2	0	0	DIG	LATB<2> data output.		
		1	I	TTL	PORTB<2> data input; weak pull-up when RBPU bit is cleared.		
	INT2	1	Ι	ST	External interrupt 2 input.		
RB3/INT3/	RB3	0	0	DIG	LATB<3> data output.		
ECCP2/P2A		1	Ι	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared and capture input is disabled.		
	INT3	1	I	ST	External interrupt 3 input.		
	ECCP2 ⁽¹⁾	0	0	DIG	ECCP2 compare output and ECCP2 PWM output. Takes priority over port data.		
		1	I	ST	ECCP2 capture input.		
	P2A ⁽¹⁾	0	0	DIG	ECCP2 Enhanced PWM output, channel A. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority ove port data.		
RB4/KBI0	RB4	0	0	DIG	LATB<4> data output.		
		1	Ι	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared.		
	KBI0	1	I	TTL	Interrupt-on-pin change.		
RB5/KBI1/PGM	RB5	0	0	DIG	LATB<5> data output		
		1	I	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.		
	KBI1	1	I	TTL	Interrupt-on-pin change.		
	PGM	x	I	ST	Single-Supply Programming mode entry (ICSP). Enabled by LVP Configuration bit; all other pin functions disabled.		
RB6/KBI2/PGC	RB6	0	0	DIG	LATB<6> data output.		
		1	Ι	TTL	PORTB<6> data input; weak pull-up when RBPU bit is cleared.		
	KBI2	1	I	TTL	Interrupt-on-pin change.		
	PGC	x	I	ST	Serial execution (ICSP [™]) clock input for ICSP and ICD operation ⁽²⁾ .		
RB7/KBI3/PGD	RB7	0	0	DIG	LATB<7> data output.		
		1	I	TTL	PORTB<7> data input; weak pull-up when RBPU bit is cleared.		
	KBI3	1	I	TTL	Interrupt-on-pin change.		
	PGD	x	0	DIG	Serial execution data output for ICSP and ICD operation ⁽²⁾ .		
		х	I	ST	Serial execution data input for ICSP and ICD operation ⁽²⁾ .		

TABLE 11-3: PORTB FUNCTIONS

Legend: PWR = Power Supply, O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared (Microprocessor, Extended Microcontroller and Microcontroller with Boot Block modes, 80-pin devices only). Default assignment is RC1.

2: All other pin functions are disabled when ICSP or ICD operations are enabled.

11.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions. All port pins have Schmitt Trigger input buffers. RC1 is normally configured by Configuration bit, CCP2MX, as the default peripheral pin of the ECCP2 module (default/erased state, CCP2MX = 1).

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

Note:	On	а	Power-on	Reset,	these	pins	are
	configured as digital inputs.						

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

	INITIAL IZING DODTO
EXAMPLE 11-3:	INITIALIZING PORTC

	-	
CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

14.0 TIMER2 MODULE

The Timer2 timer module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSPx module

The module is controlled through the T2CON register (Register 14-1), which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 14-1.

14.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options; these are selected by the prescaler control bits, T2CKPS<1:0> (T2CON<1:0>). The value of TMR2 is compared to that of the period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see **Section 14.2 "Timer2 Interrupt**").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 6-3	T2OUTPS<3:0>: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	1x = Prescaler is 16

Inimplemented Read as '0'

hit 7

REGISTER 18-3: ECCPxAS: ENHANCED CCP AUTO-SHUTDOWN CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCPxASE	ECCPxAS2	ECCPxAS1	ECCPxAS0	PSSxAC1	PSSxAC0	PSSxBD1	PSSxBD0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	ECCPxASE: ECCP Auto-Shutdown Event Status bit				
	0 = ECCP outputs are operating1 = A shutdown event has occurred; ECCP outputs are in shutdown state				
bit 6-4	ECCPxAS<2:0>: ECCP Auto-Shutdown Source Select bits				
	000 = Auto-shutdown is disabled				
	001 = Comparator 1 output				
	010 = Comparator 2 output				
	011 = Either Comparator 1 or 2				
	100 = FLI0				
	101 = FLI0 or Comparator 1				
	110 = FLI0 or Comparator 2				
bit 3-2	PSSxAC<1:0>: Pins A and C Shutdown State Control bits				
	00 = Drive pins A and C to '0'				
	01 = Drive pins A and C to '1'				
	1x = Pins A and C tri-state				
bit 1-0	PSSxBD<1:0>: Pins B and D Shutdown State Control bits				
	00 = Drive pins B and D to '0'				
	01 = Drive pins B and D to '1'				
	1x = Pins B and D tri-state				

RET	FIE Return from Interrupt		RET	LW	Return Lite	eral to W				
Synt	Syntax: RETFIE {s}		Synt	ax:	RETLW k	RETLW k				
Ope	rands:	$s \in \left[0,1\right]$			Oper	rands:	$0 \le k \le 255$	$0 \le k \le 255$		
Ope	Operation: $(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$ if s = 1		Oper	$\begin{array}{lll} \mbox{Operation:} & k \rightarrow W, \\ & (TOS) \rightarrow PC, \\ & PCLATU, PCLATH \mbox{ are ur} \end{array}$			nchanged			
		$(WS) \rightarrow W,$			Statu	Status Affected:				
		$(BSRS) \rightarrow$	BSR,		Enco	oding:	0000	1100 kk	kk kkkk	
		PCLATU, P	CLATH are u	nchanged	Desc	cription:	W is loaded	d with the eigh	nt-bit literal 'k'.	
Statu	is Affected:	GIE/GIEH,	PEIE/GIEL.				The program	m counter is lo tack (the retur	baded from the	
Enco	oding:	0000	0000 0000 0001 000s				The high ac	dress latch (I	PCLATH)	
Desc	cription:	Return from	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low-priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into				remains unchanged.			
		the PC. Inte				ds:	1			
		setting eith				es:	2			
		global inter				cycle Activity:		_		
		STATUSS a				Q1	Q2	Q3	Q4	
		their corres	ponding regis	ters W,		Decode	Read	Process	POP PC from stack	
		STATUS ar	STATUS and BSR. If 's' = 0, no update				interar it	Data	write to W	
Wor	de.	1				No	No	No	No	
Cycl	<u>.</u>	2	2			operation	operation	operation	operation	
0.0	vole Activity	2			Evar	mole:				
u u	Q1	Q2	Q3	Q4		<u>npie.</u>				
	Decode	No	No	POP PC		CALL TABLE	; W conta:	ins table		
		operation	operation operation from stack				; offset value			
				Set GIEH or			; table va	alue		
	No	No	No	GIEL		:				
	operation	operation	operation	operation	TABI	LE ADDME DOI	· W - off	act		
						RETLW k0	; $W = 0112$; Begin ta	able		
Exar	<u>nple:</u>	RETFIE	1			RETLW kl	;			
	After Interrupt					:				
PC = TOS W = WS BSR = BSRS				RETLW kn	; End of t	cable				
	STATUS GIE/GIEI	H. PEIE/GIEL	= STATU = 1	JSS		Before Instruc	tion			
		,	-			W After Instruction	= 07h			
						W	= value of	kn		

XOR	WF	Exclusive	Exclusive OR W with f					
Synta	ax:	XORWF	f {,d {,a}}					
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Oper	ration:	(W) .XOR.	(f) \rightarrow dest					
Statu	is Affected:	N, Z						
Enco	oding:	0001	10da	ffff	ffff			
Desc	cription:	Exclusive C register 'f'. in W. If 'd' is in the regis	DR the con If 'd' is '0', t s '1', the re ter 'f' (defa	tents of the resul sult is ste tult).	W with t is stored ored back			
		If 'a' is '0', t If 'a' is '1', t GPR bank	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).					
		If 'a' is '0' a set is enab in Indexed mode wher Section 26 Bit-Oriente Literal Off	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Process Data	s V des	Vrite to stination			
<u>Exan</u>	nple:	XORWF	REG, 1,	0				
	Before Instruc	tion						
	REG W	= AFh = B5h						
	After Instructio REG W	on = 1Ah = B5h						

MOVSS	Move Indexed to Indexed							
Syntax:	MOVSS [z _s], [z _d]							
Operands:	$0 \le z_s \le 127$ $0 \le z_d \le 127$							
Operation:	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$							
Status Affected:	None							
Encoding: 1st word (source) 2nd word (dest.)	111010111zzzzzzzs1111xxxxxzzzzzzzd							
Description	The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets ' z_s ' or ' z_d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.							
	If the resultant source address points to an Indirect Addressing register, the value returned will be 00h. If the resultant destination address points to an Indirect Addressing register, the instruction will execute as a NOP							
Words:	2							
Cycles:	2							
Q Cycle Activity:								

,		_		
Q C	ycle Activity:			
	Q1	Q2	Q3	
	Decode	Determine	Determine	

	source addr	source addr	source reg
Decode	Determine	Determine	Write
	dest addr	dest addr	to dest reg

Q4 Read

Example:	MOVSS	[05h],	[06h]
Before Instruction	on		
FSR2	=	80h	
Contents of 85h Contents	=	33h	
of 86h	=	11h	
After Instruction			
FSR2	=	80h	
Contents of 85h	=	33h	
of 86h	=	33h	

PUSHL	Store Literal	at FSR2	2, Decrei	ment FSR2	
Syntax:	PUSHL k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2				
Status Affected:	None				
Encoding:	1111 3	L010	kkkk	kkkk	
Description.	memory address specified by FSR2. FSR2 is decremented by 1 after the operation.				
	This instruction values onto a	on allow softwar	s users f re stack.	to push	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q	3	Q4	
Decode	Read 'k'	Proce dat	ess a	Write to destination	
Example:	PUSHL 08	3h			
Before Instru	ction				

Before Instruction FSR2H:FSR2L Memory (01ECh)	= =	01ECh 00h
After Instruction FSR2H:FSR2L Memory (01ECh)	= =	01EBh 08h

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	10	MHz	HS mode only
F11	Fsys	On-Chip VCO System Frequency	16	—	40	MHz	HS mode only
F12	t _{rc}	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13	ΔCLK	CLKO Stability (Jitter)	-2	—	+2	%	

TABLE 28-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 28-8:AC CHARACTERISTICS: INTERNAL RC ACCURACYPIC18F6X27/6X22/8X27/8X22 (INDUSTRIAL, EXTENDED)PIC18LF6X27/6X22/8X27/8X22 (INDUSTRIAL)

PIC18LI (Indu	C18LF6X27/6X22/8X27/8X22 (Industrial)Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F((Indu	6 X27/6X22/8X27/8X22 ustrial, Extended)	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Device	Min	Тур	Max	Units	Conditions			
	INTOSC Accuracy @ Freq = 8 MHz, 4 MHz, 2 MHz, 1 MHz, 500 kHz, 250 kHz, 125 kHz ⁽¹⁾								
	PIC18LF6X27/6X22/8X27/8X22	-2	+/-1	2	%	+25°C VDD = 2.7-3.3V			
		-5	+/-1	5	%	-40°C to +85°C VDD = 2.7-3.3V			
	PIC18F6X27/6X22/8X27/8X22	-2	+/-1	2	%	+25°C VDD = 4.5-5.5V			
		-5	+/-1	5	%	-40°C to +85°C VDD = 4.5-5.5V			
	INTRC Accuracy @ Freq = 31 kHz								
	PIC18LF6X27/6X22/8X27/8X22	26.562	_	35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V		
	PIC18F6X27/6X22/8X27/8X22	26.562	+/-8	35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

							-		
Param. No.	Symbol	Charac	teristic	Min	Max	Units	Conditions		
100	Thigh	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms			
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms			
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms			
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms			
102	TR	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾		300	ns			
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	_	100	ns			
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Repeated Start		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	condition		
91	THD:STA	STA Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	After this period, the first		
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms			
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns			
			400 kHz mode	0	0.9	ms			
			1 MHz mode ⁽¹⁾	TBD	_	ns			
107	TSU:DAT	TSU:DAT Data Input Setup Time	Data Input	100 kHz mode	250	—	ns	(Note 2)	
					5	Setup Time	400 kHz mode	100	—
			1 MHz mode ⁽¹⁾	TBD	_	ns			
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms			
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms			
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms			
109	ΤΑΑ	Output Valid	100 kHz mode	—	3500	ns			
		from Clock	400 kHz mode		1000	ns			
			1 MHz mode ⁽¹⁾		_	ns			
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	ms	Time the bus must be free		
			400 kHz mode	1.3	—	ms	before a new transmission		
			1 MHz mode ⁽¹⁾	TBD	—	ms	can start		
D102	Св	Bus Capacitive L	oading	—	400	pF			
		3							

TABLE 28-23: MASTER SSP I²C[™] BUS DATA REQUIREMENTS

Legend: TBD = To Be Determined

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode,) before the SCLx line is released.