

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	70
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3936 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf8527-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number	Pin	Buffer		
Pin Name	TQFP	Туре	Туре	Description	
				PORTE is a bidirectional I/O port.	
RE0/AD8/RD/P2D RE0 AD8 RD P2D	4	I/O I/O I O	ST TTL TTL —	Digital I/O. External memory address/data 8. Read control for Parallel Slave Port. ECCP2 PWM output D.	
RE1/AD9/WR/P2C RE1 AD9 WR P2C	3	I/O I/O I O	ST TTL TTL —	Digital I/O. External memory address/data 9. Write control for Parallel Slave Port. ECCP2 PWM output C.	
RE2/AD10/CS/P2B RE2 AD10 CS P2B	78	I/O I/O I O	ST TTL TTL —	Digital I/O. External memory address/data 10. Chip select control for Parallel Slave Port. ECCP2 PWM output B.	
RE3/AD11/P3C RE3 AD11 P3C ⁽⁴⁾	77	I/O I/O O	ST TTL	Digital I/O. External memory address/data 11. ECCP3 PWM output C.	
RE4/AD12/P3B RE4 AD12 P3B ⁽⁴⁾	76	I/O I/O O	ST TTL	Digital I/O. External memory address/data 12. ECCP3 PWM output B.	
RE5/AD13/P1C RE5 AD13 P1C ⁽⁴⁾	75	I/O I/O O	ST TTL —	Digital I/O. External memory address/data 13. ECCP1 PWM output C.	
RE6/AD14/P1B RE6 AD14 P1B ⁽⁴⁾	74	I/O I/O O	ST TTL —	Digital I/O. External memory address/data 14. ECCP1 PWM output B.	
RE7/AD15/ECCP2/P2A RE7 AD15 ECCP2 ⁽³⁾ P2A ⁽³⁾	73	1/O 1/O 1/O	ST TTL ST	Digital I/O. External memory address/data 15. Enhanced Capture 2 input/Compare 2 output/ PWM 2 output. ECCP2 PWM output A.	
Legend: TTL = TTL co	Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output				
ST = Schmi	tt Trigger input	with CN	IOS levels	Analog= Analog input = Output	
P = Power		l²C™	//SMB	= I ² C/SMBus input buffer	
Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except					

TABLE 1-4: PIC18F8527/8622/8627/8722 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for ECCP2 when Configuration bit, CCP2MX, is cleared (all operating modes except Microcontroller mode).

2: Default assignment for ECCP2 in all operating modes (CCP2MX is set).

3: Alternate assignment for ECCP2 when CCP2MX is cleared (Microcontroller mode only).

4: Default assignment for P1B/P1C/P3B/P3C (ECCPMX is set).

5: Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX is clear).

2.6.5.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high. To adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low. To compensate, increment OSCTUNE to increase the clock frequency.

2.6.5.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is much greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

2.6.5.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast. To compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow. To compensate, increment the OSCTUNE register.

5.3 Data Memory Organization

Note:	The operation of some aspects of data
	memory are changed when the PIC18
	extended instruction set is enabled. See
	Section 5.5 "Data Memory and the
	Extended Instruction Set" for more
	information.

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each; the PIC18F8722 family of devices implements all 16 banks. Figure 5-6 shows the data memory organization for the PIC18F8722 family of devices.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to SFRs and the lower portion of GPR Bank 0 without using the BSR. **Section 5.3.2** "Access Bank" provides a detailed description of the Access RAM.

5.3.1 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the 4 Most Significant bits of a location's address; the instruction itself includes the 8 Least Significant bits. Only the four lower bits of the BSR are implemented (BSR<3:0>). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory; the 8 bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSR's value and the bank division in data memory is shown in Figure 5-7.

Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 0Fh will end up resetting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory map in Figure 5-6 indicates which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

5.3.4 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy the top half of Bank 15 (F60h to FFFh). A list of these registers is given in Table 5-2 and Table 5-3. The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and interrupt registers are described in their respective chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of a peripheral feature are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's.

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	CCPR1H	F9Fh	IPR1	F7Fh	SPBRGH1
FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	CCPR1L	F9Eh	PIR1	F7Eh	BAUDCON1
FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	CCP1CON	F9Dh	PIE1	F7Dh	SPBRGH2
FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR2H	F9Ch	MEMCON	F7Ch	BAUDCON2
FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR2L	F9Bh	OSCTUNE	F7Bh	(2)
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	TRISJ ⁽³⁾	F7Ah	(2)
FF9h	PCL	FD9h	FSR2L	FB9h	CCPR3H	F99h	TRISH ⁽³⁾	F79h	ECCP1DEL
FF8h	TBLPTRU	FD8h	STATUS	FB8h	CCPR3L	F98h	TRISG	F78h	TMR4
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	CCP3CON	F97h	TRISF	F77h	PR4
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	ECCP1AS	F96h	TRISE	F76h	T4CON
FF5h	TABLAT	FD5h	TOCON	FB5h	CVRCON	F95h	TRISD	F75h	CCPR4H
FF4h	PRODH	FD4h	(2)	FB4h	CMCON	F94h	TRISC	F74h	CCPR4L
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB	F73h	CCP4CON
FF2h	INTCON	FD2h	HLVDCON	FB2h	TMR3L	F92h	TRISA	F72h	CCPR5H
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	LATJ ⁽³⁾	F71h	CCPR5L
FF0h	INTCON3	FD0h	RCON	FB0h	PSPCON	F90h	LATH ⁽³⁾	F70h	CCP5CON
FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	SPBRG1	F8Fh	LATG	F6Fh	SPBRG2
FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	RCREG1	F8Eh	LATF	F6Eh	RCREG2
FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXREG1	F8Dh	LATE	F6Dh	TXREG2
FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	TXSTA1	F8Ch	LATD	F6Ch	TXSTA2
FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	RCSTA1	F8Bh	LATC	F6Bh	RCSTA2
FEAh	FSR0H	FCAh	T2CON	FAAh	EEADRH	F8Ah	LATB	F6Ah	ECCP3AS
FE9h	FSR0L	FC9h	SSP1BUF	FA9h	EEADR	F89h	LATA	F69h	ECCP3DEL
FE8h	WREG	FC8h	SSP1ADD	FA8h	EEDATA	F88h	PORTJ ⁽³⁾	F68h	ECCP2AS
FE7h	INDF1 ⁽¹⁾	FC7h	SSP1STAT	FA7h	EECON2 ⁽¹⁾	F87h	PORTH ⁽³⁾	F67h	ECCP2DEL
FE6h	POSTINC1 ⁽¹⁾	FC6h	SSP1CON1	FA6h	EECON1	F86h	PORTG	F66h	SSP2BUF
FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSP1CON2	FA5h	IPR3	F85h	PORTF	F65h	SSP2ADD
FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE	F64h	SSP2STAT
FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD	F63h	SSP2CON1
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	SSP2CON2
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	(2)
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA	F60h	(2)

TABLE 5-2: SPECIAL FUNCTION REGISTER MAP FOR THE PIC18F8722 FAMILY OF DEVICES

Note 1: This is not a physical register.

2: Unimplemented registers are read as '0'.

3: This register is not available on 64-pin devices.

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF		
bit 7	bit 7 bit 0								
Legend:	Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
bit 7	INT2IP: INT2 1 = High prio	External Interr	upt Priority bi	t					
	0 = Low prior	rity							
bit 6	INT1IP: INT1	External Interr	upt Priority bi	t					
	1 = High prio 0 = Low prior	rity rity							
bit 5	INT3IE: INT3	External Interr	upt Enable bi	t					
	1 = Enables 0 = Disables	the INT3 extern the INT3 extern	nal interrupt nal interrupt						
bit 4	INT2IE: INT2	External Interr	upt Enable bi	t					
	1 = Enables 0 = Disables	the INT2 extern the INT2 extern	nal interrupt nal interrupt						
bit 3	INT1IE: INT1	External Interr	upt Enable bi	t					
	1 = Enables	the INT1 extern	nal interrupt						
hit 2		External Interr	unt Flag hit						
5112	1 = The INT3	external interi	upt occurred	(must be clear	ed in software)				
	0 = The INT3	3 external interi	upt did not oo	cur	,				
bit 1	INT2IF: INT2	External Interr	upt Flag bit						
	1 = The INT2 0 = The INT2	2 external interi 2 external interi	rupt occurred rupt did not oc	(must be clear	ed in software)				
bit 0	INT1IF: INT1	External Interr	upt Flag bit						
	 1 = The INT1 external interrupt occurred (must be cleared in software) 0 = The INT1 external interrupt did not occur 								
Note:	Interrupt flag bits a enable bit or the gl are clear prior to e	are set when a lobal interrupt e nabling an inte	n interrupt co enable bit. Us errupt. This fea	ndition occurs er software sho ature allows fo	, regardless of ould ensure the r software pollin	the state of its of appropriate into g.	corresponding errupt flag bits		

11.0 I/O PORTS

Depending on the device selected and features enabled, there are up to nine ports available. Some pins of the I/O ports are multiplexed with an alternate function from the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Each port has three registers for its operation. These registers are:

- TRIS register (Data Direction register)
- Port register (reads the levels on the pins of the device)
- LAT register (output latch)

The Data Latch (LAT register) is useful for read-modify-write operations on the value that the I/O pins are driving.

A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

FIGURE 11-1: GENERIC I/O PORT OPERATION

11.1 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. Pins RA6 and RA7 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 25.1 "Configuration Bits"** for details). When they are not used as port pins, RA6 and RA7 and their associated TRIS and LAT bits are read as '0'.

The other PORTA pins are multiplexed with the analog VREF+ and VREF- inputs. The operation of pins RA5:RA0 as A/D converter inputs is selected by clearing or setting the PCFG<3:0> control bits in the ADCON1 register.

Note:	On a Power-on Reset, RA5 and RA<3:0>
	are configured as analog inputs and read
	as '0'. RA4 is configured as a digital input.

The RA4/T0CKI pin is a Schmitt Trigger input and an open-drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 11-1:	INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by
		; clearing output
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	0Fh	; Configure A/D
MOVWF	ADCON1	; for digital inputs
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<5:4> as outputs

11.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register read and write the latched output value for PORTB.

EXAMPLE 11-2: INITIALIZING PORTB

RTB;I	nitialize PORTB by clearing output
; ć	lata latches
.TB ; A	Alternate method
; t	o clear output
; ċ	lata latches
Fh ; V	alue used to
; i	nitialize data
; ć	lirection
ISB ; S	et RB<3:0> as inputs
; R	B<5:4> as outputs
; R	B<7:6> as inputs
	RTB ; I ; c TB ; <i>P</i> ; t ; c Fh ; V ; i ; c ISB ; S ; R ; R

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB<7:4>) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from power-managed modes. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVSF, MOVSS, MOVFF (ANY), PORTB instruction). This will end the mismatch condition.
- b) Clear flag bit, RBIF.

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit, RBIF, to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

For 80-pin devices, RB3 can be configured as the alternate peripheral pin for the ECCP2 module by clearing the CCP2MX Configuration bit. This applies only when the device is in one of the operating modes other than the default Microcontroller mode. If the device is in Microcontroller mode, the alternate assignment for ECCP2 is RE7. As with other ECCP2 configurations, the user must ensure that the TRISB<3> bit is set appropriately for the intended operation.

19.4.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPxCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCLx pin to be held low at the end of each data receive sequence.

19.4.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPxCON1 register is automatically cleared, forcing the SCLx output to be held low. The CKP being cleared to '0' will assert the SCLx line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and read the contents of the SSPxBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 19-13).

- Note 1: If the user reads the contents of the SSPxBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

19.4.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPxADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPxADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPxBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

19.4.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

The 7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and load the contents of the SSPxBUF before the master device can initiate another transmit sequence (see Figure 19-9).

- Note 1: If the user loads the contents of SSPxBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - **2:** The CKP bit can be set in software regardless of the state of the BF bit.

19.4.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 19-11).

24.2 HLVD Setup

The following steps are needed to set up the HLVD module:

- 1. Write the value to the HLVDL<3:0> bits that selects the desired HLVD trip point.
- Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 3. Enable the HLVD module by setting the HLVDEN bit.
- 4. Clear the HLVD interrupt flag (PIR2<2>), which may have been set from a previous interrupt.
- Enable the HLVD interrupt if interrupts are desired by setting the HLVDIE and GIE bits (PIE2<2> and INTCON<7>). An interrupt will not be generated until the IRVST bit is set.

24.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022B (Section 28.2 "DC Characteristics"). Depending on the application, the HLVD module does not need to be operating constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled.

24.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification parameter D420 (**Section 28.2 "DC Characteristics**"), may be used by other internal circuitry, such as the Programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36 (Table 28-12).

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval. Refer to Figure 24-2 or Figure 24-3.

Mnemonic, Operands				16-Bit Instruction Word				Status	
		Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	TED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)	1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)	1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS						•	
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP	—	Pop Top of Return Stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software Device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	GIE/GIEH, PEIE/GIEL	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 26-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

RETURN Return from Subroutine									
Synta	ax:	RETURN	{s}						
Oper	ands:	$s \in \left[0,1\right]$							
Oper	ation:	$(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged							
Statu	s Affected:	None							
Enco	ding:	0000	0000	0001	001s				
Desc	ription:	Return from popped an is loaded in 's'= 1, the registers W loaded into registers W 's' = 0, no occurs (de	n subrou d the top nto the pr contents /S, STAT o their cor /, STATU update of fault).	tine. The sta ogram co of the sha USS and I respondir S and BS these reg	stack is ck (TOS) unter. If idow BSRS are ing R. If gisters				
Word	ls:	1	1						
Cycle	es:	2	2						
QC	ycle Activity:								
	Q1	Q2	Q	3	Q4				
	Decode	No operation	Proce Dat	ess F a fro	POP PC				
	No operation	No operation	No operat	tion o	No peration				
Exam	nple:	RETURN							

After Inst	ruction:
PC	= TOS

Rotate Left	f through Car	ry		
RLCF f {	,d {,a}}			
$0 \leq f \leq 255$				
d ∈ [0,1] a ∈ [0,1]				
$a \in [0,1]$				
$(1<1>) \rightarrow de$ $(f<7>) \rightarrow C,$ $(C) \rightarrow dest<$	<0>			
C, N, Z				
0011	01da fff	f ffff		
The content one bit to th If 'd' is '0', tl is '1', the re 'f' (default).	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default).			
If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).				
set is enable in Indexed I mode when Section 26. Bit-Oriente Literal Offs	ed, this instruct _iteral Offset Ad ever f ≤ 95 (5F .2.3 "Byte-Orie d Instructions set Mode" for c	tion operates ddressing h). See ented and s in Indexed letails.		
C	 registe 	rf <mark>≁</mark>		
1				
1				
·				
02	03	04		
Read	Process	Write to		
register 'f'	Data	destination		
RLCF	REG, 0,	0		
tion				
	0110			
= 1110 = 0	0110			
= 1110 = 0	0110			
	0110			
	0110 1100			
	Rotate Left RLCF f { $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ (f <n>) $\rightarrow de$ (f<7>) $\rightarrow C$, (C) $\rightarrow destechtor C, N, Z 0011 The content one bit to th If 'd' is '0', tt is '1', the ref 'f' (default). If 'a' is '0', tt If 'a' is '0' at set is enabl in Indexed I mode when Section 26 Bit-Oriente Literal Offs 1 1 Q2 Read register 'f' RLCF$</n>	Rotate Left f through CarRLCFf {,d {,a}} $0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ $a \in [0,1]$ (f(-r>) \rightarrow dest(-n + 1>,(f(-7>) \rightarrow C,(C) \rightarrow dest(-0>C, N, Z 0011 $011a$ $01da$ fff The contents of register 'f'one bit to the left through tIf 'd' is '0', the result is placeis '1', the result is stored bar'f' (default).If 'a' is '0', the Access BanIf 'a' is '0' and the extendeset is enabled, this instructin Indexed Literal Offset Acmode whenever $f \le 95$ (5FSection 26.2.3 "Byte-OriesBit-Oriented InstructionsLiteral Offset Mode" for cols11Q2Q3ReadProcessregister 'f'DataRLCFREG, 0,		

Table Read (Continued)

34h 01A358h

=

TBL	RD	Table Read					
Synta	ax:	TBLRD (*;	*+; *	-; +*)			
Oper	ands:	None					
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT					
Statu	s Affected:	None					
Enco	oding:	0000	0(000	000	00	10nn nn=0 * =1 *+ =2 *- =3 +*
Desc	ription:	This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used.					
		The TBLPT each byte in has a 2-Mby	R (a i the /te a	21-bit progra ddres	: pointe am me s rang	er) po emory e.	oints to v. TBLPTR
		TBLPTR<	0> =	0:Lea Pro	st Sigr gram I	nificai Memo	nt Byte of ory Word
		TBLPTR<	0> =	1:Mo Pro	st Sign gram I	ifican Nemo	t Byte of bry Word
		The TBLRD of TBLPTR	instr as fo	uction ollows	can m	nodify	the value
		 no change post-increment post-decrement pre-increment 					
Word	ls:	1					
Cycle	es:	2					
QC	ycle Activity	:					
	Q1	Q2		C	13		Q4
	Decode	No operation		N opera	o ation	op	No peration

Example 1:	TBLRD	*+	;	
Before Instruction TABLAT TBLPTR MEMORY(n 00A356h)		= = =	55h 00A356h 34h
TABLAT TBLPTR			= =	34h 00A357h
Example 2:	TBLRD	+*	;	
Before Instruction	n			
TABLAT TBLPTR MEMORY(MEMORY)	01A357h) 01A358h)		= = =	AAh 01A357h 12h 34h

After Instruction TABLAT TBLPTR

TBLRD

 $\ensuremath{\textcircled{}^{\odot}}$ 2008 Microchip Technology Inc.

No operation (Read Program Memory)

No

operation

No operation (Write TABLAT)

No

operation

TBLWT	Table Wri	te					
Syntax:	TBLWT (*; *+; *-; +*)						
Operands:	None						
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TABLAT) \rightarrow Holding Register None						
Status Affected:	ected: None						
Encodina:	oding: 0000 0000 11pp						
g.				nn=0 *			
				=1 *+			
				=2 *-			
Dooonpiloin	TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 5.0 "Memory Organization" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to access.						
	TBLPTF	<0> = 0:L F <0> = 1:M	Program Mo Nost Signifi	emory Word			
	The TBLW	P T instruct	ion can m	emory Word odify the			
	value of I	BLPIR as	s follows:				
	 no cnar nost-inc 	rement					
	 post-inc post-de 	crement					
	 pre-incr 	ement					
Words:	1						
Cycles:	2						
Q Cycle Activity:							
	01	02	03	04			
	Decode	No	No	No			
	Decoue	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
		(Read		(Write to			
		TABLAT)		Holding Register)			

TBLWT Table Write (Continued)

Example 1: TBLW	T *+;		
Before Instruction			
TABLAT TBLPTR HOLDING RE	GISTER	= =	55h 00A356h
(00A356h)	0.0.2.	=	FFh
After Instructions (ta	able writ	e comp	letion)
TABLAT		=	55h
		=	00A357h
(00A356h)	GIGTER	=	55h
Example 2: TBLW	T +*;		
Before Instruction			
TABLAT		=	34h
TBLPTR HOLDING RE	GISTER	=	01389Ah
(01389Ah) HOLDING RE	GISTER	=	FFh
(01389Bh)		=	FFh
After Instruction (tal	ole write	comple	etion)
TABLAT		=	34h
TBLPTR HOLDING RE	GISTER	=	01389Bh
(01389Ah) HOLDING RE	GISTER	=	FFh
(01389Bh)		=	34h

SUB	SUBFSR Subtract Literal from FSR						
Synta	ax:	SUBFSR	f, k				
Oper	ands:	$0 \le k \le 63$	3				
		$f \in [0, 1,$	2]				
Oper	ation:	FSRf – k	\rightarrow FSRf				
Statu	s Affected:	None					
Encoding: 1110 1001 ffkk kł				kkkk			
Description: The 6-bit literal 'k' is subtracted from the contents of the FSR specified by 'f'.				ed from cified			
Word	ls:	1	1				
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	Read	Proce	SS	V	Vrite to	
		register 'f'	Data	1	de	stination	
<u>Exan</u>	<u>nple:</u>	SUBFSR	2, 23h				

xample:	SUBFSR 2,	, 23h
Before Instruction	า	
FSR2 =	03FFh	
After Instruction		
FSR2 =	03DCh	

SUB	ULNK	Subtract Literal from FSR2 and Return					
Synta	ax:	SUBULNK k					
Oper	ands:	$0 \le k \le 63$					
Oper	ation:	$FSR2 - k \rightarrow FSR2$					
		$(TOS) \rightarrow PC$					
Statu	s Affected:	None					
Enco	ding:	1110	1001	L	11kk		kkkk
Desc	ription:	The 6-bit literal 'k' is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS.					
		The instruction takes two cycles to execute; a NOP is performed during the second cycle.					
		This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.					
Word	ls:	1					
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2		C	23		Q4
	Decode	Read		Proc	cess	١	Write to
		register	f'	Da	ita	de	estination
	No	No		Ν	0		No
	Operation	Operatio	n (Dper	ation	0	peration

Example: SUBULNK 23h

Before Instru	ction						
FSR2	=	03FFh					
PC	=	0100h					
After Instruct	After Instruction						
FSR2	=	03DCh					
PC	=	(TOS)					

26.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F8722 family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- A command line option
- A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

28.4 AC (Timing) Characteristics

28.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS		3. Tcc:st	(I ² C [™] specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	tters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	tters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
1	Invalid (High-Impedance)	V	Valid
L	Low	Z	High-Impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	pecifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

TABLE 28-15: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F8527/8622/8627/8722)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
62	TdtV2wrH	Data In Valid before $\overline{WR} \uparrow$ or $\overline{CS} \uparrow$ (setup time)		20		ns	
63	TwrH2dtl	\overline{WR} \uparrow or \overline{CS} \uparrow to Data–In	PIC18FXXXX	20	_	ns	
Invalid (hold time)	PIC18LFXXXX	35		ns	VDD = 2.0V		
64	TrdL2dtV	$\overline{RD} \downarrow and \overline{CS} \downarrow to Data-Out Valid$			80	ns	
65	TrdH2dtl	\overline{RD} \uparrow or \overline{CS} \downarrow to Data–Out Invalid		10	30	ns	
66	TibfINH	Inhibit of the IBF Flag bit being $\overline{\rm WR}$ \uparrow or $\overline{\rm CS}$ \uparrow	Cleared from		3 TCY		

NOTES:

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

Data Memory	72
Access Bank	74
and the Extended Instruction Set	83
Bank Select Register (BSR)	72
General Purpose Registers	74
Map for PIC18F8722 Family	73
Special Function Registers	75
DAW	340
DC Characteristics	391
Power-Down and Supply Current	379
Supply Voltage	
DCFSNZ	
DECF	340
DECFSZ	
Development Support	371
Device Differences	425
Device Overview	7
Details on Individual Family Members	9
Features (table)	9, 10
New Core Features	7
Device Reset Timers	53
Oscillator Start-up Timer (OST)	53
PLL Lock Time-out	53
Power-up Timer (PWRT)	53
Time-out Sequence	53
Direct Addressing	82

Е

ECCP	
Capture and Compare Modes	192
Standard PWM Mode	192
Effect on Standard PIC MCU Instructions	368
Effects of Power-Managed Modes on Various	
Clock Sources	40
Electrical Characteristics	375
Enhanced Capture/Compare/PWM (ECCP)	187
and Program Memory Modes	188
Capture Mode. See Capture (ECCP Module).	
Outputs and Configuration	188
Pin Configurations for ECCP1	189
Pin Configurations for ECCP2	190
Pin Configurations for ECCP3	191
PWM Mode. See PWM (ECCP Module).	
Timer Resources	192
Enhanced PWM Mode. See PWM (ECCP Module).	
Enhanced Universal Synchronous Asynchronous	
Receiver Transmitter (EUSART). See EUSART.	
E-mations.	
Equations	076
Equations A/D Acquisition Time	276
Equations A/D Acquisition Time A/D Minimum Charging Time A/D. Coloulating the Minimum Required	276 276
Equations A/D Acquisition Time A/D Minimum Charging Time A/D, Calculating the Minimum Required	276 276
Equations A/D Acquisition Time A/D Minimum Charging Time A/D, Calculating the Minimum Required Acquisition Time	276 276 276
Equations A/D Acquisition Time A/D Minimum Charging Time A/D, Calculating the Minimum Required Acquisition Time Errata EUSART	276 276 276 5
Equations A/D Acquisition Time A/D Minimum Charging Time A/D, Calculating the Minimum Required Acquisition Time Errata EUSART Asymphropous Mode	276 276 276 5
Equations A/D Acquisition Time A/D Minimum Charging Time A/D, Calculating the Minimum Required Acquisition Time Errata EUSART Asynchronous Mode 12-Bit Break Transmit and Receive	276 276 276 5 257 263
Equations A/D Acquisition Time A/D Minimum Charging Time A/D, Calculating the Minimum Required Acquisition Time Errata EUSART Asynchronous Mode 12-Bit Break Transmit and Receive Associated Registers, Receive	276 276 276 276 257 257 263 261
Equations A/D Acquisition Time A/D Minimum Charging Time A/D, Calculating the Minimum Required Acquisition Time Errata EUSART Asynchronous Mode 12-Bit Break Transmit and Receive Associated Registers, Receive Associated Registers, Transmit	276 276 276 276 257 263 261 259
Equations A/D Acquisition Time A/D Minimum Charging Time A/D, Calculating the Minimum Required Acquisition Time Errata EUSART Asynchronous Mode 12-Bit Break Transmit and Receive Associated Registers, Receive Associated Registers, Transmit Auto-Wake-up on Sync Break	276 276 276 257 257 263 261 259 262
Equations A/D Acquisition Time A/D Minimum Charging Time A/D, Calculating the Minimum Required Acquisition Time Errata EUSART Asynchronous Mode 12-Bit Break Transmit and Receive Associated Registers, Receive Associated Registers, Transmit Auto-Wake-up on Sync Break Receiver	276 276 276 257 257 263 261 259 262 260
Equations A/D Acquisition Time	276 276 5 257 263 261 262 260
Equations A/D Acquisition Time	276 276 276 5 257 263 261 259 262 260 260
Equations A/D Acquisition Time	276 276 276 257 263 261 259 262 260 260 257
Equations A/D Acquisition Time	276 276 5 257 263 261 259 262 260 260 257
Equations A/D Acquisition Time	276 276 5 257 263 261 269 260 260 257 251

Baud Rate Generator (BRG)	251
Associated Registers	252
Auto-Baud Rate Detect	255
Baud Rate Error, Calculating	252
Baud Rates, Asynchronous Modes	253
High Baud Rate Select (BRGH Bit)	251
Sampling	251
Synchronous Master Mode	264
Associated Registers, Receive	267
Associated Registers, Transmit	265
Reception	266
Transmission	264
Synchronous Slave Mode	268
Associated Registers, Receive	269
Associated Registers, Transmit	268
Reception	269
Transmission	268
Extended Instruction Set	
ADDFSR	364
ADDULNK	364
CALLW	365
MOVSF	365
MOVSS	366
PUSHL	366
SUBFSR	367
SUBULNK	367
Extended Microcontroller Mode	100
External Clock Input	32
External Memory Bus	97
16-Bit Byte Select Mode	103
16-Bit Byte Write Mode	101
16-Bit Data Width Modes	100
16-Bit Mode Timing	104
16-Bit Word Write Mode	102
8-Bit Data Width Modes	106
8-Bit Mode Timing	107
I/O Port Functions	97
Operation in Power-Managed Modes	. 109

F

Fail-Safe Clock Monitor	297, 315
Exiting Operation	315
Interrupts in Power-Managed Modes	316
POR or Wake from Sleep	
WDT During Oscillator Failure	315
Fast Register Stack	68
Firmware Instructions	321
Flash Program Memory	87
Associated Registers	
Control Registers	
EECON1 and EECON2	
TABLAT (Table Latch) Register	
TBLPTR (Table Pointer) Register	
Erase Sequence	92
Erasing	92
Operation During Code-Protect	95
Reading	
Table Pointer	
Boundaries Based on Operation	90
Table Pointer Boundaries	90
Table Reads and Table Writes	87
Write Sequence	93
Writing To	93
Protection Against Spurious Writes	95
Unexpected Termination	
Write Verify	95
FSCM. See Fail-Safe Clock Monitor.	